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T.T.T.

Put up in a place
where it’s easy to see
the cryptic admonishment
T.T.T.

When you feel how depressingly 
slowly you climb,
it’s well to remember that
Things Take Time
1. Introduction

Here we give summaries of the thesis and background for the study. We summari
thesis in an abstract, an executive summary and a technical summary. Then we g
short introduction to the language SDL and its use. We elaborate on our motivatio
the work and give some background in other approaches. Finally the introduction
up with a guide to the reading of this thesis and acknowledgments.

1.1 Abstract

This thesis aims to give a skeleton of a bridge between theoretical validation of co
nicating finite state machines, and the practical quality improvement of designing
systems in SDL.

Mn-

procedure

The backbone of the bridge is the Mn-procedure which reduces an SDL-system t
SDL-process by eliminating internal communication. The Mn-procedure tries to e
lish that a progressive SDL system is confluent, and then a simple reduction algo
produces the reduction.

We show that the Mn-approach for reduction is fruitful on well known examples: A
nating Bit Protocol, The Brock-Ackerman anomaly and the RPC-Memory specifica
problem.

Monolithic The Mn-approach is purely monolithic as it produces SDL descriptions from SDL 
descriptions. We argue that the reductions can result in:

1. A more compact functional specification; (This may help when other technique
used to analyze the total system.)
Practitioners’ verification of SDL systems  1 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29
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2. Improved overview and understanding; (This helps for the designers and review
the system, and it helps achieving reuse.)

3. Simpler analysis on higher levels. (The Mn-procedure is compositional.)

We show how the Mn-approach can be applied to proving refinement.

SDL 

extensions

In order to cope with (extreme) fairness and non-determinism we introduce a few
features to SDL, fair non-deterministic decision and spontaneous save. We also i
duce concepts to harmonize signals and variables to be able to express more ge
signal handling.

Condi-

tional 

reduction

We define modifications on the Mn-procedure which result in conditional reductio
Conditional reduction appears when the confluence is dependent upon the system
cuting without run-time errors, which are caught by a monitoring layer. This means
either the system executes as the reduction, or it turns into a run-time error.

We also note that conditional reduction based upon limited resources such as fini
its on the lengths of the channel queues may be very attractive. This makes confl
decidable, and a simplified version of the Mn-procedure suffices.

Mn-metric Based on the Mn-procedure we develop a metric to indicate complexity areas of th
tem, and thereby a strategy to decrease the complexity and improve the system q

Confluent 

design

We argue that the Mn-procedure scales well and will work also on selected compo
of real systems. Therefore we end up specifying a method which we call “conflue
design” based on aiming for confluence in the design of every constituent part of 
system.

1.2 Executive Summary

In this short section we shall give a brief summary of the background and aims o
dissertation, and the results which we claim to reach.

The background for our work is the discrepancy between the sophistication of the 
able verification methods and the perceived complexity of the systems which are 
analyzed. We feel that the intricacy of the analysis should not exceed the mental 
ities of the designer. Still we recognize the powers of computers to perform repea
tasks and want to exploit the possibilities of automating trivial verification steps.

1.2.1 Major aims

We provide an approach (the Mn-approach) to supplement systems engineering. I
part is a technique (the Mn-procedure) for reduction of SDL-like systems. This tec
nique we show can be used both for theoretical purposes and on real systems. T
approach also provides a methodology which reaps the benefits of the Mn-procedu
real systems.

The name “Mn”1 simply means “Machine n” referring to the use of several machin
(automata) or generations in the Mn-procedure.

1. “Mn” is actually very mnemonic since it is the two first letters of “mnemonic”.
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 2
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1.2.2 SDL systems

We have limited ourselves to SDL-like systems, but our approach is generally ap
ble to the class of systems defined by asynchronously communicating finite state
machines.

An SDL system is a system which has been specified by the specification language
[25; 78; 83]. SDL systems consist of interacting components which in the end are
cesses which are described as finite state machines extended with data variables
communication is asynchronous and we have no means to describe accurately the
of the channels or the execution times of the individual transitions. SDL is a spec
tion language which is being used extensively in the telecom area and some of th
largest software systems in the world are specified in SDL. In a nutshell we claim
SDL systems are reactive, asynchronous, large and concurrent, which are all asp
which are known to add to complexity and to highlight the need for improved meth
On the other hand we claim that most SDL systems are fairly simple wrt. data, or
the data aspects can be handled isolated from the aspects which make up the core
(as mentioned above).

1.2.3 Progress, Confluence and Reduction

The reduction technique that we have defined in this dissertation eliminates the in
communication within a subsystem. Thus the result is a process definition of a su
system that describes a behavior which, from the outside, is non-distinguishable 
that of the original subsystem. The reduced process can be used in other analyse
enclosing systems, but it is not meant to replace the original in the system develop
towards the final implementation.

Thus the reduction may result in:

1. A more compact functional specification;

2. Improved overview and understanding;

3. Simpler analysis on higher levels.

It is, however, not certain that the reduction algorithm is applicable to a given sys
Our technique examines the system for progress and confluence. A system which is pro-
gressive and confluent is reducible. 

Progress is related to termination of programs. A progressive system will not turn
deadlocks or livelocks. This thesis is not very preoccupied with determination of 
progress other than the fact that progress is a prerequisite for determining conflu

Confluence is that different execution paths lead to the same end result. Said differ
confluence between an external and an internal channel means that the end resu
insensitive to the order in which signals are handled on the two independent chan
Our Mn-procedure may determine confluence in cases where we are certain to h
finite execution tree from every system state (weak progress). Why it is not trivial
assert the confluence of an asynchronously communicating system is the fact tha
nal signals may trigger more internal signals which in turn trigger other internal sig
etc. These internal signals may freely travel across the communicating system an
interleaving and concurrency cannot be determined in advance.
Practitioners’ verification of SDL systems 3 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29
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When reducibility has been established, the reduction algorithm is simply to choos
simplest strategy for execution (since all eligible strategies lead to the same end r
and eliminate all other possibilities. The chosen strategy is to execute all internal s
before the next external one is consumed.

The result of the reduction algorithm, the reduction, can be described as an SDL-
process.

1.2.4 SDL is a real language

SDL is a language which has been in real use in industry for a number of years. T
means that it contains features and mechanisms which are beyond the simple co
communicating finite state machines. We show that our Mn-procedure with some e
sion and modification, can cover also the extra features of SDL.

We consider:

1. save – the active withholding of the next signal for consumption;

2. timers – an imperative way to cope with time;

3. procedures – structured way to reuse behavior patterns;

4. pure types – general structures for reuse;

5. inheritance – the object-oriented way to describe concept hierarchies;

6. virtuality – the object-oriented way to describe polymorphism.

We have also considered what complications can be introduced by data.

1.2.5 Desired non-determinism

SDL-92[78] introduces non-determinism through spontaneous transitions and any
expressions. We show how these concepts can be included in our strategy and w
how we can improve the SDL mechanisms for better specification of fairness.

We also cover the fact that implicit non-determinism may be desirable. Explicit no
determinism is when there are specific language constructs which clearly express
“here there is non-determinism” such as spontaneous transitions and anyvalue dec
Implicit non-determinism stems from the race condition between signals of differe
channels. We suggest a new SDL mechanism (spontaneous save) which makes 
ble to describe reductions also in cases with implicit non-determinism.

1.2.6 The Mn-approach — does it scale?

We have showed that the Mn-procedure adapts easily to most significant feature
SDL, which in practice means most significant features of reactive systems. But i
important to consider how well the Mn-procedure may work on large systems. Is 
method such that its supposed applicability is prohibited by the need for an enorm
amount of resources of speed and storage?
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 4
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The analysis of concurrent systems are usually badly crippled by the “state explo
syndrome. The number of possible states quickly exceeds any number which can 
cessed in available time and space.

Fortunately our Mn-approach scales remarkably well. Very large bulks of the wor
linear wrt. the number of components in the system under analysis. The complexity
with the existence of feedback loops, but the complexity rises in a fairly controllab
way.

1.2.7 The Mn-approach as a base for methodology

The Mn-approach can be seen as a technique for verification, a technique for valid
a technique for documentation, a technique for reuse, a technique for evaluation 
theoretical background for design guidelines.

While many other verification and validation techniques appear to give verdict “corr
or “erroneous” to a given program or system, our approach is to bring into play de
guided by analysis results.

Even though correct programs are highly desirable, incorrect programs may have
higher market potential since they are earlier in the marketplace. We try and focu
more aspects of systems than the binary distinction between correctness and fau

1.2.7.1 A technique for verification

Practitioners hate formal verification. They believe it is difficult and time consumin
and error prone. Most often they are right. The Mn-approach makes it possible to 
ine the reductions rather than the full system. In a reduction the questionable prop
may be trivial to assert. If the reducibility has been established through automatic
means, formal verification (almost) has been obtained without sweat.

1.2.7.2 A technique for validation

Validation is to assert the value of something. In our case we want to assert the va
of some software. While a full system may be difficult to overview and to play with
reduction is more manageable. Its strong and weak points are more easily spotte
its undesirable behavior more easily traced. The interesting aspects of the reductio
then be traced backwards through the Mn-approach to their origin in the full syste

1.2.7.3 A technique for documentation

A reduction does not always appear simpler than the original even though interna
munication has been eliminated, but sometimes the reduction does yield somethi
which is simpler to overview and to explain. Since the reduction is in principle aut
matic, the reduction is not “yet another description” that needs consistency check
with the original.

1.2.7.4 A technique for reuse

A prerequisite for reuse is certainty that the candidate fulfills its purpose in the new
text. A reduction may be a compact description of a reusable component. By exam
the reductions the potential reuser can be certain that the component is applicabl
out looking into the full amount of details of the reusable components.
Practitioners’ verification of SDL systems 5 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29
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1.2.7.5 A technique for evaluation

We claim that real systems typically have complexities in a few specific parts whi
other large portions are fairly straight forward. It may not always be obvious where
real complexities are. The Mn-approach discloses concurrency complexities, and
have devised an evaluation scheme which makes it possible to create an “Mn-pro
of the system which indicates areas of complexity and the priority in which these 
should be considered.

1.2.7.6 Background for design guidelines

Accepting the Mn-profile as a fruitful measurement of complexity, it is reasonable
look into ways which make it more probable to avoid unintended complexities. W
present a set of concepts and guidelines which help minimize the problems of the
approach. Thus if the designer follows these guidelines chances are that the Mn-
approach may be applicable and fruitful reductions obtainable. We call this “confl
design”.

1.2.8 The Mn-approach integrated with other techniques

The Mn-approach is a very friendly technique. It integrates well with other techniq
both inwards (using other techniques to achieve reducibility) and outwards (using r
tions in analysis of enclosing systems).

1.2.8.1 Using auxiliary techniques inside the Mn-approach

Our Mn-approach relies on deciding that the system under analysis is progressiv
this purpose we shall often use methods which are not necessarily part of this the
There is a vast literature of proof techniques to assert termination e.g. from rewrit
systems.

Furthermore we may run into situations which appear non-confluent in our Mn-pr
dure, but which through more thorough analysis can be proven to be unreachable
Backward execution is a possible way to assert that a given complete state is not
reachable.

Symbolic execution in general is used to cope with data. We do not introduce any s
techniques for this in this dissertation.

1.2.8.2 Using the Mn-reductions in analysis of enclosing systems

The Mn-approach turns a system component like a chameleon into something else
suited to the environment. Other techniques applied to an enclosing system may 
ably use reductions of the components because then the complexity of the analys
this level may become more manageable. Reachability techniques implemented in
mercial tools may handle larger systems without meeting the state explosion bound
Techniques which check for specific properties e.g. a temporal logic formulae spe
less time and resources to come up with the answer.
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 6
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1.2.9 Concluding executive summary

Our Mn-approach is a flexible approach. It integrates well with other techniques. 
focuses on problems of concurrency and leaves algorithmic problems of data alo

Our approach can be applied to small, interesting and difficult theoretic problems a
as large, complex and trivial industrial problems. The technique seems to scale w

We include in the Mn-approach methodology which helps the designers achieve r
ible systems and to utilize reduction for a number of attractive purposes.

We suggest added value to some SDL language features to facilitate describing sy
in a way which is compatible with the Mn-approach.

1.3 Technical summary

Take an ambitious urge and a simple approach, and study how far the simple app
can be carried and extended to meet the ambition. This is what this thesis is abou

We had the ambition to use SDL as the specification language of larger SDL syst
This was motivated by the idea that a practitioner would like to express his design
few languages as possible. In order to use SDL as its own specification language,
necessary to reduce the large SDL descriptions to simpler ones which eliminated
internal aspects of the SDL system.

We also had the ambition to use this monolithic SDL approach as the fundament
bridge between theoretical verification and practical validation of SDL systems. T
thesis gives a skeleton for such a bridge.

1.3.1 The bridge

The theorist studies small, but intricate problems. He believes some day he will fi
way to scale the method to larger and more realistic situations. The practitioner e
neers large, but mainly trivial problems. He believes that solving big problems is a
matter of working habits and notation rather than formal theory. He believes that s
day formal techniques may be applicable to his field of work, but he does not rea
believe he will live to see it.

This thesis takes the simple idea of structural reduction and shows that it can be u
a couple of the small, but intricate problems of the theorists. It takes the same sim
idea and shows that it is possible to device a method with guidelines for making rea
systems with improved quality. We define metrics to measure real systems based 
same simple idea.

The simple idea can be summarized in the following conjectures:

1. Good quality systems are such that each structural concept is reducible to a p

2. The effort needed to establish that a unit is reducible is a good measure of how
plex the unit is.

3. The most important resource for making good quality systems is the designer 
self, and our approach is a way to support him validating in parallel with design
Practitioners’ verification of SDL systems 7 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29
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The bridge from theorists to practitioners by our Mn-strategy consists of the follow
building blocks:

1. The Basic Mn-procedure

2. The General Mn-procedure

3. The Mn-approach to validation

4. The Mn-metrics, complexity profiles

5. The Mn-method “Confluent Design”

1.3.2 The Basic Mn-procedure

Our simple approach to determine reducibility is to study all potential race conditions. 
A race condition is when signals from more than one input channel “race” to be c
sumed first, and it is significant for the final result which one “wins” the race. We 
present a simple reduction algorithm which applies if the original system is conflu
Confluence means that all possible executions from a given complete state give the
final result. We show that confluence can be determined by examining all the pote
race conditions. This idea is not new to practitioners, but this thesis shows how yo
apply this idea systematically, and be certain that the system is confluent.

The algorithm of the basic Mn-procedure as summarized in Figure 1 (p. 8) is bas
examining all possible race conditions. We show that it is sufficient to check all pos
minimal non-confluence patterns, which are based on start situations consisting o

Figure 1: Basic Mn-procedure

Assumptions:

1. A system of one process only, with one external input and one internal input ch
nel and one external output channel.

2. The system is progressive which means that it terminates for any finite exter
input.

3. The following features of SDL are not used: save, non-determinism, data, time
procedures, object orientation, services, priority signals.

Results:

1. Whenever the Mn-procedure returns with success, the system is confluent, m
ing that all race conditions are insignificant wrt. the final result.

2. If the system is progressive and confluent, it is reducible. The reduction is ea
reached by executing the system systematically giving absolute priority to int
nal signals.

Problems:

1. The Mn-procedure may return with failure even though the system is conflue

2. The Mn-procedure may not terminate. This can be remedied by simple 
pragmatics.
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 8



Introduction
Technical summary 1

e con-
e pair 
 first 
here 

nitial 
 equal 
cedure 

y 
 com-
al 
enera-
 

 only 
 is not 
 show 
 not 
rger 

ed in 

uch 
 a sys-
ve 

ed to 
le be 
tion as 

 in 

nd 
basic state, one external input signal and a sequence of internal input signals. W
struct a transition system M0 which has as initial nodes pairs of complete states. Th
has one element which is the start situation where the external signal is executed
and then the first internal signal. The other element of the pair is the start situation w
the first internal signal is executed first and then the external signal. From these i
nodes transitions correspond to execution of an internal signal. If the nodes have
elements in the pair, the branch can be pruned. If all branches are pruned, the pro
concludes that the system is confluent.

It is not always sufficient to study only the transition system M0. Since we are onl
interested in differences which can be observed externally, we accept that the two
plete states of the Mn-node have differences in the internal channels. Such intern
sequence permutation leads to the construction of transition systems on higher g
tions M1, M2 etc. Higher generation transition systems represent consumption of
internal signals produced on lower generations.

The Mn-procedure examines all potential non-confluence patterns, not necessarily
the reachable non-confluence patterns. This is the reason why the Mn-procedure
a decision procedure which determines exactly when the system is confluent. We
that by using other ad hoc methods to prove that the non-confluence patterns are
reachable, the Mn-procedure can be supplemented to conclude reducibility in a la
class of processes.

We also show that Mn-reductions are reductions in terms of Kwong as summariz
Figure 2 (p. 9).

1.3.3 The General Mn-procedure

The Basic Mn-procedure is a theoretical framework which is too restricted to be of m
use other than with rather uninteresting systems, even though we prove reducible
tem which is not so simple to see is reducible and where a proper invariant to pro
reducibility is not so obvious, either.

We show, however, that the Mn-procedure with minor modification can be extend
work for much more general systems. We find that full SDL systems can in princip
processed provided that the data expressions can be handled by symbolic execu
indicated by our summary in Figure 3 (p. 10).

Figure 2: Mn-reduction is Kwong reduction

Assumptions:

1. X is reducible because it is progressive and the Mn-procedure has succeeded
finding it confluent.

2. X-red is X reduced by our reduction algorithm.

Results:

1. X-red is a Kwong-reduction of X

2. From Kwong-reducibility it follows that such properties as deadlock freedom a
homing are preserved.
Practitioners’ verification of SDL systems 9 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29
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To cope with non-determinism we suggest two new features to SDL, fair non-dete
istic decisions and spontaneous decisions. We show that this greatly enhances th
expressiveness of SDL in connection with reductions.

During our discussion of the general Mn-procedure we apply the Mn-procedure to
couple of well known examples from the literature, the Alternating Bit Protocol and
Brock-Ackerman anomaly.

The reader may be surprised to find as a result in Figure 4 (p. 11) that reducibility
not mean error-free. Our approach argues that reductions make it easier to see th
system contains problematic areas, and we find during the analysis of the Alterna
Bit Protocol that certain assumptions has to be made for the timer, otherwise the 
tion contains an internal error. This highlights that our approach is a monolithic 
approach which means that we concentrate on the SDL description alone and do
focus on dual descriptions which should be proven consistent with the SDL descri

The Brock-Ackerman anomaly summarized in Figure 5 (p. 11) was used to show
our reduction strategy seems to capture the essence of SDL systems.

1.3.4 The Mn-approach to validation

The Mn-procedure is a procedure which determines reducibility. The Mn-approach
apply the Mn-procedure and derived reductions in validation of systems.

Figure 3: General Mn-procedure

Assumptions:

1. The system is progressive.

Results:

1. Multiple processes and multiple channels. We show that systems with more pro-
cesses and channels still can be seen as one process. The Mn-procedure is 
basically linear wrt. number of components because the general Mn-procedure
a large extent can be executed piecewise component by component.

2. Save. By introducing semi-stable states containing saved internal signals, we fi
that save is very practical for ensuring confluence.

3. Non-determinism. The nodes of the transition systems Mn are expanded to tuple
We introduce fair non-deterministic decisions to help establish progress and sp
taneous save to describe acceptable race conditions.

4. Timers. Timers can be handled as a special case of non-determinism. We ackn
edge the lack of means to reason about durations and time constraints.

5. Procedures. By applying a simple transformation scheme procedures are easil
managed in the general framework.

6. Object orientation. When types are reused (e.g. by inheritance), the Mn-procedu
analysis of the type can be reused in the analysis of the entity in which the typ
being reused.
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 10
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The Mn-approach is basically monolithic which means that we concentrate mainl
one description. This description consists normally of a structure where each comp
may be eligible for our Mn-approach. Compositionality of our analysis approach 
becomes important as summarized in Figure 6 (p. 12).

Even in a monolithic approach the single description may come in several version
it is interesting to determine whether the newer version is a refinement (implementa
of the former. We device a technique to utilize the Mn-reductions to establish refine
summarized in Figure 7 (p. 12).

Figure 4: Alternating Bit Protocol by Mn-procedure

Purpose:

Communication over lossy channels with only one control bit.

Included features in our version:

1. fair non-deterministic decision

2. timer

3. save

Results:

1. The system is automatically proven reducible when progress is established 
manually.

2. The reduction shows that the function of the system is exactly what it should 
namely to relay the input message.

3. The reduction shows also that the system is strongly progressive meaning tha
internal signals will remain saved indefinitely.

4. Reducibility is not the same as error-free.

Figure 5: Brock-Ackerman anomaly by Mn-procedure

Purpose:

To show that history relations could not quite capture the essence of asynchrono
communicating finite state machines.

Included features in our version:

1. Explicit fair merge modeled by spontaneous save

2. Object orientation with inheritance and virtuality

Results:

1. The reductions made through the Mn-procedure can be used compositionally
the analysis of enclosing systems. The difference which disappears when 
expressed in history relations is preserved in our extended SDL reductions.

2. The example exhibits how reducibility can be used in connection with object 
orientation.
Practitioners’ verification of SDL systems 11 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29
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The Mn-approach can be made more pragmatic by combining it with other metho
this respect the Mn-approach is very “friendly”, it seems that it cooperates well w
number of other quite different approaches. We summarize this in Figure 8 (p. 13

1.3.5 Complexity profile and complexity estimates

As a way to estimate the complexity of the system itself we device a metric based o
M0 execution of the Mn-procedure summarized in Figure 9 (p. 14). The M0 execu
is the first level execution of the Mn-procedure.

We also developed an estimation model for how many Mn-nodes the Mn-procedu
would have to produce for a given system. This is summarized in Figure 10 (p. 15

1.3.6 The Mn-method, “Confluent Design”

We present a framework for understanding real, reactive systems and place the M
approach in this setting. The result is an Mn-method which is basically a set of gu
lines which we call “Confluent design”. We summarize in Figure 11 (p. 13) the 
framework for quality development which we have named the software distillery. In 
Figure 12 (p. 14) we summarize a classification of development comprehension pr

Figure 6: Compositionality of the Mn-approach

Assumptions:

1. System A contains block B.

2. B is reducible and the reduction is B-red.

3. A-subst is the system that takes A and substitutes B by B-red.

Results:

1. A-subst is reducible iff  A is reducible.

2. The reduction of A can be found by reducing A-subst.

Figure 7: Refinement by the Mn-approach

Assumptions:

1. Versions V0 and V1 are both reducible

2. Eventual interface mappings can be described in SDL

Results

1. Refinement (possibly interface refinement) relation between V0 and V1 can b
determined through a state by state, transition by transition comparison of the
reductions.

2. The refinement establishment is simple to perceive and accept by practitione
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 12



Introduction
Technical summary 1

 the 
is sum-
 into 

ca-

ion 
m 

to 

ther 

y 
We provide a strategy (“algorithm”) for system development which should increase
chance of producing systems which are comprehensible and reusable. The idea 
marized in Figure 13 (p. 15). We apply the distillery approach to tie the descriptions
the SDL description. Reductions are used for a more compact but faithful “specifi
tion” of the component. Following maintenance of the SDL description, the 
establishment of reducibility leads to a new specification by reducing the descript
again. Much of the work related to establishing reducibility can be carried over fro
previous work.

Figure 8: Pragmatic Mn-approach

Purpose:

1. To utilize other methods to support the Mn-approach

2. To use the Mn-approach to support other methods

Results:

1. Use run-time checks to obtain a conditional reduction

1.1 define exceptions onto monitoring layers for impossible transitions

1.2 define exceptions when limits to resources are exceeded. If we define 
bounded channels, it suffices to apply M0 (the first level of Mn-procedure) 
establish confluence. In principle exhaustive simulation could decide 
confluence.

2. Use ad hoc invariants to eliminate unreachable non-confluence patterns and o
situations which cannot occur.

3. Use backwards execution to eliminate unreachable non-confluence patterns.

4. Use Mn-reduced components to make enclosing systems more manageable b
common reachability techniques such as Supertrace.

Figure 11: Software distillery

abstraction
level

time

precision

details details

precision

distill prove refinement

Precision = formalize, make more narrow, supplement

Details = decompose, break down, reveal
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We summarize the guidelines for how to make individual processes confluent in F
14 (p. 16).

We claim that adhering to “confluent design” increases the chances of experiencin
the development follows a steady profile as described in Figure 12 (p. 14).

Figure 9: Complexity profile based on Mn-procedure

Purpose:

To estimate complexity of system.

Technique:

1. Calculate the Z0, i.e. the set of initial nodes of M0 of the system.

2. Classify the nodes according to the following categories:

2.1 Confluence

2.2 Non-confluence

2.3 Sequence permutation

2.4 State different

2.5 Omitted

2.6 Double sided error

2.7 Single sided error

2.8 Warning

2.9 Save-problem

2.10 Non-determinism problem

3. Normalize the numbers

4. Apply some proprietary weights on each category and calculate a complexity
index.

Figure 12: Comprehension profiles

proper understanding

misunderstanding

full knowledge

time
perceived understanding

Deceptive profile Aha-profile Steady profile

90%-syndrome profileLegend
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Figure 10: The estimated complexity of the Mn-procedure

Assumptions:

1. The number of processes is p.

2. The number of basic states per process is on the average s.

3. The number of external signals per process is on the average e.

4. The number of internal input channels per process is on the average c.

5. The number of internal signals per channel is on the average i.

6. Non-determinance factor is n. The non-determinance factor is how many more 
nodes there are on the next level of execution due to non-determinism. E.g. if ev
transition contains a non-deterministic decision which branches in two possib
ties, the factor is 2.

7. The non-conformity factor is f. The non-conformity factor measure the number o
nodes which need another level of Mn-procedure compared with the total num
of nodes on this level.

Results:

1. The number of potential non-confluence patterns is t=(p*s*(e*c*i + i*i*c*(c-1)/2))

2. The number of nodes needing another execution level is t*f, and the result of 
another execution level from these nodes will result in (t*f*n*i*c) new nodes. The 
level factor is thus a=f*n*i*c.

3. If we accept 5 levels as the maximum we get the following total number: 

T=t*(1+a+a2+a3+a4).

4. If the parameters s,e,c,i vary considerably between the processes, t should be cal-
culated as a sum over the actual processes.

Common approach Mn-approach

an idea

comments system descr. formal spec.

an idea

comments
system descr.

formal spec.

system descr. system descr.

formal spec.? ?

maintenance maintenance
consistent?

reduction

distillerydevelopment

Figure 13: Mn-method for improved quality systems
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1.3.7 Future research

Even though we have conducted a rudimentary industrial case study, we realize th
Mn-approach to system validation and the Mn-method for synthesizing systems n
further pilot studies. The empirical base for stating that the Mn-approach is applic
to real systems should be made more solid. We have realized that it is necessary
port the Mn-approach with an Mn-tool which most effectively should be built on 
existing SDL tools.

There are some areas which this thesis has chosen to neglect regarding the Mn-ap
More practical ways to determine progress should be included in the method. The
should be much to gain by systematically combining the Mn-approach with traditi
proof approaches taking advantage of proven invariants in the elimination of unre
able, but problematic race situations. There is a need to look into the theory and pr
of handling data symbolically.

Figure 14: Confluent Design

1. Categorize the components according to this rough scheme:

1.1 One-input-channel process (The process has only one input channel and
therefore it cannot show any non-confluence.)

1.2 Multi-lane process (The process is actually a collection of “lanes” with one
input and disjoint output. The clue is that the outputs are never merged.

1.3 Channel-state mapped process (The process is such that for each basic sta
there is only one channel from which it accepts input.)

1.4 Merge process (The process has potential non-confluence patterns whic
must be considered more closely.)

2. Make a complexity profile of each merge process

3. Order the merge processes according to a complexity index.

4. Take the most complex processes first and continue in the order of the comple

5. For each process proceed to analyze and possibly modify the critical points 
according to the following succession:

5.1 Clarify the non-confluent situations

5.2 Continue M0 on the “state different” cases

5.3 Perform generation change on the “sequence permuted” cases

5.4 Try and see if external stuttering could be used on the generation chan
cases which turned into non-confluence

5.5 Analyze the auxiliary category situations

If confluence cannot be obtained this should be properly documented. A case wh
shows that there is actually an error should be produced.
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 16
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Since we concentrate on real, reactive systems, the improved handling of real tim
straints is interesting. Can the focusing on confluence and reduction be combined
real time constraints?

1.4 The nature of SDL systems

Here we give an introduction to SDL – the language and conceptual framework o
thesis.

1.4.1 SDL – the language

SDL (Specification and Description Language) was developed as an answer to ques-
tions in ITU (International Telecommunication Union) in their consultative committ
(CCITT) on languages. The first version was standardized in 1976 and included n
much more than a few graphical symbols in the domain of telecommunication.

New versions of the recommendation Z.100 were presented in 1980 and 1984. The
version was very much a full fledged language, and tools emerged to support it. In
a major revision was undertaken and the language got a more formal semantics 
tion and a precise data concept (ACT ONE) [25].

In 1992 another important revision took place as object orientation was smoothly 
duced. It was also made possible to express non-determinism [78]. In 1996 only m
corrections and supplements were put in an addendum to the 1992 recommenda
[83].

The semantics of SDL is defined in the recommendation Z.100 through informal 
English. There is also a formal semantics [79], which is based on MetaIV which is
variant of VDM [87]. The formal semantics has played an important role in two wa

1. The tool vendors consult the formal semantics when they are uncertain about 
interpretation of a construct.

2. The making of the formal definition revealed a number of inconsistencies in the i
mal semantics.

Contrary to what one could expect the formal semantics has not been used much
ifying SDL systems.

1.4.2 SDL – the use and the users

SDL was brought forth in the area of telecommunication and it still has most of its
porters in that domain. Telecommunication was one of the first areas to make pra
use of concurrent processing and the need for a precise attitude towards the perils
currency was critical for the success of some of the largest pieces of software ev
created. In recent years other areas of computing have also approached concurren
real time and therefore SDL and SDL-like approaches are becoming more popula

In Norway there has been a very active SDL user group for a number of years. S
methodology was developed in Norway for the production of MAREIK, the world’s
first system to provide fully automatic telephone and telex services to ships throug
Practitioners’ verification of SDL systems 17 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29
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ellites in the INMARSAT system [11] already in 1979-1981. From that time, SDL 
been popular in the advanced telecommunication projects in Norway, and throug
the national Norwegian technology transfer program SISU [62] SDL methodology
central. New versions of the SDL methodology was developed in the SISU projec
resulting in a textbook [11] and an interactive CD-rom [12]. Norway also played a 
active role in the development of the language itself especially during the introduc
of object orientation in the study period 1989-1992.

The SDL users have a biannual conference which shows that the use of SDL spr
also to other areas than telecommunication and that the use of SDL is taken up a
universities and engineering schools [45; 46; 47; 120].

SDL is a language and it does not secure that its use by necessity leads to perfect 
The need for guidance and methodology became evident at an early stage and tex
have appeared [5; 11; 106; 42]. Furthermore ITU has laid down certain guidelines
methodology in [26; 80; 84].

1.4.3 SDL – the supporting tools

The forces behind SDL, the telecommunication administration, were traditionally 
affluent and could support large technology endeavors. Some of the largest softw
projects evolved in the telecommunication area. In this situation it was reasonabl
tools were developed to support the use of SDL. The early tools were mainly grap
editors which supported drawing boxes with attached lines. In due turn these tools 
oped according to the development of the language itself into more language-orie
tools as they performed syntactic analysis and also static semantic checks. As th
became more advanced, fewer tools were left in the marketplace. The large telec
actors like AT&T and Siemens made their own SDL tools which they kept in-hous
while they were trying to convince competitors how wonderful they were.

When SDL was formalized in 1988 code generation directly from SDL became the
field to cover. With it came also the possibility to simulate the SDL system execut
on a “host computer” with more resources than the final target system. The simul
became a substantial contributor to the improvement of the development process
code generation helped to lift the focus from implementation to design.

The recent most advanced tools also include validators which perform reachability
ysis of the SDL system. This again promises to improve the reliability of SDL syste
Along the same lines we find the tool development of integrated design and test t
for SDL.

As mentioned above, the development towards more advanced tools has left fewe
mercial tools in the marketplace. Full fledged tools for SDL-92 include Geode from
Verilog, France and SDT from Telelogic, Sweden. The general trend seems to be
these commercial tools make the in-house tools too expensive for even the big co
nies to maintain and improve.

In order to avoid a monopoly situation on the tools market, ITU has defined a Com
Interface Format [85] which makes it possible to transfer SDL diagrams from one
to another. This format makes it possible to have projects where both large tools 
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 18



Introduction
The nature of SDL systems 1

h as 
 tools. 

 tools.

ious 
 be 
nce of 
L.

ot go 

m 
t 

al 
chan-
There 

el is 

pat-
 
ution.

 a sys-

er to 

n fact a 
ents.
used. It also makes it possible for small tool vendors to specialize in one area suc
graphic editor, code generation or test generation, and attach to the more complete
It should also be possible to build up a complete tool from such specialized small

1.4.4 SDL – main concepts

SDL is a real language made by a committee over many years. From this it is obv
that SDL is not a small, beautiful language on which the most perfect theories can
made. On the other hand, the theories which can be made with SDL have the cha
having practical impact since many very interesting systems are specified with SD

In this section we shall go through the most central mechanisms of SDL. We will n
into great detail and we do not spell out all the options and variants.

1.4.4.1 SDL system

An SDL system is the highest aggregation level which SDL covers. The SDL syste
communicates with its environment by asynchronous signals. A system consists of a se
of communicating blocks (or block instances). The blocks communicate via channels by 
means of asynchronous signals.

1.4.4.2 SDL channels

The SDL channels deliver the signal from the Sender to the Receiver without loss. The 
channel may be either delaying or non-delaying. A delaying channel delays the sign
some unknown duration of time from the sending to the reception. A non-delaying 
nel delivers the signal to the receiver in the same moment in time as it was sent. 
is no guarantee, however, that the Receiver will consume the signal immediately.

Signals cannot overtake each other on the same channel.

The channel may be either unidirectional or bidirectional. The bidirectional chann
just the combination of two unidirectional channels. A channel has a name (which may 
be omitted) and for each direction there is associated a signal list which specifies what 
signal types may pass over the channel.

1.4.4.3 SDL blocks, block types and block instances

An SDL block is defined by a block definition and it is a singular object. To define 
terns for several similar block instances, we use block types. Block instances are
specified statically, i.e. there is no way SDL can create block instances during exec

A block (block instance) may either contain a set of blocks and channels (such as
tem), or it may contain a set of processes (process instances) and signalroutes.

A signalroute is identical to a non-delaying channel and in this thesis we shall ref
them also as “channels” to avoid unnecessary confusion.

The processes communicate asynchronously in the same manner as the blocks. I
block does not have its own behavior. It has the combined behavior of its constitu

The processes are by definition concurrent.
Practitioners’ verification of SDL systems 19 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29
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A block type has gates to specify the communication interface between the instance
the block type and their surroundings. A gate has a name and specifies the input a
put signals permitted to pass through the gate. The gate may also have a gate en
constraint which specifies what the gate may connect to.

1.4.4.4 SDL processes, process types and process instances

An SDL process is defined by a process definition and can be seen as a singular 
To define patterns for several similar processes, we use process types. Process in

are objects from a process type1. Processes are defined by a process graph or as a set of 
communicating services. In this thesis we shall concentrate on the process graph 
version.

A process type has gates to define the communication interface in the same manne
block types.

1.4.4.5 SDL process concept

An SDL process is defined by a finite set of basic states. In SDL they are called plainly 
“states”, but we use “basic state” to distinguish them from “complete states” which
take other aspects into account.

The SDL process has a valid input set, which consists of all the signal types of the sig
nals which may be received by the process.

The basic state and the received signal (which must be a member of the valid inp
together determine which transition the process will execute. A transition brings the 
process from one state to the next (which may or may not be the same state).

A transition starts by consuming the first signal of the input port. The input port is the 
queue of all signals received by the process. If the process has more than one inc
channel, the signals will be merged into the input port in a FIFO way at reception. T
is theoretically no limit to the size of the input port.

A transition may output new signals to other processes (via gates and channels).

Furthermore a transition may change the internal data variables of the process. An SDL 
process is actually an extended finite state machine. The set of basic states is finite, bu
the complete state of the process is not finite because most data variables have an
value space (and the size of the input port is unbounded). In this thesis we shall re
the data variables of the process as “data”. The data capabilities of SDL is not a m
point in this thesis.

1.4.4.6 SDL data

SDL data variables are objects of data types. Data types are defined through the
guage ACT ONE or through a special recommendation Z.105 in ASN.1[81; 135]. 
variables look in SDL very much like in any other programming language such as
C++[130] or Simula[7].

1. or for historical reasons also from process definition but this will not be covered here
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 20
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1.4.4.7 SDL timers

SDL timers are signals which theoretically come from the process itself at certain 
specified times. A timer may be set to a specific time, reset if there is no use for it any 
more, set again if the time information changes, or it may expire (time out). When the 
timer expires a signal with the name of the timer is received just as an ordinary si
by the process.

1.4.4.8 SDL procedures

SDL processes may also contain procedures. Procedures contain a process graph an
defines a sub-behavior of the process. A procedure may be called inside a transition and
when it returns it will return to where it was called. This is very similar to functions 
C or procedures in Simula.

The difference compared with common programming languages is that an SDL p
dure may contain states. This means that the process may halt and wait in the mid
the execution of a procedure.

1.4.4.9 SDL services

A service is a constituent part of a procedure which is divided into communicating, a
nating services. The services of a process alternate, which means that only one o
will execute at any one point in time. The valid input sets of the services must be dis
and thus the signal received by the process determines which service will execut

1.4.4.10 SDL save

A signal may be saved instead of consumed in a state. To be saved means that the s
will not be handled as long as the process is in this state. When the state change
saved signals will be the first to be consumed.

This is (almost) the only way SDL can permute the order in which the signals are
sumed. There is also a priority input mechanism, but this will not be used here.

1.4.4.11 SDL non-determinism

Non-determinism in SDL comes in two flavors: spontaneous transitions, and any-value 
expression.

The spontaneous transition is a transition with the signal name none. none is not a real 
signal name, but a keyword. It means that this transition may occur, but it is not certain 
that it does occur, when the process is in the state where the transition is specifie
spontaneous transition needs not consume a signal in order to trigger.

The any-value expression is a construct which returns any value of the data type
fied. SDL does not require that the any-value expression is implemented by a stoc
distribution such that the implementation may just as well choose one constant va
every time the any-value expression occurs. Any-value expressions occur often indeci-
sions to specify randomized variants of the transition.

A decision is a construct which branches according to the value of the data expre
in it. Its branches are labelled with different ranges of the type of the expression.
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1.4.4.12 SDL object orientation

SDL introduced object orientation in 1992, and object orientation with inheritance
virtuality can be applied to almost all types of SDL.

Inheriting a block type means to add more blocks (processes) and channels. The
entities may be connected to the old ones.

Inheriting a process type means to specialize the behavior by introducing new tra
tions because new states or signals are introduced. SDL is one of the very few lang
which specifies the inheritance of behavior in a useful way.

Virtuality means to redefine in specializations patterns of the type which is inherit
This is very practical to make small modifications to the type inherited in the new 
specialization.

The SDL approach to object orientation is typically in the European tradition such
Simula and Beta[97].

1.4.4.13 More?

There are more features to SDL, but the reader is referred to other sources to perfe
self in SDL.

For a general tutorial to SDL and how it should be used, the reader should consu
special issue of the journal CN&ISDN [57]. This gives a brief introduction, and co
plementary education should be sought in the textbooks [5; 11; 106; 42].

For a full definition of SDL there is only one place to look and that is in the Recomm
dation itself [78; 83].

1.4.5 SDL – pragmatics

The language which is used to prescribe a system, restricts the way the system w
behave. On the other hand certain domains have the need for certain features an
look for languages which include these features.

Traditionally SDL systems are:

1. reactive,

2. concurrent,

3. asynchronous,

4. large,

5. often simple wrt. data.

None of these characteristics are absolute. It is possible to find SDL systems whic
late one or more of these properties. Still they represent experience from many yea
many systems. We go in greater detail into this in Section 5.1.2 (p. 178).

That a system is reactive, concurrent and asynchronous can be said to be due to
guage SDL since this is the way SDL sees the world. On the other hand, the rela
success of SDL in the area of telecommunication indicates that such systems fav
may be seen as reactive, concurrent and asynchronous.
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 22



Introduction
Motivation 1

 code 
. Sim-
d a 
.

s with 
tioning 
 com-
ons. 
e 

t the 
m-

ach 

cre-
2], 
pment. 
as to 

perly.

alysis 

icts 
t be 

t be 
nceiv-

 anal-

pro-
ze. 
tion 
That some of the largest systems in the world (telephone switches) with millions of
lines have been specified in SDL, indicates that SDL is a language which “scales”
ilar to the distribution of the system itself, an SDL description is well distributed an
number of developers can work in parallel towards a common cooperating system

That data is often simple, is the most dubious statement. We can find SDL system
considerable data and where data variables are absolutely necessary for the func
of the system. Still there are not many SDL systems where SDL is used to define
plicated algorithms, or SDL systems which specify administrative database soluti
The point of using SDL is to handle the concurrency and the flow of control, not th
complexity of data. SDL has the power to simulate a Turing machine even withou
data variables [13] and with the data variables it is even more trivial to specify very co
plex data problems.

However, this thesis does not intend to solve data complexities.

1.5 Motivation

In this section we try to give some motivation for why we believe that the Mn-appro
is fruitful in practical software development.

Having worked with concurrent systems specified in SDL for many years, having 
ated SDL tools [55] and having been involved in creating SDL methodology [11; 1
we have reached some assumptions about real reactive systems and their develo
As a student of more formal computer science and attempting to convey such ide
practitioners we have reached other assumptions about developers.

1. There is a need for formal verification and pure testing just cannot do the job pro

2. What the designers claim to perceive, should be manageable through formal an
on a modern computer.

3. Designers and programmers like to reason in imperative terms.

4. A variety of notations is not a goal in itself. The amount of inter-notational confl
in concept and understanding increases with the number of notations that mus
used.

5. Reuse requires compact, but verifiable, correct specifications.

6. For formal verification and validation to become commonplace, the results mus
believable to the practitioner and automated by tools. Furthermore it must be co
able that real size systems can be handled.

7. For any type of analysis, it is important that earlier results can be reused in the
ysis of new ones or modifications of the old. We need compositionality of the 
analysis.

8. Large systems are largely trivial, but may contain intricate parts.

9. The designer (programmer) is the most important resource in creating correct 
grams. It is not difficult to make systems which are virtually impossible to analy
Methodology for the creation of verifiable systems integrated with formal evalua
of the system is cost effective.
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These statements are definitely not provable, but we shall go through them one b
and give some explanation for our attitude.

Need The need for formal validation has been demonstrated by a number of scholars [3
more frequently now than before successes of formal methods in producing bette
ity are reported [10].

Capacity of 

designer

When a computer system is finished, it is the belief of the designers that the syste
correct. They believe that they have been able to perceive the effects of their des
Very often this is not the case, and it is proven through testing and verification tha
designers were not quite able to manage the task. Still there is a big discrepancy be
the complexity the designers see in their design and the complexity sometimes d
strated by formal verifiers! Validators applying reachability techniques suffer from
severe state space explosion problems, and proof assistants produce a massive 
of proof obligations which must be manually proven. This does not correspond w
with the feelings of the designers.

Our stand is that when the automatic validators must cover a multitude of cases, 
probably a sign of unmanageable complexity of the analyzed system. There is a 
chance that the designer should look into the design again.

Imperative 

languages

Even though there are scholars who advocate the adverse, our experience is tha
grammers and designers prefer to express their thoughts in sequences of actions
imperatives. Sometimes combining such action sequences with more declarative
ments is reasonable, but the notions of sequencing and of cause/effect seem to gu
thought more effectively. Even programmers of such declarative languages as PRO
and Z acquire a programming style which shows that they think imperatively when
program.

SDL is a language which is imperative with a dash of declarativeness. The action
sequences of the transitions are balanced by the declarations of basic states in th
cesses which actually represent invariants. Often the basic states can be interpre
describe the whole history of actions leading to it. Thus only the knowledge of the 
state is sufficient for the future execution.

Few 

notations

It has been used as an argument in favor of object orientation that the designer do
need to change paradigm during the software development. The more different not
needed in a system description, the bigger the chance that either the designer mi
stands a notation or that there are inter-notation discrepancies. More than one no
may be needed to express different aspects of the system, but preferably not mo
one notation should be used to express the exact same aspect.

In SDL systems, we consider it an advantage if SDL can be used to specify the s
by process behavior. Orthogonally MSC could be used to express inter-process in
tion and the two descriptions can be compared for consistency. MSC is a languag
message sequence charts standardized by ITU [86].

Reuse Reuse has become a buzzword in computer science and it comprises a number o
ent aspects. Here we only want to make a point regarding the possibility to judge
whether a given candidate for reuse is appropriate.
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If we assume that the candidate for reuse is an SDL block of reasonable size, the
designer may not want to look in full detail into the SDL details. The task of finding
what the SDL block actually does, may be quite time consuming and unreliable if
designer himself should be forced to look into the full SDL description. On the oth
hand relying solely on the informal comments to the block, may prove to be too im
cise. Other notations such as MSCs can also be used to supplement the original 
description, but they are often as incomplete as the informal description.

A reduction, however, which is made automatically from the original, and which is
insensitive to the potential usage, presented in the very same language SDL, seem
attractive.

Credibility It is not sufficient to claim that formal verification has taken place. The users of the s
tem must believe that the verification has been performed. It is not obvious how thi
achieved [107]. The practitioners of SDL will have serious doubts when a theorist
claims that he has proved an SDL program correct. Often the practitioner will be 
in his doubt since it turns out that what the theorist has proved correct was not the
program itself, but a simplified model (an abstraction). Is the proof still valid for the
SDL program?

A practitioner will be even more suspicious if he is presented a manual proof of the
program. This will normally include notation which is unfamiliar to him supplemen
with informal statements that he can understand, but which he does not know wh
he believes. If we add that the theorist probably is unfamiliar with SDL as a notat
the practitioner is uncertain whether the theorist has really understood the subtlet
the problem.

A practitioner is more susceptible to accepting a machine-generated proof since 
accustomed to accepting automatic means such as compilers and code generato
he will prefer that the intermediate results are given in a form that he can relate to, w
means in forms close to SDL or MSC.

The optimal situation from the viewpoint of the practitioner is if he could understand
verification steps and read the verification results in the same language as he has
his description (i.e. SDL and MSC).

Composi-

tionality

Since systems are never finished, but are being maintained almost before they a
released, it is important that the efforts of validation is not lost once a single chan
introduced into the system. For some of the available methods this is in principle 
case. It is important that pieces of the system can be analyzed (partly) in isolation
that the results of the analysis can be applied directly in analyzing larger parts as lo
the isolated piece has not been changed. This is what we call compositionality.

Variation in 

systems

A real system usually contains parts which are trivial as well as parts which are intr
Assuming that this reflects the complexity of the problem itself and not the compet
of the designers, this indicates that the same method for validation may not be app
to all parts in the same way.
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For a project leader it would be desirable to be able to assign the complicated, but
parts to a group of experts in that field. Other parts which were more like “digging
ditch” could be assigned to the more average software engineer. The experts cou
whatever methods suitable for their isolated problem, while the software engineers
the default validation techniques.

The important issue would be that the methods of validation could be combined in
ible ways corresponding to the challenges of the problem and the software.

Methodol-

ogy

It is a well known fact that the earlier in the development process an error or defic
is discovered, the less expensive it is to correct the problem. This contrasts the fa
validation normally takes place closer to the end of the development. It would be e
if the designer created software which was easily validated, and that he actually 
formed certain validation efforts along with his designing.

The 

ambition

Our ambition is to contribute to the narrowing of the gap between theorists in the
of validating concurrent systems, and practitioners in the field of engineering reac
systems.

We want to make a method which has a low threshold for the practitioners such th
can experience positive effects of his validation efforts without having to put in a lo
time and resources.

On the other hand we want a method which is advanced enough to produce stron
ysis results which can be reused later, and possibly also within other validation me

We also want to make the validation results available in SDL itself.

We acknowledge the fact that our method may not always succeed, but want tha
when it does not succeed totally, we shall still reap valuable experience from the 

1.6 Background

In this section we want to give some insight into the work which has influenced our
approach without going into detail about every theoretical approach which has pla
role in forming the Mn-approach. We shall characterize the Mn-approach by its sim
ities and differences with other approaches.

1.6.1 The Mn-approach is validation-oriented

The distinction between “verification” and “validation” is used by some and rejecte
others. Following Boehm [8; 11] “verification” is to establish the truth of correspon
dence between a software product and its specification, while “validation” is to esta
the fitness or worth of a software product for its operational mission. “Verification”
originates from “veritas” which is Latin for “truth”. “Validation” originates from Latin
“valere” which means “value” or “worth”.

Opponents of applying the distinction argue that in order to assess value, one mu
describe the evaluation criteria, and therefore we are back to a specification, and 
tion reduces to verification anyway.
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1.6.1.1 Dual descriptions

In most verification approaches there are a specification and a system description
latter is normally prescriptive like a software program. The specification is normal
declarative and often in the form of predicates. One may call this a “dual” descriptio
the system and verification means to determine whether the two descriptions are c
tent. Normally we try to find whether the specification is satisfied by the system model 
(the program).

The earliest approaches in program verification [69; 32; 70] had predicate logic sp
cations interleaved in the program text. The interpretation should be that the pred
should hold at these places they were put inside the program. A logical system (H
logic) defined the logical relations between specification predicates and program 
ments. The predicate specifications were also very often called “invariants” as the
described properties which were invariant whenever the program control passed 
point in the program.

This tradition made its way into methods for software development through VDM 
and into concurrent programming through the advent of CSP [70; 71], CCS [103]
LOTOS [9; 77]. For more on this tradition in the verification of parallel programs, 
refer to Barringer’s survey [2].

Dual descriptions can also appear as two separate descriptions which are compare

is often the case in developing SDL systems where MSC1 descriptions and SDL descrip
tions appear side by side and their consistency is checked [40]. More about this i
Section 1.6.2.1 (p. 30).

1.6.1.2 Monolithic descriptions

Even though we argue that the Mn-approach can be helpful for verification purpose
approach is more “monolithic” than “dual”. Our goal is more to explore the possibili
of the one description than comparing one description with another.

To explore the single description we apply transformation of the description. This
similar to program transformation. Program transformation may have different aims
traditionally there has been two purposes of program transformation:

1. to make the program more efficient,

2. to transform a description in a wide set of concepts to a description in a more n
set of concepts.

The first purpose was used in compilers to optimize the object code, in “peephole”
mization. The peephole is a segment of the program which then is massaged into 
effective sequence of instructions.

The first purpose is also the motivation of Darlington and Burstall [33; 22] when th
argue that simple and comprehensible programs can be transformed automatical
more efficient executable programs. The idea is that what is comprehensible is not
tively executable. Modern systems still suffer from inefficiency and need optimizat
but their incorrectness and general lack of reliability are more worrying than their s

1. MSC = Message Sequence Charts, standardized in [86].
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Therefore the goals of the Mn-approach are rather opposite of the Darlington-Bur
aims as we want to make systems more comprehensible through system transformatio
Efficiency is not the main issue as our transformed systems are not executed on 
get configuration.

The second purpose of program transformation, where descriptions of rich conce
frameworks are transformed into descriptions of restricted languages, are often u
make proofs and statements valid for restricted conceptual frameworks valid also
greater domains. The definition of SDL-92 [78] contains a comprehensive transfo
tion section on how to transform all mechanisms which are not “basic SDL” into “b
SDL”. Then “basic SDL” is given a formal semantics in [79]. The formal semantics t
applies to the whole SDL-92. For the Mn-approach we use this technique to explain
SDL procedures can be considered a small system of SDL processes and as such
ered by our general results (see Section 3.8 (p. 128)).

Monolithic approaches in the tradition of axiomatic specification include the speci
tion languages Z [64] and Focus [15; 20]. Their approach in this context can be 
characterized by a belief that small steps in the development of specifications will
imize (or almost eliminate) the risks of describing undesirable features. Formal 
refinement of the specification in small steps should lead to a specification which is
izable on a computer system.

This attitude is similar to ours since one of our main postulates is that a multitude o
ferent languages and paradigms does not help the designer in his effort to create 
system. He wants rather one powerful language which is associated with powerful
and techniques to aid his understanding of the subject matter.

1.6.1.3 Reduction

The Mn-approach to system transformation is that of reduction. Reduction means that 
some parts of the original is removed, but the essence remains. What the “essen
may change from situation to situation, but the idea is that the reduction should be
to play the role of the original in the discussion.

Our Mn-approach is in the tradition of Kwong [94] where the essence to be preserv

properties like deadlock freedom and homing1 which are generally desirable propertie
of systems. The idea is that proving e.g. deadlock freedom of the reduction implies
lock freedom in the original. Supposedly to prove the property is easier in the redu
than in the original.

We show in Section 2.5.3 (p. 75) that our Mn-reduction is a Kwong reduction and t
fore our reductions also preserve these general properties.

In our Mn-approach we define that the “essence” of a system is its behavior as a m
which handles input and produces output. The internal distribution and communic
are considered less important. We may say that the “functional” aspects of the sy
are focused.

What is the essence of the system may also be user specified. Specifying the ess
a system may get the form of a filter. The system description is filtered through this 
specified filter and a reduction is filtered out which preserves certain properties o
original depending on the filter. Seltveit has given a thorough survey of such spec

1. Homing means that there is a set of complete states which can be reached from any other complete sta
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 28
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filters to reduce complexity in administrative systems [121]. Her approach is more s
ture-oriented than functionally oriented, but her goals are very similar to ours as t
perceived simplicity of the reduction is considered important.

Reduction of complexity is also extremely important in automatic verification tools
the SDL domain. Since state explosion is the major obstacle to verifying real syst
the reduction of the state space needed to be explored is decisive for the succes
most advanced reachability tool SPIN uses a partial order reduction method whic
reduces the state space relative to the temporal logic formula which is checked [7

Other reduction techniques which are used include compression of data held by th
rithm and smarter ways to store the necessary information such as with binary de
trees and binary decision diagrams (BDDs) [28].We have not studied how such im
mentation oriented reduction techniques could improve the efficiency of the Mn-
approach as the Mn-procedure has not seriously been implemented, yet. The tech
could probably be applied with the Mn-procedure as well.

1.6.1.4 Testing

Testing is the most common way to assess the value of an SDL system, or rathe
implementation of an SDL system. Testing in the form of simulation is an increasi
popular way to assess the worth of the SDL system before it is implemented. Tes
different from verification as it relies on observing the results of executions. The s
fication can be used to define the test cases and the desirable result.

Testing in SDL environments is well covered in [52; 105; 24]. In general, testing h
been closely connected to reachability analysis [141; 76; 123; 138; 124; 44].

The connection between testing and the Mn-approach is only indirectly and conce
the general philosophy of the approach. Testing, as well as the Mn-approach, exa
cases which should not occur. The Mn-approach considers all potential problemat
terns regardless of their reachability. Testing may also run non-reachable situatio
the same reason: it is in general impossible to know that a given complete state is
able, and for robustness, such cases should be tested.

1.6.1.5 Evaluation of systems

The Mn-approach is different from the dual and other monolithic approaches by it
explicit focus on evaluation. While the verification-oriented approaches concentra
exclusively on finding a proof that the program satisfies the specification and give
binary “yes” or “no”, we also make an effort to evaluate the program along a more i
mative scale. Verification-oriented approaches fail to appreciate the development 
program as such, but recognize the fact that failure to find proofs often results in 
improvements of the program when eliminating the counterexample.

We advocate to use the Mn-approach metrics to govern the analysis and to give a
cation about the overall complexity of the system (part).
Practitioners’ verification of SDL systems 29 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29
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1.6.2 The Mn-approach is automata-based

Different approaches to system validation may have different semantic bases. Th
approaches based on proof theory are based either on process algebra, mathem
relations, or basic logical elements often defined syntactically. The approaches ba
model checking are most often based on automata. The Mn-approach is in the lat
dition even though it borrows techniques also from rewrite systems.

1.6.2.1 Model checking

The term “model checking” was coined by Clarke et al. in the early 80’s [27]. The t
refers to the technique to define both a model (by a program) and a specification
specification language) and to check in the model that the specification is satisfied
common semantic base of the model and the specification is the automaton. The 
and the specification are transformed into special kinds of automata (Büchi-autom
and the combined automaton is analyzed.

The model is normally a finite state automaton, which makes the model checking
lem decidable. The specification is turned into a Büchi-automaton which is a finite
automaton which takes infinite input. The model checking problem can be express
nonemptiness of the language accepted by the combined automaton.

We shall go in some more detail without being too formal, but for those who want
more thorough introduction to these matters we refer to [133].

An automaton has an input alphabet comprised of symbols. The automaton is in one of
a finite set of states. The automaton starts from a state in an initial set of states. A word 
is a sequence of symbols. The input to the automaton is a word. The automaton w
sume the first unconsumed symbol and depending on its current state it will perfo
transition to a next state. Thus there is a set-valued function from the set of state
the alphabet to the powerset of states. This is a non-deterministic automaton. In a deter-
ministic automaton the transition function yields only one state. A subset of the sta
defined to be accepting states.

An automaton accepts a finite word if the automaton is in an accepting state when t
last symbol of the input word has been consumed. A Büchi-automaton accepts a
nite word if the automaton enters accepting states infinitely many times during the
infinite consumption of the word.

The set of words accepted by an automaton is called the language of the automaton.

When a word is accepted by an automaton there is a run consisting of a sequence of tran
sitions from an initial state to an accepting state. We say that the accepting state 
reachable from the initial state. In a Büchi-automaton acceptance means that an 
ing state is both reachable from an initial state and reachable from itself (an accepting
cycle). This shows that graph reachability is important in the analysis of automata

Reachability in a finite graph is decidable. This is the reason why most practical t
niques of model checking are confined to finite state automata to represent the m
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 30
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Checking whether a finite-state program P satisfies an LTL1 formula ϕ can be done in 

time  or space  [133].  and  represent the sizes of
the program and the LTL specification respectively. We see that the complexity is
sensitive to the size of the specification. In practice the specification is much, mu
smaller than the program, which makes the complexity manageable after all.

An SDL system is not directly a finite state automaton. Since there may be any nu
of signals in the channels and since we have no scheduling algorithm given, the nu
of (complete) states is unbounded. The value ranges of variables in SDL process
also infinite. Still the approximation of an SDL system by a system with bounded c
nel buffers and bounded ranges is a reasonable restriction. The available tools fo
validation are all based on this restriction [40; 136; 75].

Our Mn-procedure does not assume that a system can be approximated by a finit
automaton. It applies fragmented reachability techniques such that each reachab
graph is (hopefully) finite. If the assumption is made that buffers are bounded, the
procedure collapses to the first phase of the general Mn-procedure as shown in S
4.5.2 (p. 172) and Section 5.2.2.1 (p. 193).

The differences between the automata-oriented model checking approaches are 
due to the difference in specification languages and secondly to algorithmic matu

CTL is a language defined by Clarke and Emerson and which has been shown to
fairly effective model checking algorithms. CTL and derived notations have been 
to model check real hardware constructions with a considerable amount of synchr
communication [27; 134; 28; 43]. There is a slightly absurd competition about how
many states the different methods handle since the state explosion problem is def
the major drawback with these methods. The CTL-oriented methods claim to be a

cover problems where 10130 states are covered. This is hardly the number of states a
ally visited, but an estimate of the number of states in the total state space covere

The significance of counting states is challenged by the most recent advances in
cation of hybrid automata [67]. A hybrid automaton includes variables with continu
and infinite domains. Furthermore changes of the (complete) state is considered c
uous according to a set of functions over time and transitions occur due to jump 
conditions on the variables. It is obvious that every domain covered will have an in
number of states, but this is not the point since individual states are not visited. The
ysis of the hybrid automata consists of solving equations. This approach seems v
promising in fields of real-time continuous systems. An experimental tool UPPAAL
been made in a joint research project between universities in Aalborg (Denmark)
Uppsala (Sweden). They have chosen a fairly practical approach and have repor
number of successful case studies already. The validation of the Philips Audio-Co
Protocol with bus-collision is the most comprehensive study done so far [6]. The re
blance to our work is that we also apply symbolic execution (e.g. for data variable
a finite way to represent an infinite set.

1. LTL = Linear Time Logic

O P 2O ϕ( )⋅( ) O ϕ Plog+( )2( ) P ϕ
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LTL is another family of specification languages including also PROMELA which 
the language of SPIN – the experimental and practical tool built by Gerard Holzma
Bell Labs, AT&T. This is probably the most well founded tool in the area of async
nously and discretely communicating finite state machines, and it can show off a nu
of successful verification efforts [72; 76; 73; 75; 74].

One important idea for the success of SPIN is Supertrace, an algorithm for partial cov-
erage of a state space based on hashing. In principle every state visited is given 
address in the available storage address space. The address is assigned through
fully chosen hashing algorithm. Whenever a state is encountered there is a need 
out whether it is visited before. The address corresponding to the state is calcula
hashing and the corresponding bit is checked in the storage. If it is not set, Super
knows that the state has not been visited and sets the bit and continues. If the bit
already, Supertrace assumes that the state has been visited and discontinues the
along this execution branch. This latter assumption will sometimes fail when ther
more states than addresses, but the coverage becomes random. By applying mo
one analysis with different hashing functions, it is possible to show that the actua
erage can get very close to 1 even with address spaces down to 0.01 of the total
[75].

Supertrace is used in the commercial SDL validators from Telelogic and Verilog [
136].

The main differences between the model checking approach pioneered by Holzm
and our Mn-approach are that we do not assume a finite state model, and we do 
restrict ourselves to execution from the initial state.

From a practical point of view, reachability from the initial state is not very robust. S
most of the design is done with only fairly local knowledge, the designers will not 
able to overview whether the set of reachable states are affected by a change whic
want to introduce. In fact whenever there has been a change in the system, the w
reachability analysis must be repeated.Contrary to this our Mn-approach is more r
as it considers the whole set of complete states and not only the set of reachable

This concludes our discussion on model checking. Their major drawback is that t
analysis is normally not compositional meaning that earlier results cannot be appl
future analysis of other parts of the system or new versions of the system. In contra
Mn-approach based on reducibility is compositional as shown in Section 4.1 (p. 1

1.6.2.2 I/O relations

Even though automata are attractive as basic semantics building blocks, many pro
ory scientists choose otherwise. In the study of communicating finite state machine
relations between the input sequences and the output sequences have been used
formal model [91].

In FOCUS this principle is called “stream processing functions” [15; 20]. The appro
is a very general one based on formal proof theory rather than model checking. A stream 
is an infinite sequence of signals either input to or output from a process. The process is 
defined as a set of functions which processes these streams. Even though the pro
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 32
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are not automata there is no problem to define automata processes in FOCUS th
the use of simple templates. In this way SDL semantics can be expressed (in prin
in FOCUS [16; 17; 128; 68].

Time is introduced in FOCUS as special time ticks appearing as signals in the str
In this way FOCUS is more expressive than SDL where no declarative reasoning c
done regarding time and duration.

FOCUS is a monolithic approach to system specification and as a method for sys
development its strategy is to define a series of refinement steps from a very abs
specification to a realizable one [18; 129; 20]. The refinement approach is well co
bined with compositionality which makes the approach attractive. The FOCUS 
approach to interface refinement has been adopted by the Mn-approach as shown
tion 4.2.1 (p. 147).

Another approach which has certain resemblance to our approach is the one by J
[88; 89] where he uses the concept of trace generators in a compositional model of i/o 
systems expressive enough to capture the Brock-Ackerman anomaly. The compo
ality makes it possible to achieve reductions comparable to ours, but the reductio
made through formal proofs and not an automatic procedure.

1.6.2.3 Rewrite systems

Rewrite systems are directed equations used to compute by repeatedly replacing s
terms of a given formula with equal terms until the simplest form possible is obtai
[37].

The execution of a process can be seen as the computation of a rewrite system. T
sition table can be seen as the substitution rules. The consumption of an input sign
producing output signals can be seen as substituting a ground symbol prefixing a
sequence by sequences of ground symbols appending sequences.

In Figure 15 (p. 33) we have given an example of a substitution rule where the ext
signal e is consumed producing the internal signals ij and external output x. E,I,O are 
variables. S and T are basic states. As we shall see in Section 2.1.3 (p. 44), this is 
tical to our notion of an unlabeled transition representing a possible execution ste
the communicating process.

Therefore it should be no surprise that our Mn-procedure is influenced by the theo
rewrite systems. Our notion of confluence (see Section 2.4 (p. 51)) is very similar to
fluence of rewrite systems. Our Mn-procedure has a concept of potential non-
confluence patterns, and this is similar to critical pairs in determining rewrite 
confluence.

The search for confluence corresponds to determining Church-Rosser property o
transition system. Keller [92] shows that commutativity can be used to show Church-
Rosser. His notion of commutativity implies trivially our notion of confluence and 

S e; E I O;;( )→ T E; Iij Ox;;( )

Figure 15: Substitution rule
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commutative system is determined confluent by the Mn-procedure in its simplest 
(M0-execution, see Section 2.4.4 (p. 56)). Sethi [122] also makes the search for C
Rosser a central point in his replacement systems used to optimize programs.

Our notion of progress (see Section 2.3 (p. 50)) corresponds to termination in rew
systems and we advocate to apply techniques from rewrite systems for the determi
of progress. Thus reducibility in Mn-terms (see Section 2.2 (p. 47)) is similar to co
gence in rewrite systems. In fact reducibility in Mn terms corresponds reasonably
with ground convergence of the rewrite system derived from the process.

Ground convergence means that every ground term rewrites to a unique normal form. A
ground term is a term consisting of only ground symbols. In our terms the ground terms
are the signals.

1.6.2.4 Proof systems

There is an important division concerning verification. Are the proofs automatic, o
we need human intuition? Most formal approaches have a considerable portion o
ual proof construction, but the picture is changing – rapidly.

The proof-oriented methods have (at least) two major drawbacks seen from a 
practitioner:

1. Manual proofs are tedious, time-consuming, error-prone and incomprehensible

2. To find the invariants which are strong enough to make the proof work, requires 
rience which is beyond the normal competence of a software engineer. When 
invariants are found, they are great to use, but finding them is a big hassle.

These negative opinions by the practitioner are partly due to reality and partly du
myths. There is no doubt that the perceived complexity of a formal proof often ref
the complexity of the problem or the solution, and any explanation failing to realize
will often miss important aspects of the problem. It is also obvious that practitione
should be encouraged to express invariants and to use them in their arguments f
correctness of their programs. The search for strong enough invariants often revea
aspects of the problems. Still our opinion is that stronger emphasis on automatic 
niques is a positive trend for future development of verifiable software.

Early formal theories for concurrency which were suitable for automation include P
nets [116; 93] which have been used for a number of verification purposes. Petri-
led to trace theory [99] which became a research area of its own.

In the tradition of Hoare-logic we have VDM[87] which was an early attempt to ap
verification in software engineering. Competent people made effective use of this
nique, and tools have been developed, but it did not catch on as a general appro
software engineering. VDM has had influence on SDL as the formal semantics[79
SDL is defined in MetaIV which is a variant of VDM.

In recent years general software for the assistance of theorem proving has emerge
proof assistants are increasingly being used for more practical purposes [4; 100] 
even though the theoretical complexity can be proved to be prohibitive, the actua
plexity may be within the limits of modern computers. This is also very much the 
assumption behind our Mn-approach where the worst case is very bad, but where
odological reasoning indicates that the actual complexity should be manageable.
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Since there are problem areas where general algorithms cannot be found, it is reas
to assume that combined uses of proof assistants and manual proofs will emerge
127]. The combination of the different automatic techniques combined with manu
proofs of details or of certain generalizations becomes attractive [104].

This is very much in line with our Mn-approach where we encourage the combine
of different techniques rather than expecting the Mn-approach itself to solve all 
problems.

The reader is referred to [96] for an attempt to compare different approaches to the
experimental system. The survey gives some insight into the differences of the 
approaches, but the individual efforts are done by different people with differing c
petence in the specifications used such that the comparisons are not really very re

1.6.3 The Mn-approach does not really address real-time

Even though SDL is being used extensively in the construction and design of real
systems, SDL does not have means to describe real time other than by plain time
dual specification language MSC does not have means to describe real-time eithe
means that real-time reasoning in an SDL environment is difficult or impossible wit
applying extra information supplied in other formal or informal languages.

Approaches to real time are still quite formal with few success stories from real life
research is progressing. We have already mentioned the theory of hybrid automa
67] which seems very promising, and FOCUS [20] which also offers compositiona
tudes to real-time reasoning. Furthermore much research has been done in the P
project [114; 38; 65] to define a “duration calculus”.

The Mn-approach addresses concurrency and asynchrony, but we find that reduc
preserving real-time properties such as minimal response times, is definitely mor
ficult (see Section 3.7.4.6 (p. 126)).

1.6.4 Mn-approach is integrated with design

The main target for the Mn-approach is to contribute to the design of reactive sys
We have named our design approach “confluent design” to emphasize the aim to 
confluent units which may be functionally reduced.

Traditionally verification methods have concentrated on verification and not on th
design of the system. Still experience from verification led to such slogans as “goto
programming” referring to the problems of verifying programs containing goto-clau
Structured programming was the answer to easier verification[31; 30]. The interlea
of specifications and program known from approaches with pre- and post-conditio
based on Hoare-logic [69] could also be considered a motivation for verification-o
ented design.

In the application of SDL the integration of verification and design is encouraged. In
appendix to the Recommendation in 1993 [80] verification of SDL systems is con
ered together with their design and implementation. In the tutorial collection for the 
Forum 1995 [115] advocates that validation should be performed as an integral p
every software development activity. The Telelogic SOMT method[131] also intro
Practitioners’ verification of SDL systems 35 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29
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duces tool support for inter-notational links (“imp-links”) which describes mapping
which should be used during consistency checking. In a Supplement to the most 
Recommendation [84], validation is again highlighted. SDL as a formal language 
emphasized in [42].

The CleanRoom method [39; 110] is based on small verifiable design steps. The
are not necessarily automatically verified, and also walkthroughs are accepted as
cation, but it emphasizes the integration of design and verification.

Regardless of these attempts in practice there is often a clear distinction in time be
designing a system (program) and verifying it. Commercial companies may have
joint groups of people to perform verification and design. The distinction is partly 
to division of labor, and partly due to difference in competence. Our Mn-approach 
to let the designer be able to understand and to undertake some systematic valid
effort during his design. The goal is to provide a smooth transition from tentative 
plexity evaluation through automatic analysis to full reducibility analysis.

The problem with methods applying informal notations such as OOA [29], OMT [1
etc. is that the consistency between different descriptions is not verifiable. We ex
that UML [119] may lead to more precise semantics, but still SDL offers a lot mor
terms of formalisms.

The method brought forth by SISU [62] presented on electronic form in [12] is a g
framework for adaptation of the Mn-approach. The “distillery” conceptual framewo
presented in Section 5.1.3.1 (p. 180) provides the background for more verificatio
ented design. The Mn-approach not only provides an answer to whether different
of the design are consistent, but also indicates complexity and offers guidelines f
improved verifiable confluent designs.

1.6.5 Comparison summary

We may summarize the relations between the Mn-approach and other approaches
following table which tries to present in short the placement of the Mn-approach an
reasons for why it is like it is.

Table 1: The Mn-approach and other approaches

Mn-feature similar to different from comments

asynchronous 
communication

FOCUS, SPIN CSP, CCS asynchrony is often 
perceived as better 
for the designer

monolithic FOCUS, Z most formal 
verification 
techniques

one paradigm is nor-
mally enough for a 
practitioner

compositional FOCUS, Jonsson CTL reuse of analysis is
preferable
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1.7 Reader’s guide to the thesis

The thesis is built up as follows. In Section 1. (p. 1) we have given an overview o
thesis with an executive and a technical summary. We have also given motivation
background for our work.

Section 2. (p. 41) contains the theoretical foundations for our “Mn-approach”. We
present the theory in a context which is much simpler than we find in real systems
which is complicated enough to exhibit most of the difficulties.

In Section 3. (p. 83) we see how the theory can be made more applicable by gener
it to more realistic situations. SDL features such as multiple channels and multiple
cesses, non-determinism and timers, save and priority input, procedures and obje
orientation are covered. The Mn-approach is modified to cope with these areas.

Section 4. (p. 143) contains material which shows how the Mn-approach can be us
formal reasoning, while Section 5. (p. 177) contains a methodology “Confluent des
where the Mn-approach is central. The aim is to show that the Mn-approach can b
not only to reduce system parts, but also to give evaluations of the complexity of 
tem. The Mn-approach is seen to be of practical use even if it is unable to produc
reduction. We report from a rudimentary industrial case study.

During the presentation of the Mn-approach a number of examples are given, bu
want to give an indication of how the Mn-approach works for a medium size toy e
ple. Our choice is the RPC-Memory specification problem which was suggested b

check also unreach-
able cases

Testing, rewrite 
systems

SPIN etc. reachability from 
initial state is not 
robust

process as semantic 
base

automata-ori-
ented techniques

proof theory the semantic base is 
conceivable for 
practitioners

unbounded state space hybrid automata, 
proof theory

model 
checking

often the finitude of 
the program state 
space is assumed in 
model checking

automatic SPIN, etc.
rewrite systems

proof theory manual proofs are 
error-prone and 
time-consuming

integrated SISU integrated 
methodology 
(TIMe), SOMT

OOA, OMT Mn is formal enough 
for verification and 
pragmatic enough 
for designers

Table 1: The Mn-approach and other approaches

Mn-feature similar to different from comments
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Leslie Lamport and Manfred Broy before a conference at Dagstuhl, Germany in S
tember 1995. In Section 6. (p. 229) we apply the Mn-approach to this problem and
successes and shortcomings of the Mn-approach.

Section 7. (p. 269) contains the conclusions and indications for how the Mn-appro
may be improved by further research.

The references to literature follow in Section 8. (p. 275)

In Section 9. (p. 283) we give a summary of the extensions to SDL which we have
in this thesis in order to make SDL suitable for our purposes.

Appended to the thesis is a list of all the figures.
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2. The Basic Mn-procedure

In this chapter we present the Mn-procedure. The Mn-procedure is a procedure w
aims to determine whether a given system is reducible to a simpler process. In this
ter we start by analyzing SDL systems which have several restrictions and as suc
be characterized as basic systems.

The restrictions that we put on the SDL systems analyzed in this chapter are:

1. The external input sequence is finite.

2. The system consists of one process only.

3. The system contains one external input channel, one internal channel, and one
nal output channel.

4. The process is deterministic, meaning that given a basic state and a signal on
transition is possible. The transition contains no decisions leading to different 
nextstates.

5. There are no data variables in the process.

6. There is no save (no explicit permutation of signals).

7. There are no timers.

The restrictions and their relaxation will be discussed in Section 3. (p. 83). The re
tions make the presentation of the technique simpler and as we shall see, the rela
of the restrictions still do not jeopardize the main results of the technique. On the
trary, relaxing the restrictions makes the technique even more applicable in indus
contexts.
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2.1 Basic concepts

2.1.1 Notation

2.1.1.1 Basic notation

f(x) means that function f is applied to argument x.

 is the signature of function f with domain D and range R.
ft(x) means the first element of the sequence x.
rt(x) means the rest of x after the first element has been removed
tuples are denoted (x,y,z,...) or <x,y,z,...> or [x,y,z,...]. There is no semantic 

ference between the notations for tuples. Sometimes we use semicolo
separator, and sometimes comma. The difference is again only to dist
guish between different kinds of lists.
denotes the powerset of A.
denotes the set of finite sequences of elements of A.

denotes the set of infinite sequences of elements of A.

denotes the set of finite and infinite sequences of elements of A.
βA denotes a mathematical variable of type . In general we use greek le

to denote sequences of signals which is not known. The beta symbol i
one example of a greek letter.

ø denotes the empty sequence
x denotes the system state where x is the basic state and the internal q

are empty.
means for two sequences v and v’ that either v is a prefix of v’ or vice ve
or they are equal. We say that v and v’ are prefix related.

primes Primes are used to distinguish symbols which are similar, but differen
suffixes Suffixes are used to distinguish similar items

2.1.1.2 Process definitions

We will give our process definitions in SDL-92 with some proprietary extensions s
marized in Section 9. (p. 283).

2.1.2 Basic model

The concern of this thesis is the analysis of SDL-like systems. SDL systems cons
components which communicate via channels (or signalroutes) through discrete token
of information, signals.

A typical example of the basic model is shown in Figure 16 (p. 43).

In Figure 16 (p. 43) the channels are named c1, c2, c3, c4, c5. For each channel there
are sets of legal signals. They are named e1,e2, i1, i2, e3. The channels are divided into
three sets: the external input channels, the internal channels and the external out
channels. The external input channels receive input signals from the environment an
deliver them into the system under analysis. Conversely the external output channels 
deliver signals from the interior of the system to the environment. The internal channels 

f D R→:

℘A
A*

A∞

Aω

A*

v v'≈
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deliver signals from the interior of the system to the interior of the system. Observ
from the outside of the system, the internal channels are invisible and their signa
not observable.

The communication is asynchronous which means that the output (sending) and 
input (consumption) of a signal is not coincident in time. The exact duration of op
tions is not usually within our area of concern.

Each component may itself have an architecture like a system with channels and
components. Such components are called blocks.

A component may instead of being a block be a process which is an atomic processing
unit in the form of a finite state machine. One of our goals of the analysis is to be ab
to view a block as a process. An SDL process has an input port which is a signal b
There is only one input port for each SDL process even when there are more tha
input channels. The single input port represents the fact that only one signal can b
sumed at the time. In our basic model we shall assume that every input channel h
buffer and that the selection of which signal to consume happens just before the 
tion takes place. The decision of which channel to consume from is non-determin
and fair, meaning that no signal should stay forever in the buffer without being co
sumed. There is a question whether this fairness is actually reflected in the forma
definition of SDL[79; 68], but in practice this fairness is wanted and sometimes ne

Whenever two channels merge into one, there is implicitly a fair merge component 
which makes sure that the merge is also fair.

Every transition is considered atomic. A transition is the actions of a process followin
the consumption of a signal until another basic state is reached. That a transition
atomic means that the transition will not stop due to some interruption. The proce
internal state of variable values cannot change due to other actions than those in
transition.

In a system or a block, the sub-components execute in true parallel, but semantica
will not be different from considering that only one transition executes at the time (inter-
leaving semantics). Since the processes have different clocks and are independent
is no way to observe whether individual transitions execute in sequence or in par
Consider our typical example in Figure 16 (p. 43). If B1 and B2 execute in parallel, we 
still cannot know within the framework of SDL the relative durations of their transitio
Therefore we cannot know which signal i1 or i2 will be sent first. Therefore for the sake
of analyzing B3 we must consider both the situation where we get i1 on c3 before i2 on 
c4, and the opposite. In fact we must consider all merges of signals of c3 with signals 
of c4.

Figure 16: Typical structure of an SDL system
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Our basic model assumes that transitions eligible for execution are the ones that 
sume the first signal on one of the input channels.

That it is necessary to have a model with multiple input channels when a transition
be considered atomic, can easily be seen from the following scenario. Let B1 have a 
transition which produces two output signals: i1,i1. B2 executes a transition producing
one i2. If there was one input port of B3 in our basic model, the possible sequences 
that input port would be either i1,i1,i2 or i2,i1,i1 since the transitions by assumption 
were atomic. If there are two input ports (input buffers) of B3, it may also consume the
signals in this order: i1,i2,i1. This corresponds well with a model where the transitio
are not atomic seen from the system level such that the signals may arrive in any
to the single input port. We conclude that our basic model of multiple input ports 
atomic transitions corresponds well with the SDL model of a single input port and m
ing of the individual inputs from the different sources.

2.1.3 Basic definitions

Here we shall present the basic concepts in a more formal framework. We define 
cept of process which is slightly more general than the one presented informally in
Section 2.1.2 (p. 42). The SDL process corresponds closely to our concept CFSM (Com-
municating Finite State Machine).

2.1.3.1 A process and related concepts

A process is a tuple where

S a finite set of basic states
C the alphabet which represents possible values of all the channels of the proc

Each individual value is of a tuple where each entry corresponds to a channel
Each entry may be a sequence of symbols. Each symbol may in principle be a se
quence of signals.

Z a set of initial complete states from where to begin the execution ( )
T the transition table.  where the S designates the basic state and th

A the input. The result is a complete state.

The auxiliary sets used above are defined by:

K the set of complete states .
A the input alphabet. . The input alphabet consists of the elements of C 

which have exactly one symbol on one input channel and nothing on the ot
Normally we denote an element of A by the name of the signal.

These capital letters will refer to the concepts of a process throughout the thesis,
whenever we talk generally of a process P, K means the set of its complete states andA 
its input alphabet. If confusion may arise we subscript the notation by the process
tifier e.g. KP.

2.1.3.2 A Communicating Finite State Machine

A communicating finite state machine (CFSM) is a process (cf. Section 2.1.3.1 (p. 44
where

S C Z T;;;〈 〉

Z K⊆
T:S A× K→

K S C×=
A C⊂
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C the alphabet where:

- E: the external input alphabet, a finite set of signals input to the system from
environment;

- I: the internal alphabet, a finite set of signals for a channel within the system 

- O: the external output alphabet, a finite set of signals for transmitting signals
from the system to the environment.

Z the set of initial complete states is based on one initial basic state z 
which we denote z.

The reader should notice the notation used to denote a complete state because t
eral notation is used throughout this thesis. A complete state is a tuple of a basic
external input channels, internal channels and external output channels. Each of 
parts are separated by a semicolon. In the general case which is treated in Section
87), each of the sections may consists of a set of elements. They will then be sep
by comma. Notice that we make no special syntactic distinction of the alphabet ele
within the complete state. The alphabet element is the tail of the complete state w
the first basic state element is removed.

A the input alphabet is  which means
that the CFSM reacts to either one external or one internal signal.

2.1.3.3 A transition system

The execution of a process  can be interpreted relative to the transition

tem  where K is the set of (complete) states, A the input signal 

alphabet,  the transition relation derived from T, and Z the set of initial (c
plete) states.

The transition table T of the process is used to transform the complete states. Eac
plete state can be seen as the root of an execution tree. An execution of a transit
means to consume the first signal of one of the non-empty input channels and to pe
the transition indicated in the transition table. The result will be a new complete s

Assume that the process is a CFSM. If T is the name of the transition table, Ti denotes 
the complete state reached when consuming the first internal signal and Te denotes the 
complete state reached when consuming the first external input signal. More forma
Figure 17 (p. 46):

The plus symbol (“+”) in Figure 17 (p. 46) refers to a simple concatenation operat
where the signal sequences are concatenated. The state is not affected. The trivi
nition is not given here.

The labelled transition relation is a simple application of Te and Ti.

C E* I* O*××=

Z z θE ø ø;;;( ) K∈ θE E*∈( ){ }=

e i o, ,( ) C∈ e E∈ i ø= i I∈∨ e ø=∧ ∧{ }

S C Z T;;;〈 〉
K A  → Z;;;〈 〉

→
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The reader should notice that in Figure 18 (p. 46) there are two right arrows which 
two different purposes. One purpose is to serve as a symbol for the labelled trans
relation, and the second purpose is to separate the domain from the range in the fu
signature.

It is obvious how these definitions in Figure 18 (p. 46) and Figure 19 (p. 46) gener
to processes from CFSMs. The formulation is slightly more intricate and adds littl
the understanding.

2.1.3.4 Execution graph

The execution graph is the execution tree of x denoted by G(x). The execution graph is
a set valued function which is based on the unlabeled transition relation as define
Figure 20 (p. 47). The nodes of G(x) is denoted by H(x).

2.1.3.5 Leaves

The leaves of the execution tree are the states which have no input. The set of leav
the tree with root x is denoted by L(x).

Figure 17: Transition function

where 

where 

Te K K→:

Te s e i o;;;( ) rt e( ) i o;;( ) T s ft e( ) ø ø;;;( )+≡
e ø≠

Ti K K→:

Ti s e i o;;;( ) e rt i( ) o;;( ) T s ø ft i( ) ø;;;( )+≡
i ø≠

Figure 18: Labelled transition relation

when 

or 

c→ K A K Bool→××:

s1 e1 i1 o1;;;( ) c→ s2 e2 i2 o2;;;( )

Te s1 e1 i1 o1;;;( ) s2 e2 i2 o2;;;( )=( ) c ft e1( )=( )∧
Ti s1 e1 i1 o1;;;( ) s2 e2 i2 o2;;;( )=( ) c ft i 1( )=( )∧

Figure 19: Unlabeled transition relation

→ K K Bool→×:

k1→k2 a A k1• a→k2∈∃ 
 ≡
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If the set of leaves contains only one element, the execution is deterministic from the 
given state. If the execution from all complete states is deterministic, the process
deterministic.

2.1.3.6 A stable state

A stable state is a complete state where the internal queues are empty.

The concept of stable states differ from “leaves” since leaves are stable states wi
external input signals left, either.

Stabilization is the execution of internal signals only such that a stable state is rea

2.2 Reducibility

The idea behind establishing reducibility is obviously to eliminate aspects of the sy
under analysis that is irrelevant for the kind of analysis which we currently are doin
our thesis we concentrate on the properties of processes as signal consuming and
emitting entities.

From this point of view, to reduce a process would mean to eliminate all internal si
ling such that only the external signalling relations are present. It is our hope that
a reduction will yield a new process description which has some interesting featu

1. Improved overview capabilities through the removal of internal signals. Understa
ing the system may become easier. The reduction may also reveal aspects of 
system which was more hidden in the complete description.

2. Simpler descriptions such that other methods may be applicable to larger systems. 
Often other techniques such as reachability analysis and formal verification ca
handle large systems. If parts of the systems are reduced, larger systems can 
manageable.

3. The behavior of the reduced process is identical to the original one when seen from
the outside.

Figure 20: Execution graph of x, G(x) with nodes H(x)

For any , H(x) and G(x) are the least sets such that:
 and

G K u v,( ) K K×∈ u→v{ }→:

H K K→:

x K∈
x H x( )∈
y H x( )∈ y→k∧( ) y k,( ) G x( )∈ k H x( )∈∧( )⇒

Figure 21: Leaves of x

L K ℘K→:

L x( ) k H x( )∈ G x( ) ∅={ }≡
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Furthermore, the procedure to establish reducibility may have as a spin-off effect
complexities of the original process are revealed. The problems of the establishin
reducibility may even prove to serve as a complexity measure (see Section 5.2.2
193)).

2.2.1 What is reducibility?

Kwong showed already in [94] that with his definition of reducibility which correspon
closely to ours, a number of correctness criteria are preserved over reductions. F
purposes the preservation of different variants of deadlock-freedom and homing a
special interest. Homing means that there is a set of complete states which can b
reached from any other complete state. Homing can express that the system may 
return to an idling situation.

If subsystems can be reduced, e.g. to a single finite state machine, the analysis b
dard reachability techniques can be feasible for larger enclosing systems. We give
chapter a reduction algorithm that yields a reduced system in terms of Kwong [94

2.2.1.1 Defining Reducibility

A process P1 is reducible to a process P2 if the following criteria hold:

This definition of reducibility (Figure 22 (p. 48)) corresponds closely to that of Kwo
See Section 2.5.3 (p. 75) for the detailed correspondence between Kwong’s defin
and ours.

We notice that the definition says nothing about the input alphabets and the trans
tables. We also notice that a reduced process is observationally equivalent [102; 103] to 
the process from which it is reduced.

2.2.2 The reduction algorithm

Our reduction algorithm is based on the process being reduced is progressive and con-
fluent. These two concept will be defined in Section 2.3.1 (p. 50) and Section 2.4.
51), but here we just want to present the simple reduction algorithm. The proof of
correctness of the algorithm follows after the presentations of progress and conflu
in Section 2.5.1 (p. 73).

Figure 22: Reducible process

P1=<S1;C1;Z1;T1> reduces to P2=<S2;C2;Z2;T2> iff

where E and O are the sets of external input and output of P1
 (which means that the set of initial states are equal)

S2 S1⊆
C2 E∗ ∅ O∗××( ) C1⊂=

Z2 Z1=

z Z1∈( )∀ θ E∗∈( )∀, LP1 z θ ø ø;;;( ) LP2 z θ ø ø;;;( )=( )•
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1. Let P1=<S1;C1;Z1;T1> be the original process and P2=<S2;C2;Z2;T2> the red
one. The set of external input signals of C1 is E and the set of external output s
of C1 is O. We will build P2 from executing P1.

2. Initialize S2:=Z2:=Z1 and Q:=Ø. Q will hold the states of S covered so far.

3. Find 

4. For all  do

4.1 Find  which is simple since P is progressive
1

. That it is progres-

sive means here that we are certain to find the one leaf node just by stabiliz
(see Section 2.1.3.6 (p. 47)).

4.2 Let 2

4.3 Include q in S2 where 

4.4 Next e

5. Include p in Q.

6. Repeat from point 3 until such a p cannot be found (i.e. S2=Q).

2.2.3 The example process D

Throughout our presentation of our Mn-approach in this chapter we shall use an 
ple process D shown in Figure 23 (p. 49) and Figure 24 (p. 50).

Process D is a CFSM with one external input signal {2}, two internal signals {0,1} 
one external output signal {3}. It is not immediately obvious that process D is reduc
But given that it is reducible it is simple to calculate by the algorithm in Section 2.
(p. 48) that the reduced process is process D’. Both the original process D and the
tion D’ are given in Figure 24 (p. 50).

1. When the CFSM is deterministic there is only one element in LP(p;e;ø;ø).
2. The type of L is generally a set of complete states, but in our simplest case the set of leaves contains exa

one element and therefore the type of L can be considered K.

p S2 p Q∉,∈

e E∈

LP1 p e ø ø;;;( )

T2 p e ø ø;;;( ) LP1 p e ø ø;;;( ):=

q ø ø o;;;( ) LP1 p e ø ø;;;( )∈

Figure 23: Structure of example process D
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2.3 Progress

2.3.1 What is progress?

At this point in the thesis we define progress mainly as termination of the executio
a finite input. We may also express this by saying that for any external input signa
eventually it will be consumed and all internal derivatives of its execution (recursiv
will be consumed until only external output is the result of the original (external) in

More precisely we define that progress means that the execution graph of any com
state with finite input stream should be finite and cycle free.

We notice that our definition in Figure 25 (p. 50) says nothing about situations wh
the external input stream is infinite since we have restricted ourselves only to com
states where the external input is finite. The generalization to infinite external inpu
streams will be covered in Section 3.1 (p. 84).

Progress is a desirable property by itself in most systems, but here progress is als
requisite for the Mn-procedure for determining confluence to be presented in Sectio
(p. 51), and for the reduction algorithm presented in Section 2.2 (p. 47).

2.3.2 Progress of the example process D

In order to prove reducibility we must show that the process D in Figure 24 (p. 50
progress i.e. that the stabilization of any instable state is a finite path.

Figure 24: A reducible process

Figure 25: Progress

Let P be a process <S;C;Z;T>
Pr P( ) x K∈( )∀ G x( )  is finite and cycle free•( )≡
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This is simple in this case as process D adheres to the signal ordering principle in
duced in Section 2.6.4.1 (p. 80). All transitions that consume signal “2”, produce e
“0”,”1” or “3”. All transitions consuming “0” produce “1” or “3”, and finally all transi-
tions consuming “1” produce only “3”. Thus we have a signal order “2”->“0”->“1”-
>“3” and all stabilizations will terminate.

2.4 Confluence

2.4.1 What is confluence?

Confluence is that race conditions between internal and external signals cannot a
the final result. A race condition is when the signals of several channels race to be c
sumed first. If we can reach a situation where the process can choose between 
consuming an internal signal or consuming an external signal, and the choice is s
cant for the final outcome, then the process is not confluent.

2.4.1.1 A confluent state

A confluent state is a complete state x of an CFSM where the predicate F(x) given in 
Figure 26 (p. 51) holds.

The final result of all the different feasible execution branches are the same. It fol
from Figure 26 (p. 51) that a complete state where some input queue is empty is 
confluent.

A simple consequence is that the set of leaves of the root node itself is also equal
set of leaves of any of its subtrees since they are all equal.

A set of states is confluent if all the states in the set are confluent.

Confluence in our terms corresponds to Church-Rosser property [122; 92] of the 
ciated transition system representing the execution of the process.

2.4.1.2 A confluent CFSM

A confluent CFSM is a CFSM where all reachable complete states are confluent. 
more formal terms we may describe a confluent process by Figure 28 (p. 52):

Figure 26: Confluent state

F K Bool→:
F s e i o;;;( ) e ø≠ i ø≠∧ L Te s e i o;;;( )( ) L Ti s e i o;;;( )( )=( )⇒( )≡

F x( ) L Te x( )( ) L Ti x( )( ) L x( )==⇒

Figure 27: Consequence: leaves of root node
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The set of reachable complete states H(z) cannot be determined in general [48] such th
we will normally concentrate on assessing confluence of the whole set of comple
states K. We define this as absolute confluence of the CFSM.

We have used the leaf function L in our definitions of confluence. In this chapter w
concentrate on situations where there is no explicit non-determinism. This means
the only factor to make the set of leaves contain more than one element is the ra
dition between external and internal channels. Thus if the process is confluent, it i
deterministic meaning that the set of leaves contains only one element. In Sectio
(p. 97) we shall introduce explicit non-determinism and that is the reason why ou
initions of confluence is more general than the restricted case covered in this cha

2.4.2 Determining confluence 

We shall now present an approach which may determine confluence. We call it thMn 
approach. The approach is a procedure which is such that if it concluded confluenc
is definitely the case. Conversely if the Mn-procedure concludes “non-confluence
tentative non-confluent state is suggested as a counterexample of confluence, bu
procedure gives no support for establishing whether the proposed non-confluent s
actually reachable. We have then established that the process is not absolutely con
but it may still be confluent.

As we shall see in Section 2.4.7 (p. 69), there is also a chance that the Mn-proce
may not terminate even when the system under analysis is progressive and confl

Thus the procedure has two major, potential drawbacks:

1. The Mn-procedure may not terminate Pragmatic improvements of the procedu
make it terminate is discussed in Section 2.6.5 (p. 81)

2. The Mn-procedure may find non-confluence patterns which cannot be reached

The Mn-procedure aims to eliminate the possibility of a non-confluence pattern. A
confluence patterns is a situation where in a state S there are an internal and an e
signal which may execute, and their execution order makes a difference in the fin
result. In other words we try to find a complete state in K, say x such that F(x) does not 
hold.

2.4.3 The non-confluence pattern examined

Here we show that it is sufficient to find only quite restricted non-confluence patte
It suffices to find a minimal non-confluence pattern where:

1. There are only confluent states in their subtrees. This means that the non-conf
shows up exactly at the root state.

F S C Z T;;;〈 〉( ) z Z x H z( ) F x( )•∈∀,∈∀≡

Figure 28: Confluent CFSM

F S C Z T;;;〈 〉( ) k K x H k( ) F x( )•∈∀,∈∀≡

Figure 29: Absolute confluence
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2. The sequence of external signals is only one element long.

We shall approach this result gradually. Firstly we define the least non-confluence pat-
tern formally in Figure 30 (p. 53):

We want to show that if we have progress and a non-confluent state, this implies
existence of a least non-confluence pattern in the graph of the non-confluent stat

2.4.3.1 Proof: progress and non-confluence implies a least non-confluence patter

We want to prove that progress and non-confluence is sufficient for the existence
least non-confluence pattern. Formally we want to show the statement in Figure 3
53)

This is quite simple to see. Assume that we have the complete graph G(x). Consider 
Ti(x) and Te(x). If they are not both confluent, pick one which has a non-confluent s
and repeat the procedure from that state. Since we assume that G(x) is finite and cycle-
free somewhere down the tree we will reach a leaf and leaves are always confluen
their internal queue is empty. Thus we will find a non-confluent root where all subt
have only confluent states.

2.4.3.2 Necessity of progress for the restricted non-confluence patterns

Example process K in Figure 32 (p. 53) shows that an internal livelock will make an e
cution tree where there is a branch which consists of only non-confluent states infin
It is impossible to find a non-confluent state with only confluent states in its graph

The process K has external alphabet {j} and internal alphabet {i}.

N y( ) F y( )¬ r H y( )∈∀ y\ F r( )•( )∧≡

Figure 30: Least non-confluence 

F x( )¬ G x( ) is finite and cyclefree( )∧ y H x( )∈∃ N y( )•⇒
Figure 31: Existence of a least non-confluence pattern

Figure 32: Necessity of progress for least confluence pattern
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We show the beginning of an execution graph in Figure 33 (p. 54).

We observe easily that there is a livelock since the process reproduces (duplicate
internal signal i and there is not necessarily progress. We find no non-confluent sta
with only confluent states below, and consequently no least non-confluence patte

2.4.3.3 The symmetric non-confluence pattern

Now we assume N(y). Thus we have a complete state y where both the subtrees contai
only confluent states. This means that:  and 

 according to consequence of Figure 27 (p. 51). Since w

have that N(y) (defined in Figure 30 (p. 53)), we have that  wh

we may transform by substitution to the formula given in Figure 34 (p. 54)

2.4.3.4 The minimal non-confluence pattern

We shall now show that we need only consider non-confluence patterns where th
sequence of external signals is of length one only. Such special symmetric non-c
ence patterns we shall call minimal.

The reason for that is that the external input channel will not be appended during th
cution. To see that a minimal confluence pattern is sufficient, assume the convers
we shall have to need more than one signal on the external input channel. The sit
is presented in Figure 35 (p. 55).

Observe the resulting stabilized states on the bottom of Figure 35 (p. 55). If these
states are exactly equal, the root state has to be confluent (contrary to the assum

This follows from the assumption that the first level subroots are confluent by the
following:

Figure 33: Selected execution of process K

L Te Ti y( )( )( ) L Ti y( )( )=

L Ti Te y( )( )( ) L Te y( )( )=

L Te y( )( ) L Ti y( )( )≠

N y( ) L Te Ti y( )( )( ) L Ti Te y( )( )( )≠( )⇒

Figure 34: Symmetric non-confluence 
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 since the subtree is confluent

 since the set of leaf states are assumed equal

 since the subtree is confluent.

If the subtrees have equal sets of leaves for any pair of signals, the root must be 
confluent.

Since our assumption was that the root is not confluent, the two states are not equal 
which means that no value of αE should make them equal.This will also have to inclu

the empty sequence ø. Thus the non-confluence will show up also for αE = ø which 

leaves the original external input sequence to only the single signal u.

This proves that the non-confluence pattern needs only a single external input sign
other words if there is a symmetric non-confluence pattern, there will also be a min
non-confluence pattern.

2.4.3.5 Summary

We assume that a CFSM is progressive.

If a CFSM has no minimal non-confluence patterns in its set of complete states, th
no symmetric non-confluence pattern either.

If there is no symmetric non-confluence pattern, there is no least non-confluence
pattern.

If there is no least non-confluence pattern, there is no non-confluence pattern.

If there is no non-confluence pattern, the CFSM has only confluent complete state
it is therefore confluent.

The Mn procedure will aim to explore whether there are any minimal non-conflue
patterns.

Figure 35: Minimal non-confluence pattern

L s2 αE vβIu2 ue2;;;( ) L sm αE ø ue2ve3wem;;;( )=

L sm' αE ø ve2'ue2'wem';;;( )=

L s2' uαE βIv2' ve2';;;( )=
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. 46).
2.4.4 M0 – the first generation

The Mn-procedure is a procedure which consists of executing a tree of “machines”
name “Mn” comes from “Machine on level n”. The root machine is M0 and it is defi
in Figure 36 (p. 56) as a transition system. The execution of the machine starts fro
initial states and continues along the transitions. The transition systems are infinit
the Mn-procedure is designed such that only a (small) portion of the transition syst
visited.

The Mn-procedure has a simple goal. By trying out all potential minimal non-conf
ence patterns as defined in Figure 35 (p. 55), we shall eliminate them incremental
finally conclude that the CFSM under analysis is absolutely confluent as defined in
ure 29 (p. 52).

If we find non-confluence, this is normally a good indicator of errors or complexitie
the CFSM design.

2.4.4.1 Formal definition of M0 

We define the root machine M0 in Figure 36 (p. 56).

The execution of M0 represents the execution in the CFSM of all possible minimal n

confluence patterns (p;u;vβ;ø) where .

Figure 36: M0 definition

 is a transition system based on CFSM <S;C;Z;T> and

the derived transition system .

 the set of M0-nodes, pairs of complete states

 pairs of equal internal signals

The empty sequences of the A0-elements refer to the external input.

which represents the potential minimal non-confluence patterns.

where the plus operator again is the concatenation operator used in Figure 17 (p

M0 K0 A0 →
M0

Z0;;;〈 〉=

K A → Z;;;〈 〉

K0 K K×=

A0 ø a,( ) ø a,( )( , ) a I∈{ }=

Z0 x x'( , ) K0∈ p S∈ u E∈ v I∈, ,

p u v ø;;;( ) u→ v→x p u v ø;;;( )
v

→
u

→x'

∧

∧





















=

x x'( , )→
M0

y y',( ) ø i,( ) ø i',( )( , ) A0∈( )∃ i x+[ ] i→y i' x'+[ ] i'→y'∧•⇐

β I*∈
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The Mn-procedure will calculate the Z0 states and evaluate them. Thereafter, depend
on the evaluation, further execution of M0 might take place. Whenever a new node is
generated it will be evaluated. See Section 2.4.6 (p. 65) for termination criteria of0.

2.4.4.2 Evaluation of the states of M0

Every node in M0 is a pair of complete states of the CFSM. In general we may dep

the node as . The two elements of the pair are compare

The evaluation criteria should be applied in the order they are presented below. Im
itly, then, the negation of all earlier criteria can be assumed.

1. Confluent branch. 
Since A0 is a parallel alphabet (its two components are equal), it is clear that if t

two elements of a node of M0 are equal, all further execution of M0 from that node 

will produce states which have pairs of equal elements. Stabilization of any M0-
with equal elements will have to reach a stable node with equal elements since
internal signals consumed during the stabilization are also in equal pairs.

2. Non-confluence 1. 
If the external output signals of one element of the M0 node is not a prefix of the out-

put signals of the other element (or vice versa), we know that no further executi
M0 may turn the elements equal since further executions only append signals to the 
external output sequences.

3. Non-confluence 2. 
We know that stabilization will reveal non-confluence if the state elements are e
and the internal queues are equal, but the external output is prefix related, but 
equal. This is because the stabilization will produce equal appendices on both
ments and the outputs cannot become equal.

4. Stabilization. 
As noted in Section 2.4.4.1 (p. 56) the execution of M0 represents possible content
of the internal signal queue of the potential minimal non-confluence pattern 
(p;u;vβ;ø). We may also assume that the remaining tail of β is empty and perform the
concrete stabilization. We evaluate the leaves. If the node elements of the stab
node are not equal, we conclude non-confluence otherwise we continue to che
next evaluation criterion.

5. Sequence permuted 1. 
If the external queues are prefix related, but the internal signal queues are not 
related, we can neither conclude confluence nor non-confluence as the situatio
change during further execution and stabilization. We may conclude, however,
continued execution of M0 will not produce nodes which are confluent since furth
execution cannot change the non-prefix situation as further execution only app
to the queues.

6. Sequence permuted 2. 
If the situation is that the state elements are equal and the internal queues are
related, but the internal queues are not equal, we may also conclude that furth

s ø i o;;;( ) s' ø i' o';;;( ),( ) K0∈

s s'=( ) i i'=( ) o o'=( )∧ ∧

o o'≈( )¬

s s'=( ) i i'=( ) o o'≈( ) o o'≠( )∧ ∧ ∧

o o'≈( ) i i'≈( )¬∧

o o'≈( ) s s'=( ) i i'≈( ) i i'≠( )∧ ∧ ∧
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cution of M0 cannot produce nodes with equal elements since the subsequent 

appendices of the queues will always be the same since the state elements ar
and the alphabet A0 parallel.

7. State different. 
The remaining situations based on states, internal and external queues are tha
elements are unequal but the queues are prefix related. Continued execution o0 

would have a chance to produce nodes with equal elements. However we can
sure whether execution of M0 persists forever only producing such state different

situations.

The evaluation determines the continued execution within M0 or on higher generations

1. Confluent branch. We do not execute in M0 further along this branch as no non-co
fluence can be found by further execution here. We are still in business for 
determining confluence.

2. Non-confluence. We have found non-confluence. The minimal non-confluence p
tern can be derived from the execution path in M0. It is possible that the found non-
confluent complete state is non-reachable, but this is beyond our Mn-procedur
Unless supplementary techniques exclude the found non-confluence pattern, th
procedure will cease with conclusion that the CFSM is non-confluent.

3. Stabilization. Similarly stabilization may find non-confluence and the Mn-procedu
terminates with non-confluence verdict. If the stabilization shows equal leaf sta
sets, we are still in business and continue the evaluation of the node.

4. Sequence permuted. We cannot conclude at this point. We know, however, that w

shall not benefit from continued M0 execution1, and therefore we need to find a mor
complex solution. That solution is to produce another transition system on a hi
generation level. This is covered in Section 2.4.5 (p. 59).

5. State different. Here we tentatively continue the M0 execution along this branch hop
ing that continued execution will make the elements confluent.

2.4.4.3 M0 of the example process D

To determine confluence we will now perform Z0-evaluation based on definition of D

in Figure 24 (p. 50).

1. We may perform further M0 execution and conclude confluence by “external stuttering”, see Section 
2.4.5.2 (p. 61)

Table 2: Process D, initial set of M0, Z0

T# State Ext. 
signal

Int. 
signal

Z0 element Category

{0,1,2} {2} {0,1}

1 0 2 0 (1;ø;01;ø) (1;ø;10;ø) seq. perm. 1

2 0 2 1 (0;ø;0;333) (0;ø;0;333) confluent

o o'≈( ) s s'≠( ) i i'≈( )∧ ∧
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We see that there is a non-confluent node, and in principle we should conclude the 
Mn-procedure by the conclusion that the process D is not confluent. We shall later,
ever, show that the non-confluent state is not reachable. Thus a search for absol
confluence concludes non-confluent, but a search for plain confluence will show 
confluence.

There are no incidents of state different nodes and therefore we shall have to lea
and change generations, which will be presented in Section 2.4.5 (p. 59).

2.4.5 Mn — changing generations

The motivation for changing generation is that executing internal signals in M0 some-
times results in new internal signals. Even though the internal sequences of the 
comparable complete states of the Mn node are different, this does not necessarily
that the initial state is a non-confluence pattern. We must see what happens when
signals in due turn are executed.

2.4.5.1 Formal definition of Mn

We give the formal definition of the Mn transition system in Figure 37 (p. 60).

Some explanation may be needed. The idea behind the Mn transition system is th
lier generations of the Mn-procedure have not been able to provide a decision 
concerning a potential non-confluence pattern (s;e;iβ;ø) where the contents of β is not 
known. The executions in M0 amounts to trying out finite prefix sequences of β and we 
may have to conclude that continued M0 execution cannot reach a conclusion. B
changing generation we create a transition system which also generates the result
uations where the internal output from M0 (in general Mn-1) is also consumed.

Assume that (s;e;iβ;ø) is a non-confluence pattern. M0 executes a prefix of β, but decides 
to change generation before the non-confluence has been detected. There will be
of β left (which we still may denote β without loss of generality). Changing generatio
means to resume the execution of the non-confluence pattern in the CFSM after β has 
been executed. Zn refers to all possible states where the CFSM could possibly end
after β and the internal signals (here: (c,c’)) produced in the former generation (say

3 1 2 0 (2;ø;0;ø) (2;ø;ø;3) non-confluent by 
stabilization

3-S stabilize - - (0;ø;ø;ø) (2;ø;ø;3) non-confluent!

4 1 2 1 (0;ø;0;3) (0;ø;0;3) confluent

5 2 2 0 (0;ø;ø;3) (0;ø;0;ø) seq. perm. 2

6 2 2 1 (0;ø;ø;333) (0;ø;0;33) seq. perm. 2
(similar to 5)

Table 2: Process D, initial set of M0, Z0

T# State Ext. 
signal

Int. 
signal

Z0 element Category
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has been executed. The execution of β has produced a sequence of input symbols to n 
which must be a sequence of output symbols from the former generation. An gives the 
alphabet of output symbols of the former generation.

The complete states on higher generations need a slight generalization. We need 
the external output from the different generations separate. This is because the e
output from a late generation actually in time appears after external output from e
generations. When we execute Mn we actually simulate executions on all genera
before the n-th simultaneously.

The labelled transitions in Figure 37 (p. 60) refer to generalized transitions based 
transition table of the CFSM itself as shown in Figure 38 (p. 61).

Figure 37: Definition of Mn

 is a transition system relative to 

 in Mn-1 and based on CFSM  and the derived trans

tion system .

 the set of Mn-nodes, pairs of generalized complete states where

 the type of generalized CFSM alphabet

 the type of generalized complete state

 the type of the generalized Mn alphabet

where  is the element with only empty sequences and R n-1 is a set 

valued function which returns all reachable basic states (i.e. of type ) of Mn-1 
from the operand basic state. Rn-1 is decidable by executing Mn-1 and pruning when 
reaching a basic state already visited. This will terminate since there is a finite se
basic states.

where the labelled transition refers to a generalization of the labelled transition re
tion of the original transition system shown in Figure 38 (p. 61).

Mn s c( , ) s' c'( , )( , )[ ] Kn An →
Mn

Zn;;;〈 〉=

s c( , ) s' c'( , )( , ) Kn 1–∈ S C Z T;;;〈 〉

K A → Z;;;〈 〉

Kn Kn Kn×=

Cn E∗ I∗ O∗
n

O∗ … O∗×××××=
      

Kn S Cn×=

Cn Cn Cn×=

An x x'( , ) Cn 1–∈ p p'( , ) t t'( , ), Rn 1– s s',( )∈∃ p φ( , ) p' φ( , )( , )→
Mn 1–

t x( , ) t' x'( , )( , )•
 
 
 

=

φ ø ø… ø;;;( )=

S S×

Zn t d( , ) t' d'( , )( , ) Kn∈ p p'( , ) Rn 1– s s',( )∈ p c( , ) p' c'( , )( , )
c c',( )

→ t d( , ) t' d'( , )( , )∧ 
 

 
 
 

=

x x'( , )→
Mn

y y'( , ) i i',( ) An∈ i x+[ ] i' x'+[ ]( , )
i i',( )

→ y y'( , )•∃⇐
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In Figure 38 (p. 61) we assume that elements of the alphabet  can be seen alt

tively as a tuple of sequences (according to the definition of the type in Figure 37

60)) or as a series of tuples where each element is in  and the piecewise concatena

of the series makes up the tuple of sequences.

We notice that the external output elements of the symbol are just removed from 
head of the sequence and appended to the tail.

2.4.5.2 Evaluating nodes of Mn
The Mn-procedure on this generation is very similar to the one on M0 as the nodes are
evaluated as they are generated through the execution. The evaluation then dete
the further execution.

The evaluation of Mn nodes follows very much the same lines as with M0 nodes.

Let  be the node in Mn[q] to be evaluated 

where (i,j) is the sequence(s) of internal signals, (ek,fk) represent the k-th generation o

external output.

Confluent 

branch

We recall that a confluent branch is a branch where we are certain that the Mn exe
graph from the node under analysis will only consist of nodes where the complete 
in the pair are equal when they are stabilized. In the general situation it is not as s
as in M0 since a node where the two complete states are absolutely identical is not suf-
ficient. If the An alphabet has a pair of symbols where the symbols are not identic
continued execution may bring the node with the identical complete states to a no
where the two complete states are not identical. From this we can conclude that also th
alphabet plays a role in the confluence conclusion. We shall give a series of suffi
criteria for the confluence conclusion for a node h. In Section 2.4.6.2 (p. 67) we give a
more detailed walkthrough of why the criteria are sufficient.

Everything 

equal

The simplest and most obvious set of requirements is only a slight generalization 
M0 case.

1. The basic states of the node are equal;

Figure 38: Generalized labelled transition

where each of the elements of the pair is given by the following simpler labelled 
transition:

c c',( )→ Kn An Kn××:

s ø iu o0v0 … on 1– vn 1– vn, , ,;;;( )
ø i o0 … on 1–, ,;;( )

→ t ø uj v0o
0

… vn 1– o
n 1–

vnwn, , ,;;;( )

T s ø i ø;;;( ) t j wn;;( )=( )⇐

Cn

Cn

h s ø i; e0 … en, ,;;( ) t ø j f0 … fn, ,;;;( ),( )=
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2. The internal queues are equal;

3. Each generation of the output queues are equal;

4. The input alphabet has only symbols that are pairs of equal sequences of sign

That this leads to confluence should be obvious. The two parts of the Mn executio
absolutely identical in all respect which affect the Mn execution.

Generation 

glue

Let us first relax the third criterion, and this will also affect the fourth requirement.
fact we are not interested in absolute identity before the stable states. The final sta
states are compared not generation by generation of the output sequence, but the
enations of the output queues. The reason why this may be significant is that ther
be situations where internal signals on one generation are “compensated” and tra
formed to external output on another generation. Relative to the process execution
G this means that the necessary external outputs are produced at different depths
two alternative execution branches. There is a generation change in between the
execution depths. We cannot merely compare concatenated output sequences as
seen from our explanation of why the Mn procedure works in Section 2.4.6 (p. 65)
reason is that further execution inserts outputs into the concatenated sequences.

After some consideration about how this insertions of more output signals can be
tralized such that the stabilizations will become equal in the whole Mn execution g
below the node under analysis, we have reached the following criterion for the ou
sequences and the associated alphabet.

If h can be written as 
 and An is paral-

lel relative to h, we conclude that h is confluent and this branch of Mn may be terminated 

with success.

That An is parallel relative to h means that all its elements follow the form: 

 where the -s are the 

same as those in h. They represent common glue signals between the generations.

The point, of course, is to make sure that subsequent executions from h will not de
the property of confluence which means that the two elements of the pair will be e
if the external output is concatenated.

We notice that this somewhat complicated property is weaker than requiring that 
external output shall be piecewise equal. We also notice that M0 conforms trivially to 
this requirement.

Equal 

output

We notice with the generation glue above that the requirements are put on the in
alphabet of the Mn execution. But it is possible to relax the requirement of the alph
even further. Since the node under evaluation will also be checked for stabilizatio
are here more interested in the possible further executions. It is true that the inter
components of the alphabet symbol do not have to come in equal pairs. What we ac
must require is that their output is equal. Thus we should rather check that the alp

h s ø i; β0α0 … βn 1– αn 1– βn,, ,;;( ) s ø i β0 α0β1 … αn 1– βn, , ,;;;( ),( )=

ø j; γ0α0 … γn 1– αn 1–, ,;( ) ø j α0γ
0

α1γ1 … αn 1– γn 1–, , ,;;( ),( ) α
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An+1 (relative to a possible generation change at the node under evaluation), is pa
We have to check this criterion for all basic states in the reachability set of Rn of the node 
under evaluation.

The difference in checking parallelism of the output alphabet rather than the input a
bet is significant when the reachability set Rn is (clearly) smaller than the set of all basi
states and in this set the difference in the input alphabet is not significant with res
to. the output.

External 

stuttering

The clue to conclude confluence of a node is that further execution will not bring in
possibilities for non-confluence. Our last sufficiency criterion relaxes the two first 
requirements that the states and the internal queues of the node under evaluation
be equal. The external stuttering criterion is based on “deja vu”, something which ha
been encountered before comes up again. Assume that the node under evaluatio
equal to another node encountered (and evaluated) before, then it is obvious that
evaluation will result in the same confluence verdict. Our external stuttering criterio
based on this.

1. Assume that the node under evaluation is similar to a node which has been an
before as confluent. To be “similar” means that the node is modified by equal 
sequences of the external output. Since external output plays no role in stabiliz
it is obvious that this modified node must also be confluent.

2. Assume then that there is a node which is similar to another node higher up in
current execution tree. That node has not been concluded as confluent yet as 
tinued execution is being performed. If stabilization of the current node under 
evaluation is acceptable, the branch can be concluded confluent.

The reason for this conclusion is again that the external output plays no role in st
zation. Therefore any problems of stabilization for nodes following the node unde
evaluation will have a structurally equivalent counterpart from the similar node. T
any non-confluence in the execution graph of the node now evaluated is sure to tu
in another branch (which also is shorter) in the current Mn execution tree.

Non-

confluence

Let . If  which means that 

there is a generation component of the external output which is not prefix related
conclude that non-confluence is possible and we terminate the whole procedure.

In fact we must suppress any “glue” of the alphabet presented earlier in this section
means that glue from the alphabet must be removed from each generation elemen
external output before the prefix relation is checked.

Stabiliza-

tion

We stabilize h and check that  where the external outpu

have been concatenated across generations. If the formula does not hold, we con
non-confluence, and the procedure should terminate.

This criterion corresponds closely to the one in M0.

h s ø i; e0 … en, ,;;( ) t ø j f0 … fn, ,;;;( ),( )= i ei f i≈( )¬•∃

s t= e0e1…en f0f1…fn≡∧( )
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Let . If , meaning that the internal 

sequence is not prefix related, we know that confluence cannot be reached by fu
Mn-execution from h. We must sooner or later change generation, which implies 

ing an Mn+1.

This is also the case if the states are equal (s=t), and the internal queue is prefix 
but the two elements are not fully equal ( ).

The two cases correspond well with the two cases of sequence permutation iden
for M0.

State 

different

If none of the above checks have triggered, we know that the state elements are dif
but the internal queues are prefix related. We continue executing from h in Mn. We can-

not in general be certain that the Mn execution terminates.

2.4.5.3 Mn of the example process D

From Table 2 (p. 58) we see that situation 1 is sequence permuted (type 1). We sh
form generation change.

We see that the next generation alphabet is parallel. Alphabet elements where th

difference is equal appendix of external signals can be considered equivalent
1

. Further-
more the elements with only empty internal queues can be excluded as they will 
immediate external stuttering.

h s ø i; e0 … en, ,;;( ) t ø j f0 … fn, ,;;;( ),( )= i j≈( )¬

i j=( )¬

Table 3: Generation change in state 1

#
R1[T1]

a

a.  Ti refers to the complete state on line i in the transition table T.

A1[T1] Z1 element Category

1 {(0,0),(1,1),(2,2)} {((ø,1,ø),(ø,1,ø)), 
((ø,ø,333),(ø,ø,333)), 

((ø,ø,ø),(ø,ø,ø)), 
((ø,ø,33)(ø,ø,33))}

1. This is not entirely true as the appendix must adhere to the rules of confluence laid down in the evaluati
of Mn-complete states in Section 2.4.5.2 (p. 61).

Table 4: Execution of M1 from state 1

# R1[T1] A1[T1] Z1 element Category

1 {(0,0),(1,
1),(2,2)}

{((ø,1,ø),(ø,1,ø))} base=(1;ø;01;ø) (1;ø;10;ø)

11
a (0,0) gen. change (0;ø;1;ø,3) (1;ø;1;ø,333) state dif-

ferent

11-1 ((ø,1,ø),(ø,1,ø)) (0;ø;1;ø,3333) 
(0;ø;1;ø,3333)

confluent

12 (1,1) gen. change (0;ø;ø;ø,33)
(1;ø;1;ø,3)

state dif-
ferent
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In Table 4 (p. 64) we have an example of a state different node (11) where contin
execution leads to a confluent state directly (11-1). We also have an example of s
different nodes (12) where the continued execution leads to 12-1 which is a sequ
permuted node where external stuttering can be used to ensure confluence.

Since all of the branches following node “1” (namely “11”, ”12” and “13”) are con-
cluded with confluence, we have shown that the whole branch “1” is confluent.

2.4.6 Why the Mn procedure works

Having presented the Mn procedure and explained how the nodes are evaluated
may still be some who feel uncertain about whether the Mn procedure is sure to un
any non-confluence pattern. Here we shall go through this in greater detail.

2.4.6.1 A detailed walkthrough of the Mn procedure

The idea of the detailed walkthrough is to compare the execution within the origin
CFSM of an assumed non-confluence pattern (s;e;iβ;ø) with the coverage of the Mn-
procedure.

1 We have in Section 2.4.3 (p. 52) shown that it suffices to detect minim
non-confluence patterns.

2 Assume that (s;e;iβ;ø) is a complete state of the CFSM which is the root

a minimal non-confluence pattern. . We then have th
from definition of non-confluence 

.

The execution graph  will have two separate branches since the 
choice to execute an external input is only present at the root. After ha
executed e and i the corresponding states in G are 

12-1
b ((ø,1,ø),(ø,1,ø)) (0;ø;ø;ø,33333) 

(0;ø;1;ø,33)
seq. perm.

12-1-S stabilization (0;ø;ø;ø,33333) 
(0;ø;ø;ø,33333)

ok

12-1-1 ((ø,1,ø),(ø,1,ø)) (0;ø;ø;ø,33333 333)
(0;ø;1;ø,33 333)

external 
stuttering 
wrt. 12-1

12-1-1-S stabilization (0;ø;ø;ø,33333 333)
(0;ø;ø;ø,33 333 333)

external 
stuttering 
stabiliza-
tion ok

13 (2,2) (0;ø;ø;ø,333)
(1;ø;1;ø,33)

similar to 
12

a.  The numbering scheme here is that the states of Z0 has the numbers 1,2,3, while states of Z1 

has numbers such that the prefix designates which zeroth generation state it was based upo
b.  The numbering scheme within a generation is such that 12-1 is a result of executing from sta

12, 12-2 is another execution result from state 12. 12-1-1 is an execution result from 12-1 an
so forth. 

Table 4: Execution of M1 from state 1

β I∗ e E i I∈,∈,∈

L Te Ti s e iβ ø;;;( )( )( ) L Ti Te s e iβ ø;;;( )( )( )≠
G s e iβ ø;;;( )
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 by symbolically executing the T-func-

tions. We may also write this 

 

by again seeing the tuple of sequences as a concatenated series of tu
where .

3 From the definition of M0 we have that 

. From the definition of M0 we see 

that the execution of M0 follows the execution of G. The internal signals βi 
are executed in the order of their suffixes. We shall compare M0 and G.

3.1 If M0 executes the whole β sequence, the non-confluence will be reveale
by the stabilization of the node reached when having executed the whβ 
sequence.

3.2 If M0 has not covered the whole β sequence, this means that evaluations
an M0 state has interrupted the M0 execution before the whole β sequence 
was executed:

3.2.1 Confluence cannot have occurred since then no further execution or sta
zation could produce non-confluence and that was our assumption in 

3.2.2 Non-confluence can have occurred which means that another non-conf
ence pattern has been detected. The non-confluence verdict of the M
cedure is still correct.

3.2.3 Stabilization leading to non-confluent situation can also have occurred 
similarly to the non-confluence evaluation, another non-confluence pat
has been found, but the Mn procedure verdict is still correct.

3.2.4 Sequence permutation may have occurred and generations changed. Th
node where the generation change occurred is in general 

. The corresponding pair of states i

G is  where γ contains a sequence

which is the tail of β.
3.2.4.1 Now there is a discrepancy between the execution of G and that of Mn. The 

idea is that M1 should “catch up” with G by trying all points where G po
sibly can land. We finish the execution of γ in G and conclude that it results
in state pair .

3.2.4.2 It is no doubt that if we had continued executing M0 we would have reached

the same state pair as in 3.2.4.1. Thus we have that 

which says that the basic state of the reached state in G is reachable 
the basic state of the generation change in M0. Furthermore we know that 

 has been produced by M0 execution. Thus according 

to the definition of A1 we have that .

3.2.4.3 Continued execution of G after the  has been executed, must now st
executing the internal signals . This will lead to 

.

3.2.4.4 From the definition of Z1 we have that since our generation change stat

s1 ø βi 1 o1;;;( ) s1' ø β i 1' o1';;;( ),( )

ø β1 ø;;( ) ø β1 ø;;( ),( ) ø β2 ø;;( ) ø β2 ø;;( ),( ) …+ +

… s1 ø i1 o1;;;( ) s1' ø i1' o1';;;( ),( )+

βi I∈

Te Ti s e i ø;;;( )( ) Ti Te s e i ø;;;( )( ),( ) Z0∈

s2 ø i1i2 o1o2;;;( ) s2' ø i1'i2' o1'o2';;;( ),( )
s2 ø γi 1i2 o1o2;;;( ) s2' ø γ i 1'i2' o1'o2';;;( ),( )

s3 ø i1i2δ o1o2ϕ;;;( ) s3' ø i1'i2'δ' o1'o2'ϕ';;;( ),( )

s3 s3',( ) R0 s2 s2',( )∈

ø δ ϕ;;( ) ø δ' ϕ';;( ),( )
ø δ ϕ;;( ) ø δ' ϕ';;( ),( ) A1

∗∈
γ

i 1i2 i1'i2',( )
s4 ø δi4 o1o2ϕo4;;;( ) s4' ø δ'i4' o1'o2'ϕ'o4';;;( ),( )
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 and since , we 

must have that  is a node in M1. 

The correspondence between G and M1 has again clearly been establishe

3.2.4.4.1 Assume that M1 executes the whole sequence 

we reach . Notice the 

generalized transition relation used for the external output.
Correspondingly G will execute the internal signals  and reach 

. Stabilization and exter-

nal output concatenation will show non-confluence. The obvious corre
spondence between G and M1 leads to this.

3.2.4.4.2 If M1 does not execute the whole sequence, we are back to very muc
same situation as 3.2, only now we are on a higher generation. The app
repeats itself again on higher generations. Formally the proof can be d
through induction on the number of generations.

3.2.5 State different may have occurred, but this will not terminate the executi
of the β sequence.

4. Finally we must conclude that no non-confluence pattern can escape 
through our sieves of Mn generations.

2.4.6.2 A more detailed walkthrough of the confluence criteria

We presented in Section 2.4.5.2 (p. 61) four sufficient criteria for concluding confl
ence. The reasons why the three last criteria are actually sufficient for concluding
confluence may not be entirely obvious. Therefore we walk through them in great
detail here.

Generation 

glue

The idea is that the production of the external output may happen in different gen
tions in the two alternative branches of execution from the potential non-confluen
pattern.

If h can be written as 
 and An is paral-

lel relative to h, we conclude that h is confluent and this branch of Mn may be terminated 

with success.

That An is parallel relative to h means that all its elements follow the 

form:  where the -s are

the same as those in h. They represent common “glue” signals between the gene

Let us execute from h using some arbitrary element of An. According to the execution 
rule of the generalized transition relation given in Figure 38 (p. 61) we get the follow
result shown in Figure 39 (p. 67).

s2 ø i1i2 o1o2;;;( ) s2' ø i1'i2' o1'o2';;;( ),( ) s3 s3',( ) R0 s2 s2',( )∈
s4 ø i4 o1o2 o4,;;;( ) s4' ø i4' o1'o2' o4',;;;( ),( )

ø δ ϕ;;( ) ø δ' ϕ';;( ),( ) A1
∗∈

s5 ø i4ϑ o1o2ϕ o5θ,;;;( ) s5' ø i4'ϑ' o1'o2'ϕ' o5'θ',;;;( ),( )

δ δ',( )
s5 ø i4ϑ o1o2ϕo5θ;;;( ) s5' ø i4'ϑ' o1'o2'ϕ'o5'θ';;;( ),( )

h s ø i; β0α0 … βn 1– αn 1– βn,, ,;;( ) s ø i β0 α0β1 … αn 1– βn, , ,;;;( ),( )=

ø j; γ0α0 … γn 1– αn 1–, ,;( ) ø j α0γ
0

α1γ1 … αn 1– γn 1–, , ,;;( ),( ) α

t ø ik; β0α0γ0α0 … βn 1– αn 1– γn 1– αn 1– βnγn,, ,;;( ),

t ø ik β0α0γ0 α0β1α1γ1 … αn 1– βnγn, , ,;;;( )
Figure 39: Executed the parallel alphabet symbol
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We see that the concatenation of the output signals over generations gives equal 
for the two elements of the state pair.The -s are still the glue. It is obvious that 
lization will give identical (confluent) results.

Equal 

output 

We noticed also that we are more interested in the result of the execution as sho
Figure 39 (p. 67) than on the input alphabet. The input alphabet and the output alp
share the first n-1 generations. A parallel output alphabet should have equal inter
component and equal external component on n-th generation. Referring to Figure
67) the internal component is k and the external component . What we gain is that 

internal components of the input alphabet symbols need not be identical. We nee
find the output alphabet when the basic states are in the reachability set of the bas
of h since this is the execution graph we want to cover.

External 

stuttering

Let . Then we assume that execution of M0 leads to another 

similar state  where the only difference on both branch
is the addition of the external output signal sequence o. We have stabilized and f
confluent both h and h’ and all nodes in between.

Our hypothesis is that any node in the execution graph of h’ will have a counterpa
the execution graph of h with shorter length from the potential non-confluence pa
which is the root of the Mn execution. This counterpart state will be analyzed for c
fluence. Any non-confluence in the execution graph of h’ will also appear as non-
confluence in the counterpart.

First we stabilize h. The stabilization results in appendices u and u’ on the external out-
put sequences. Since the difference between h and h’ is only in the external output, the
appendix is the same for h and h’. Since both h and h’ were confluent when stabilized,
the output sequences must be identical.

1.
2.

From 1 we see that we may assume  without loss of generality. This lead

1.1.

which by stripping off the prefix e leads to:

1.2.

Substituting 1.2 and  into 2, we get:

2.1

and stripping off prefix e and postfix u’ leads to:

2.2

This string equation has the solution:

3.  and  for some non-negative integers  n and m and shorter 
sequence of signals x.

Assume now that we execute from h’ and reach:

α

γn

h s ø i; e;;( ) s' ø i' e';;;( ),( )=

h' s ø i; eo;;( ) s' ø i' e'o;;;( ),( )=

eu e'u'=
eou e'ou'=

e' eu=

eu euu'=

u uu'=

e' eu=

eouu' euou'=

ou uo=

o xn= u xm=
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We want to show that the stabilization of this must be confluent. If we stabilize 4 we 
reach in general:

5.

A counterpart of d’ is found when the same execution which led from h’ to d’ is app
to h. Since the same execution is performed from the same basic states, we have

6.

We may assume that d stabilized is confluent which means:

7.  since the stabilization follows the same execution of inter
signals as we could find in stabilizing d’ to d” (in 5).

Then we substitute for  and also  and get:

8.  which means

8.1

Then we return to the two sides of the node in 5. (First the left side)

9.  from 3 and 8.1

Then we take the right hand side of 5.

10.  from  and 3

We see from 9 and 10 that the two sides of the external output of d” must be equa
thus confluent.

We have shown that external stuttering criterion is sufficient.

2.4.7 Why the Mn-procedure may not terminate

We mentioned briefly that the Mn procedure itself has no strong termination criter
There are two different possibilities of executing the Mn procedure eternally:

1. In some Mn, there is an infinite series of state different situations.

2. Changing of generations take place infinitely. There is no upper limit to the num
of generations.

We show one example of each of the two situations.

2.4.7.1 Infinite series of state different situations

In Figure 40 (p. 70) we see extracts of a process which seems to be progressive b
it follows the signal ordering criterion for all those transitions we see. Still perform
M0 from complete state (S;e;i;ø) leads to an infinite stuttering as we can see from
following. Executing the external and the internal signal leads to ((T;ø;ij;ø),(U;ø;i;

d' t ø ij eov;;;( ) t' ø i'j' e'ov';;;( ),( )=

d'' t ø ø eovw;;;( ) t' ø i'j' e'ov'w';;;( ),( )=

d t ø ij ev;;;( ) t' ø i'j' e'v';;;( ),( )=

evw e'v'w'=

e' eu= u xm=

evw exmv'w'=

vw xmv'w'=

eovw exnxmv'w'=

e'ov'w' exmxnv'w'= e' eu=
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This situation is state different and continued execution of M0 is advised. Continued 
execution of M0 will give an infinite branch on executing (i,i) giving 
((T;ø;ijj...j;ø),(U;ø;ij...j;ø)).

We conclude that the Mn-procedure may not terminate even when the process u
analysis is progressive.

2.4.7.2 Infinite generation changes

The execution of the Mn-procedure becomes more complex than one expects wi
cess G of Figure 41 (p. 70) and the alphabet does not converge towards expressin
external signals since the output of a and b will always be present. Changing generation
does not help as neither the state space nor the alphabet decreases. To perform

procedure on process G is left as an exercise to the reader. The clue to the unexpe
complexity is that a and b are distinctly different signals, but they behave identically
the process.

We may notice that the process is not infinitely progressive (see Section 3.1.3 (p.
and it does not keep to signal ordering criterion (see Section 2.6.4.1 (p. 80)). It is,
ever, progressive for all finite complete states and it is quite simple to see that it i

Figure 40: Process E which makes M0 livelocked

Figure 41: Process G which makes infinite number of generations
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actually reducible. Each external input e produces either an a or a b. Whenever an a or 
a b is consumed either an external z is output or the internal signal is reproduced. Eve
tually all internal signals will be consumed and external z output since when the interna
signals are reproduced the state changes as well. The external output z concludes the 
execution of an external input e and the system must reside in state T afterwards. This 
gives the reduction shown in Figure 42 (p. 71).

2.4.8 Why the stabilization step is necessary

In Section 2.4.7 (p. 69) we showed that the Mn-procedure is not certain to terminat
therefore there should be a need for pragmatic modifications to the Mn-procedure
ensure termination.

In this section we look at the necessity of the stabilization step during the evaluati
nodes. One may get the impression that the stabilization step is a matter of optimi
and that the same result would appear if the execution was continued within the s
Mn generation. This is not the case.

2.4.8.1 Stabilization step of example process D

In our example process D where the M0 execution is shown in Table 2 (p. 58), we
state 3 revealed by stabilization to be non-confluent. If we continue execution in M
get the states 3-1 and 3-2 shown in Table 5 (p. 71).

The nodes labelled 3-1 and 3-2 are both confluent when stabilized. Thus the non
fluent situation disappeared when the M0 execution was continued.

Table 5: Continued execution of M0

# Int. signal node category

3 (2;ø;0;ø) (2;ø;ø;3)

3-1 (0,0) (0;ø;0;ø) (0;ø;ø;3) seq. perm.

3-2 (1,1) (0;ø;0;33) (0;ø;ø;333) seq. perm.

Figure 42: Process G reduced
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The node labelled 3 is sequence permuted (type 2) if we disregard the stabilization
A generation change directly will of course reveal the problem since a series of ge
tion changes is a general stabilization.

2.4.8.2 Stabilization step of example process J

That generation change reveals what the stabilization step reveals is not quite go
enough since generation change is not really necessary for every node.

We have here an example process J in Figure 43 (p. 72) which shows that the stabiliz
tion criterion may reveal non-confluence also in cases where the node is state dif
(disregarding stabilization) and the evaluation thus implies continuation of the cur
Mn generation. We see that it is possible that the process is confluent “in the long
but not “close to the start”.

In Figure 44 (p. 72) we display a part of the execution of M0 of process J from (U,e,iβ,ø) 

to show why stabilization is necessary.

Figure 43: Stabilization of intermediate results are needed
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2.5 Reducibility revisited

We motivated our presentation of progress and confluence by our reduction algo
in Section 2.2.2 (p. 48). Having discussed progress and confluence, we may now 
to reducibility to show that our reduction algorithm really yields a reduction as defi
in Figure 22 (p. 48)

2.5.1 Why the reduction algorithm yields a reduction

The question now is whether the algorithm in Section 2.2.2 (p. 48) actually gives 
reduced process according to our definition in Section 2.2.1.1 (p. 48) provided tha
process is progressive and confluent.

The requirements on the sets S2, C2 and Z2 are trivially covered since Z2 is initia
to Z1 and not changed, S2 always gets elements from S1 and C2 is by definition 

We now turn to the last criterion.

1. To be proved: 

2. Induction base

2.1 When  the statement of 1. is trivial since (z;ø;ø;ø) is a leaf state. T

is actually sufficient as an induction base, but we also give the case wher
sequence of external inputs has length 1.

2.2 From the reduction algorithm 4.2, we get that 

Figure 44: Part of the execution tree of M0 of process J

z Z θE E* L P1 z θE ø ø;;;( ) LP2 z θE ø ø;;;( )=( )•∈∀,∈∀

θE ø=

p S2 e E LP1 p e ø ø;;;( ) T2 p e ø ø;;;( )=( )•∈∀,∈∀
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2.3 From definition of CFSM in Section 2.1.3.2 (p. 44) we have that 
 since the execution of

e is the only choice from the state given.

2.4 By simple substitution of the result of step 2.2 into right hand side of step

2.5 Since leaf states have no input signals we must have that 

2.6 By 2.2, 2.3, 2.4, 2.5 we get 

which constitute the induction base in our proof of 1.

3. Induction step.

3.1 Induction hypothesis: 

 for any 

n. We assume that the hypothesis holds for some specific n and shows that it 
will hold for n+1.

3.2 Let us now find  for some 

3.3 By executing the e0 we get  for 

some basic state p and some sequence of internal signals i.

3.4 By confluence (Figure 26 (p. 51)) we have 
 as long as the internal sig-

nal sequence is non-empty. By progress of P (Figure 25 (p. 50)) we know
execution of internal signals will terminate. Therefore we continue execut
the internal signals and finally reach  for some basic state 

 and sequence of external output signals .

3.5 Since earlier external output is irrelevant for the future execution, we can
the induction hypothesis in 3.1 on  leading to 

 by 3.3

 by 3.4

 by induction hypothesis 3.1.

3.6 The execution in 3.4 is exactly the execution which would lead from 

to a stable state  and this is exactly what the reduction algorithm
does in step 4.. Therefore we have that 

.

3.7 Let us now find 

3.8 We start by executing e0 as given by 3.6 leading to 

.

p S2 e E LP2 p e ø ø;;;( )•∈∀,∈∀ LP2 T2 p e ø ø;;;( )( )=

LP2 T2 p e ø ø;;;( )( ) LP2 LP1 p e ø ø;;;( )( )=

LP2 LP1 p e ø ø;;;( )( ) LP1 p e ø ø;;;( )=

p S2 e E LP1 p e ø ø;;;( )•∈∀,∈∀ LP2 p e ø ø;;;( )=

p S2 e1…en En LP1 p e1…en ø ø;;;( ) LP2 p e1…en ø ø;;;( )=•∈∀,∈∀

LP1 z e0e
1
…en ø ø;;;( ) z S2∈

LP1 z e0e1
…en ø ø;;;( ) LP1 p e1…en i ø;;;( )=

LP1 Ti p e1…en i ø;;;( )( ) LP1 Te p e1…en i ø;;;( )( )=

LP1 p' e1…en ø o';;;( )

p' o'

LP1 p' e1…en ø o';;;( )

LP1 z e0e
1
…en ø ø;;;( ) LP1 p e1…en i ø;;;( )=

LP1 p' e1…en ø o';;;( )=

LP2 p' e1…en ø o';;;( )=

z e0 ø ø;;;( )

p' ø ø o';;;( )

p' S2∈ T2 z e0 ø ø;;;( ) p' ø ø o';;;( )=( )∧

LP2 z e0e
1
…en ø ø;;;( )

LP2 z e0e1
…en ø ø;;;( ) LP2 p' e1…en ø o';;;( )=
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3.9 By 3.5 and 3.8 and  we have proved the induction hypothesis for an arbi-
trary sequence of external signals which has length n+1.

4. The conclusion is that 1. holds and our reduction algorithm gives a reduction ac
ing to our own definition. QED.

2.5.2 Non-confluent, reducible process?

It is quite obvious that confluence comes in handy when a reduction is to be gene
but can there be reductions on processes that are not confluent?

If the process is non-confluent this means that there is a race condition which intro
non-determinism in the execution of the system. If we had a reducible, but non-co
ent process this would mean that the reduction has to be able to express the non
determinism introduced by the non-confluence. The question of explicit non-deter
ism is handled in Section 3.5 (p. 97).

2.5.3 Mn-reduction is a Kwong-reduction

Here we prove that the Mn-reduction as defined by the reduction algorithm in Sec
2.2.2 (p. 48) under the assumption that the system is confluent and progressive, 
ally a Kwong-reduction[94]. Intuitively this is no big surprise since Kwong shows t
Church-Rosser is preserved over Kwong-reduction, while we base our Mn-reduci
on a Church-Rosser criterion, confluence.

Kwong specifies four criteria for when a transition system is a reduction of another
sition system. We shall go through these four criteria.

We showed in Section 2.5.1 (p. 73) that the reduction algorithm yields a reduction
defined in Figure 22 (p. 48) where P1=<S1;C1;Z1;T1> reduces to P2=<S2;C2;Z2;
We shall show here that for their corresponding transition systems 

 is reduced to  in Kwong terms.

2.5.3.1 Kwong criterion (1)

From the definition of complete states in Section 2.1.3.1 (p. 44) and the assumpti
Mn-reducibility defined by Figure 22 (p. 48), the Kwong criterion follows immediate
The set of basic states of the reduction is a subset of the set of basic states of the o
and the alphabet likewise. These two components make up the complete state. F
more the definition of Mn-reducibility also defines that the set of initial states shoul
equal which is exactly what the criterion says.

2.5.3.2 Kwong criterion (2)

z S2∈

K1 A1  →1 Z1;;;〈 〉 K2 A2  →2 Z2;;;〈 〉

K2 K1⊆( ) Z2 Z1=( )∧

z1 Z1∈( ) k1 K1∈( ) if z1 *→
1
k1 then 

k2 K2∈( ) k1 *→
1
k2 z1 *→

2
k2∧ 

 ∃

∀∀
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This criterion is at the heart of what reducibility amounts to also in Mn-terms. If the
a path from an initial state in P1 to some complete state k1, there should be a path in the
reduction P2 from the same initial state to some state k2 which is reachable from k1 in 
P1.

According to the definition of reducibility in Figure 22 (p. 48) we know that from eve
initial state the sets of leaves are the same for the original P1 and the reduction P
complete state k1 in P1 reachable from an initial state z1 is on a path to a leaf state (se
Figure 21 (p. 47)) due to progress defined in Figure 25 (p. 50). That very leaf stat
also reachable from the initial state z1 in P2 since the set of leaf states are equal acc
ing to definition of reducibility. The leaf state thus reached is the state k2.

2.5.3.3 Kwong criterion (3)

If q and r are in the reachable states of the reduction and if r is reachable in one ste
q in the reduction P2, then r should be reachable in a finite, positive number of ste
the original P1.

Any reachable state q in P2 is a stable state, one transition in P2 corresponds dire
a series of execution steps in P1 following the reduction algorithm. The algorithm
cutes the external signal (which is also executed by P2) and then stabilizes. The re
stable state is by definition the state of P2.

2.5.3.4 Kwong criterion (4)

If q and r are reachable states of P2 and r is reachable from q in P1, then r shoul
be reachable from q in P2.

Both q and r must be stable states since they are reachable in P2, but r need not in
be a leaf state (i.e. with no external input). If r has external input, then q must hav
very same external input as the tail of its own external input since the external inpu
only consumed and never produced. The external input of r is of no significance fo
path between q and r, therefore we may without loss of generality eliminate the ex
input of r from both r and q such that r is a leaf state.

From the proof in Section 2.5.1 (p. 73) we have the following general result: 

. In terms of the 

transition systems this means that the leaf sets of any complete state of P2 is equa
corresponding leaf set of P1.

What the Kwong criterion (4) says is that when r is in the leaf set of q relative to P1,
r is in the leaf set of q in P2 as well. This is exactly what we concluded above.

q r R2 Z2( )∈,∀ if q→2r then q
+

→
1
r

q r R2 Z2( )∈,∀  if q *→
1
r then q *→

2
r

p S2 e1…en En LP1 p e1…en ø ø;;;( ) LP2 p e1…en ø ø;;;( )=•∈∀,∈∀
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This Kwong criterion has a stronger version which assumes that the leaf state ha
reached in P1 with at least one step then the leaf state should need at least one st
as well. In our Mn-reduced systems this holds always since P1 must execute an ex
signal to leave q and the same signal is executable by P2.

We conclude that Mn-reductions fulfill all Kwong criteria and therefore an Mn-red
tion is also a Kwong-reduction. QED.

2.6 Basic pragmatics

As we have shown through our example process D which will be summarized in Se
2.6.3 (p. 79), the Mn-procedure is not certain to succeed. There are three points e
tered so far where pragmatics and auxiliary techniques should supplement the M
procedure to make the Mn-approach more usable:

1. Eliminate the unreachable nodes.

2. Make the Mn-procedure terminate each generation.

3. Make the Mn-procedure terminate the series of generations.

2.6.1 Unreachable nodes

Later we shall introduce different kinds of remedies:

1. introduce a save construct to force the sequencing of the inputs,

2. define erroneous transition as a special escape criterion,

3. prove that the state is unreachable from the initial state.

In order to be able to prove our example process D confluent and reducible we show
how backwards execution can be applied to prove that the state is unreachable fro
initial state.

2.6.1.1 Unreachability of the example process D

The state 3 of Table 2 (p. 58) is non-confluent by stabilization as shown in Figure 4
77).

At this stage we will try to prove confluence on the original process D by performing 
backward execution from the problematic (simple) complete state (1;2θ;0;ψ) to show 
that it is not reachable from the initial state (0;γ;ø;ø).

Since the external input is not produced by the process itself, the last transition m
have produced the internal signal “0” (or nothing) and ended in state “1”. The only
sibility is the transition consuming the external signal “2” in state “1”. We thus have
following state as the next to last state before the problematic one: (1;22θ;ø;ψ). From 

2 ø 0 ø;;;( ) 2 ø ø 3;;;( ),( )
ø 0 ø;;( ) ø ø 3;;( ),( )

→
0 ø ø ø;;;( ) 2 ø ø 3;;;( ),( )

Figure 45: Stabilizing state 3
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this state backwards there is no road! We conclude that (1;2θ;0;ψ) cannot be reached 
from initial state and that the state must really be (1;2θ;0ϕ;ψ) where ϕ is non-empty and 
the state is simply sequence permuted rather than non-confluent.

We have now considered all states that were evaluated to non-confluence, and w
a profile for the process D which consists of 4 sequence permuted situations (of w
two are similar) and 2 confluent situations.

We continue with the branch “3” where we quickly realize that the set of reachable s
from “3” and the next generation alphabet is the same as with branch “1” shown in 
4 (p. 64).

2.6.2 General invariants

Sometimes there are invariants which form the base of the specification. These s
definitely be made explicit, and can as such be used favorably during the Mn-app
as auxiliary information about reachability.

2.6.2.1 Auxiliary information used in analyzing example process D

We observe that there are two problematic situations in Table 6 (p. 77). Regardin
ation “3” we have already proved manually by backward execution that the intern
queue portion ϕ must be non-empty.

Even though ϕ is non-empty the corresponding ϕ’ need not be non-empty, but here thi
is the case since to reach basic states “1” and “2” from initial state “0” it is necessa
pass through the transition which produces the internal signal “1” when the signa
is consumed in state “0”. This is the only way to leave state “0”. Thus ϕ’ must contain 
at least one element of A1. Thus we conclude that situations “32” and “33” are only sta

different and not non-confluent (yet).

We continue execution within M1 of branches “32” and “33”.

Table 6: Execution of M1 from state 3

# R1[T3] A1[T3] Z1 element Catego-
ry

3 {(0,0),(1,1),(2,2)} {((ø,1,ø),(ø,1,ø))} base=(2;ø;ϕ0;ø)
(2;ø; ϕ;3)

31 (0,0) gen. change (1;ø; ϕ’1;ø,ø)
(0;ø; ϕ’;3,ø)

similar 
to 12

32 (1,1) gen. change (2;ø, ϕ’;ø,ø) (1;ø; ϕ’;3,ø)
 (Section 2.6.2.1 (p. 78))

non-con-
fluent?

33 (2,2) gen. change (0;ø; ϕ’;ø,ø) (2;ø; ϕ’;3,ø)
 (Section 2.6.2.1 (p. 78))

non-con-
fluent?

Table 7: Execution of M1 from states 31, 32 and 33

# R1[T3] A1[T3] Z1 element Category

3 {(0,0),(1,1)
,(2,2)}

{((ø,1,ø),(ø,1,ø))} base=(2;ø;ϕ0;ø) (2;ø; ϕ;3)
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2.6.3 Concluding the analysis of example process D

2.6.3.1 The final states

Now finally we must consider situation “5”. As the evaluation is sequence permuted
change generation and again find the same set of reachable basic states and alp

We recognize that the base of situation “5” is similar to the base of situation “3” w
seen from M1 since the set of reachable basic states is the same and the rest of th
is also the same. The argument of the non-emptiness of ϕ’ holds equally well. Thus the 
whole new generation of situation “5” is similar to that of situation “3” since both rea
ability set and alphabet are the same.

Since situation “6” is similar to situation “5”, we may conclude that process D is 
confluent!

Finally the conclusion is that process D is reducible. The reduction gives the proce
shown in the Figure 24 (p. 50).

2.6.3.2 Lessons learned

Then, what can be learned from this example? We have taken an intricate proces
feedback (internal signals) and shown that it is reducible. The proof could not be 
formed automatically, but required two manual interventions. Firstly we needed to
prove that the non-confluent state (1,2θ,0,ψ) could not be reached. Secondly we need
to prove that the sequence ϕ’ in M1-state (2;ø, ϕ’;ø,ø) (1;ø; ϕ’;3,ø) had to be non-empty.

The manual proofs were simple in this case, but the necessity of manual interven
always worrying as it is more time consuming and less maintainable than purely a
matic proofs.

31 (0,0) gen. change (1;ø; ϕ’1;ø,ø) (0;ø; ϕ’;3,ø) similar to 
12

32 (1,1) gen. change (2;ø, ϕ’;ø,ø) (1;ø; ϕ’;3,ø) state dif-
ferent

32-1 ((ø,1,ø),(ø,1,ø)) (0;ø; ϕ”;ø,33) (0;ø; ϕ”;3,3) confluent

33 (2,2) gen. change (0;ø; ϕ’;ø,ø) (2;ø; ϕ’;3,ø) state dif-
ferent

33-1 ((ø,1,ø),(ø,1,ø)) (0;ø; ϕ”;ø,333) (0;ø; ϕ”;3,33) confluent

Table 8: Generation change of M1 from state 5

# R1[T5] A1[T5] Z1 element Category

5 {(0,0),(1,1),
(2,2)}

{((ø,1,ø),(ø,1,ø))} base=(0;ø;ø;3) (0;ø;0;ø)

Table 7: Execution of M1 from states 31, 32 and 33
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The question then is how the process could have been improved in order to obtain a
easily proved reducibility without losing the major aspects of the process. In this e
ple it is hard to know what the major aspects are, but the confluence can be more
established if we saved the external signal “2” in states “1” and “2”.

2.6.4 Basic pragmatics of determining progress

In this thesis we shall not go in great detail into the subject of progress. A lot of w
has been done in this area to prove termination for different classes of programs.
systems of CFSMs have the power of a Turing machine [13], it is also the case th
mination (and thus progress) cannot in general be determined. Related to this res
also the result that the reachability of a specified complete state cannot in genera
determined [48].

Still we expect that common systems are such that termination can be determine
a moderate effort. We have identified three classes of mechanisms that are used
ensure progress in the class of systems that we are dealing with.

1. The signal ordering criterion.

2. Progress by fairness.

3. Progress may also be assured through timers.

We shall go through these mechanisms one by one.

2.6.4.1 The signal ordering criterion

If there is a strict partial order on the signals defined by the transition table of the pr
such that every transition produces signals of lower value than it consumes, then
execution path will terminate.

Our example process D in Section 2.2.3 (p. 49) is a CFSM where there is an order am
the signals: 2 > 0 > 1 > 3. Thus we may conclude that any execution path from any
plete state of process D will terminate.

As we may consider any process as a rewrite system (see Section 1.6.2.3 (p. 33)
reasonable also to look for assistance in the search for termination of rewrite sys
[37].

Very often the signal ordering criterion covers most situations in a process, but the
a few potential loops. Then it suffices to apply other approaches to these loops.

2.6.4.2 Progress by fairness

Fairness is a way to specify that certain choices cannot be made infinitely many t
in succession. A fair die must show a 6 sooner or later.

We shall introduce assumptions of fairness in a number of places. We have alrea
assumed fairness whenever there is an internal input ready to be consumed. It sh
be ignored forever as defined in Section 2.1.2 (p. 42). This means that there cann
an infinite number of external signals consumed before the ready internal input sig
consumed. This ensures the progress of all specific input signals, but it does not 
nate the possibility of loops.
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We shall in Section 3.5 (p. 97) introduce explicit fairness in non-deterministic decis
and this may be used to express progress even when unbounded non-determinis
present. A typical example is a loop which may iterate any number of times, but n
infinitely.

2.6.4.3 Progress through timers

In real systems one cannot always rely on the continuous correctness of all parts
system. That the system shall not remain in deadlock or livelock situations is secur
guarding timers which exit from situations where the wanted return has not arrive

Guarding timers may also break an eternal loop on internal signals, but it will then 
duce a dash of non-determinism which we shall have to cope with. More about this
we handle timers in Section 3.7 (p. 119).

2.6.5 The termination of the Mn-procedure

The Mn-procedure may not terminate even when the system under analysis is pr
sive as pointed out in Section 2.4.7 (p. 69).

Will the Mn-procedure terminate or may we change generations forever?

The Mn-procedure applied to example process G shown in Figure 41 (p. 70) doe
terminate the changing of generations.

We shall argue in Section 5.2.2 (p. 193) that in practice it is not necessary to con
systems with more than very few generations.

The proof of the algorithm is not dependent on when generations are changed. Heu
may be utilized to find the most probable good places. Backtracking and further Mn-1 
execution before generation change is another approach.

In practice we will not expect the executions to be very long, neither within each 
machine (Mi) nor with different generation of machines. We suggest the following s
ple improvements which will make the Mn procedure terminate.

1. Max depth

2. Basic State Cycle detected

Max depth The simplest remedy is to set a limit to the depth of executions within one genera
and on the number of generations. A simple suggestion would be 5 levels within 
generation and max 3 generations. In practice the limits could be even smaller. We
argue more about this in Section 4.4.1.2 (p. 164). The Mn-procedure technique m
supplemented with other techniques if there seems to be a need for long executio

Basic State 

Cycle 

detected

If the execution within one generation has reached the same basic state pair as b
this means that there is a cycle which is possible to repeat. If the cycle has left only
nal signals in equal proportions between the elements of the situation, we may con
confluence on this branch due to external stuttering (Section 2.4.5.2 (p. 61)).

If the cycle has left internal (as well as external signals), we should change gener
because further execution of this generation can never reach confluence since th
may just be repeated.
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2.7 Concluding the Basic Mn-procedure

In this chapter we have presented the basic Mn-procedure. Our starting point is a
basic SDL system consisting of only one process which had one external input an
external output channel. It had an internal channel to communicate asynchronousl
itself, too.

We presented an idea of reducibility which was based on two requirements, progre
confluence. In this thesis we concentrate mostly on confluence, but progress is a p
uisite for our procedure to determine absolute confluence – the Mn-procedure.

We show that it is sufficient to prove absence of minimal non-confluence patterns
prove absolute confluence. A minimal non-confluence pattern has only one extern
nal. The Mn-procedure compares two branches of execution, firstly to execute the 
external signal first and then some internal signal, secondly to execute the internal 
first and then the external signal. The resulting pairs of complete states constitute t
tial set of nodes of the transition system M0. The continuation of M0 is defined thro
the execution of internal signals.

Unfortunately we find that it is not sufficient to pursue only the M0 transition syste
and we define a generation change giving rise to transition systems on higher lev
called M1, M2 etc. and in general Mn.

We apply the Mn-procedure to an example, the process D which is reducible, but w
the reducibility is not simple to spot ad hoc from the definition. We find that the M
procedure is not fully sufficient to prove the reducibility. We must use auxiliary, ad
techniques to prove that some of the encountered complete states are actually un
able. This highlights the fact that the Mn-procedure determines absolute confluen
while we are usually interested in (plain) confluence where only the reachable complete 
states need to be confluent.

The Mn-procedure may not terminate and at the end of the chapter we indicate a
simple pragmatically inspired remedies to ensure that the Mn-procedure does term
for all interesting cases.
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3. General Mn-procedure

Having explained the principles behind the Mn-algorithm we want to see how we 
generalize the approach such that the restrictions imposed in Section 2. (p. 41) c
relaxed. The restrictions were:

1. The external input sequence is finite.

2. The system consists of one process only.

3. The system contains one external input channel, one internal channel, and one
nal output channel.

4. The process is deterministic, meaning that given a basic state and a signal on
transition is possible. The transition contains no decisions leading to different 
nextstates.

5. There are no data variables in the process.

6. There is no save (no explicit permutation of signals).

7. There are no timers.

We shall see how the Mn-procedure must be modified to accommodate for relaxat
each of these restrictions. We conclude that the Mn-procedure is well suited for sy
that are close to real SDL systems in the respect that the seven restrictions can be 
without abandoning the general approach of the Mn-procedure.
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3.1 Infinite external input sequence

In Section 2.3 (p. 50) we defined that the external input sequences of the complete
were finite. Considering the fact that modern systems should be designed to execu
nitely, we will review our initial restriction in these respects and examine how the
restriction of finitude can be relaxed.

Still even though modern systems may be designed to last forever, most practitio
will settle for less than eternity. For all practical purposes it suffices that a certain 
erty holds for all finite external input sequences. Still studying infinite input sequen
may provide us with more insight into the behavior of systems.

3.1.1 What challenges do infinite input sequences pose?

We defined in Figure 25 (p. 50) that the external input sequence should be finite.
is not necessarily a reasonable assumption in our modern world. There are many s
which should be designed to run forever (even though this is not a realistic ambitio
telephone switch should be made to receive and connect telephone calls infinitel

That we restricted ourselves to systems with finite external input in Section 2. (p. 
does not necessarily have to be interpreted as a synonym for the system having to
nate. We only need to assume that the system every once in a while “cools down
much that the processing triggered by the consumed external signals can be assu
have taken place before the next external signal is admitted. This still leaves an in
ing class of systems.

Conversely we can argue that systems which do not have such stable situations inf
many times during the processing of an infinite external input, are inherently insta
This could mean that we cannot ascertain that the size of the internal queues will
below a given limit. Since our model of communication is strictly asynchronous, w
cannot in general assert anything about limits to the signal queues since we do not 
about the speeds of the transition consumption and the frequency of external inp
signals.

Finally there is a class of systems, which we may call time-dependent, where the signals 
are purely dependent on time and not of some random user. Such systems includ
aging sensors which give a measurement at certain time intervals. This kind of sy
may or may not turn into stable situations. It is reasonable that such a sensor ma
ment system consists of a pipeline of processes such that there are internal signa
present at any specific point in time.

We may conclusively classify the systems in these three classes:

1. Stable systems that every once in a while are in stable states;

2. Unstable systems that haphazardly have internal signals at any point in time;

3. Time-dependent systems that systematically have internal signals always.

Example of a stable system may be local electronic locks which demand to return
idle state before the next person can enter. Telephone switches can be seen as a
ple of unstable systems as we can be pretty sure that for a reasonable size switc
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is no safe time where it can be brought to a halt without the loss of internal commu
tion. Finally sensory systems like ABS brakes and antispin may serve as example
time-dependent system.

We covered stable systems in Section 2. (p. 41) and we shall now see how we co
extend our scope to unstable and time-dependent systems as well.

3.1.2 Reducibility of unstable and time-dependent systems

Assume that we have a system which we have proved reducible according to Figu
(p. 48). We then have an original system and a reduction. What is the relationship
between this original system and its reduction if the external input is not finite, bu
infinite?

To compare the two versions of the system, we assume that they are executed in p
synchronized by every consumption of an external input.

Firstly we realize that at any synchronization point the external output from the orig
must be a prefix of the output from the reduction. This is clear because we could 
stop the execution at this point and have a finite input. For finite input, confluence i
tain and the reduction has finished its execution while the original may still have s
internal signals left to execute, but that execution cannot change the output alrea
output.

Our next concern is whether we are always certain that the original will “catch up” 
the reduction. By “catching up” we mean that the original will always reach an ou
which the reduction produced up to some earlier point. We shall see that this is not the 
case.

A counter example is given in Process G shown in Figure 41 (p. 70). If G is a time-
dependent process such that for every consumption of an internal signal in state T, the 
next signal to be consumed in state S is an external input. If we also then make sure 
consume an internal signal in state T again, the signal consumed will be the same sign
as produced before and the signal is reproduced again. The queue of internal sign
keep growing.

We have for the execution graph shown in Figure 46 (p. 85) that internal signals a
always handled in state T while external ones come in at state S. This means that the 
internal signals never will manage to produce the external output which only takes 
in state S.

Consequently we have a reduction (Figure 42 (p. 71)) which produces external o
as a sequence of z’s, while the original system G produces no external output at all!

Figure 46: Infinite consumption of internal signal

S e1; e2e3… ø ø;;( ) e
→ T e2; e3… a1 ø;;( ) a

→ S e2; e3… a1 ø;;( )

e→ T e3; … a1a2 ø;;( ) a→ S e3; … a2a1 ø;;( ) e→…
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3.1.3 Infinite Progress

Informally we mean by progress that the processing of the external inputs should n
and that the processing of one external signal should eventually terminate. In eve
life a process may be compared with a bureaucracy. Whenever we send a letter 
external signal) to a bureaucracy we want it to respond eventually and not that th
bureaucracy should get tied up in its own red tape (i.e. internal signals). Since no 
letter may activate the bureaucracy for ever, any specific letter will eventually be 
dled as long as the bureaucracy cannot stay idle while letters are pending.

More precisely we can formulate this by marking all internal signals with the exter
signal which originally produced it. No execution branch should have infinitely ma
states with internal signals marked by some particular external signal.

We summarize our definition of infinite progress in Figure 47 (p. 86).

Infinite progress is implicitly based on our basic model fairness assumption that e
signal received will eventually be consumed (see Section 2.1.2 (p. 42)). Thus an in
signal which has been produced cannot be overtaken by external input signals fo

We see that the modified definition of progress in Figure 47 (p. 86) coincides with
original definition of progress (Figure 25 (p. 50)) in the cases for finite external inp
sequences. Thus infinite progress implies finite progress.

Our example process G studied in Section 3.1.2 (p. 85) was not infinitely progres
which can be seen from the counterexample in Figure 46 (p. 85) and this is what 
the reduction behave significantly differently from the original. Infinite progress ens
that the original is faithful to the reduction even for infinite external input.

The signal ordering criterion defined in Section 2.6.4.1 (p. 80) ensures infinite prog

3.1.4 Concluding infinite complete states

In this section we have shown that to prove reducibility for all finite input results in
reduction which may not always be fully faithful to the original in unstable infinite 
systems.

Figure 47: Infinite progress

Given a process P=<S;C;Z;T>

1. Assume that every individual external input has a unique identification. 

2. In the initial complete states of the transition system, Z, annotate the external input 
signals with their identification.

3. For all transitions , annotate the resulting complete state by annotating all sig
produced by the transition with the annotation of the consumed signal.

P is infinitely progressive iff  

For all individual signals e and for all execution paths q in P there is only a finite 
number of complete states in q with signals annotated with the identification of e.
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We gave an example where the reduction outputs, while the original runs the risk
never producing any external output.

By strengthening the requirement for progress in the infinite case such that the ef
of any individual stimulus is completed within a finite number of transitions, we get 
reductions are sufficiently faithful to the original.

3.2 Multiple channels

In this section we shall discuss the generalization of the Mn-procedure and of redu
ity provided there are more channels. This turns out to pose few problems. In fac
generalization may in some cases be an advantage.

We have in our simple model already two different input channels, one external an
internal one. Correspondingly we have two different output channels, one externa
and one internal one. The latter is the same as the internal input channel.

Our basic model is that if there are signals available on both channels, it is an arb
choice whether the first signal of the internal channel or the first signal of the exte
channel, should be consumed first. Readers acquainted with SDL will know that S
processes have only one input port (i.e. input sequence). This means, however, s
that the arbitration takes place at the entry of the input port. If we consider the inpu
an integral part of the process there is no difference between our multiple input seq
model and the SDL model as discussed in Section 2.1.2 (p. 42). Similar to the tradi
SDL model we have that the process cannot explicitly specify from which channe
wants its input.

The challenge of multiple channels is that the degree of freedom increases. Ther
more choices during an execution since there are more input channels. There is 
flexibility on output because there are more output channels. It could be conceivabl
the results of our restricted model could not be transferred to the more general ca
turns out, however, that this is not the case. The results of the restricted analysis
mostly transferable to the more general context.

3.2.1 More external input channels

Having more external input channels actually adds nothing to our model since we
assumed that external signals can occur at any time. Our aim is to show that the 
between an external and some internal signal is insignificant wrt. the final result o
computation. We remember that we showed that the Mn-procedure need only che
the existence of a minimal non-confluence pattern which had only one external si
(Section 2.4.3.5 (p. 55)). Which channel this external signal comes from is not sig
cant. In fact it is equivalent to considering all external signals on one channel.

However, what is external to one subsystem, may be internal to an enclosing syste
that level the distinction between the very same channels is significant as we shall
in more detail in Section 3.3 (p. 90).
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3.2.2 More internal input channels

The idea behind confluence is that all execution branches from a given complete
will result in the same set of leaf (stable) states. A generalized non-confluence pat
a complete state from which not all execution branches lead to the same set of leaf
but where each of the first level subtrees of the complete state are confluent. This i
trated in Figure 48 (p. 88).

The clue is again that the first level subtrees of the non-confluent state are assum
fluent. This means that the subtrees themselves can be executed in any order. This
that stabilization may consume the internal signals in whatever order suits the exec
This means that the input alphabet of the M0-transition systems is the union of the
nal input signals of all input channel.

It is necessary, however, to consider all pairs of internal signals from different inte
channels as starting points for the search for non-confluence pattern as well as a
of one external and one internal signal. It is quite possible that the non-confluenc
tern occur due to the conflicting initiatives of two internal channels.

An example is shown in Figure 49 (p. 89).

We have two internal channels, one external input and one external output. We n
that the consumption of external input results in internal buffering and the subseq
consumption of the internal signals results in external output. The two different ext
inputs results in loading two different internal buffers (channels). This means that
four potential non-confluence patterns involving one external input and an internal 
will all be confluent trivially since the output of consuming external input and outp
from consuming internal input are placed on different channels. The potential non
fluence pattern of one internal i and another internal j, which are on different internal 
channels, leads to a non-confluence since the result is either external output of uv or of 
vu. The non-confluent state is definitely reachable as the external inputs ef or fe will pro-
duce it.

(S;e;x,y;o)

(S;ø;xX,yY;oO) (S;e;X,yY;oO) (S;e;xX,Y;oO)

e
x

y

assumed non-confluent

assumed confluent

sets of leaves, not all equa

sets of leaves, all equal

Figure 48: Generalized non-confluence pattern
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Conclusively multiple internal channels result in having to check also the potential
confluence patterns resulting from conflicts between two internal signals on differ
channels in addition to the potential conflicts between an external and an internal s
This means that the number of potential non-confluence patterns will increase wit
number of separate internal input channels.

3.2.3 Multiple output channels

Multiple output channels make less conflicting situations than only one output cha
In Process U of Figure 49 (p. 89) we have that the problem appears when the con
tion of i and j both are output to the same external output channel. If we had had tw
external output channels as well, one for u and one for v, the problem would have been
non-existing and the process confluent since sequencing between channels is ins
cant for the final state.

3.2.4 Concluding multiple channels

Having more channels than the restricted amount assumed in Section 2. (p. 41) im
almost no complications for the use of the Mn-procedure. The complete state mu
extended to include one element per channel (buffer), but this is trivial.

Multiple internal input channels mean that it is necessary to check all potential non
fluence patterns involving two internal channels as well as the patterns involving 
external and an internal channel. The M0-alphabet, though, is not affected as it is
union of all internal signals.

The signals on internal channels can be executed in any order as long as the ord
each channel is preserved, since the generalized minimal non-confluence pattern 
subtrees confluent. This means that the generalized reduction algorithm can also e
the internal signal (which is first on a channel) that suits the algorithm best.

Multiple output channels makes it easier to conclude confluence since more outp
channels mean greater freedom and independence of pieces of the output.

Figure 49: Process U with internal non-confluence pattern
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3.3 Multiple processes

Up until now we have considered processes which have been described by one SD
cess graph. This is not a very realistic system. Internal channels will normally not a
from an SDL process to itself, internal channels are normally between component
larger system.

Here we show that a system of multiple processes can be seen as one process, b
non-confluence pattern can only occur within one component.

3.3.1 Definitions

We need a few more definitions to be able to talk more effectively about multiple 
municating processes. Some of these concepts have already been informally intro
in Section 2.1.2 (p. 42).

3.3.1.1 System

A system is a set of components (Section 3.3.1.2 (p. 90)), which communicate asynch
nously via channels. A system in our terms corresponds closely to an SDL system

3.3.1.2 Component

A component is either a block (Section 3.3.1.3 (p. 90)) or a process (Section 2.1.3.1 (p. 
44)).

3.3.1.3 Block

A block is a system (Section 3.3.1.1 (p. 90)) on a lower nesting level. Sometimes we 
refer to blocks as subsystems.

3.3.2 The basic model and the combined CFSM

We assume that we consider an SDL block as our unit of observation. It contains
of processes and a set of channels between these processes. Each internal chann
have one process on either side. Each external channel should have a process on 
and the environment on the other.

Thus our model implies that where SDL allows merging channels, we have to sep
the channels all the way to the receiving processes.

We want to transform the block such that it becomes a process. Thus we reach th
lowing definition of the block as a CFSM <S;C;Z;T>:

1. The set S of basic states is the Cartesian product of the sets of basic states for 
process.

2. The alphabet C is the cartesian product of all signal sets of all channels. This can
ily be divided in an external input set, and internal set, and an external output s
channels.

3. The initial set Z of complete states is derived from the tuple of initial basic states
the processes and the sequences of external input.
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4. The input alphabet A contains the elements of C which have only one non-empty 
input channel, and only one element on that channel.

5. The set of complete states K is simply defined as before K=S x C*.

6. The transition table T is derived from the individual transition tables of the compo
nent processes. We assume that a signal also contains information from which
channel it comes such that we may distinguish between signals of the same ty
different channels.

We may then in principle calculate the combined CFSM explicitly and work from th
It is more practical to consider each component separately as far as that works be
the combined process meets state explosion very quickly.

3.3.3 Interleaving semantics

Let us first convince ourselves that the combined CFSM behaves exactly as the b
is derived from. While the block may have several transitions execute in parallel, 
combined CFSM can only have one transition at one point in time. Does this make
ference? The only difference we accept as a real difference is if there is a way the
can reach a complete state which the combined CFSM cannot reach or vice vers
determine that two actions on different processes are actually concurrent, is in pr
impossible if the processes do not share a common clock. We can only observe th
transitions have taken place approximately at the same time when their output is m
in a way that makes the output different from the situation where one transition exe
before the other.

With our basic model (Section 2.1.2 (p. 42)) the output from two different processe
merged only when there are two channels going into a merging process one from
of the concurrent ones. This means that the output from the concurrent processe
placed on different channels and thus considered to be independent relative to the
ing process. Thus all possible interleavings of the signals will be considered also 
combined CFSM.

We conclude that the combined CFSM corresponds to the original block with respe
the complete states.

3.3.4 Piecewise execution of the Mn-procedure

Assume that we have constructed the combined CFSM and we start performing ou
procedure. Let us assume that we have been able to establish progress of the CF
that we are determining confluence.

Any potential non-confluence pattern involves two signals on two independent ch
nels. If these two signals are handled in two distinct component processes of the 
we know by definition of our basic model that the output from handling the two diffe
signals cannot occur on the same channel. Thus confluence is assured directly fo
kind of potential non-confluence patterns.

The simple conclusion is that a non-confluence pattern can only occur within one
vidual component process meaning that both the involved signals must be handle
the same component.
Practitioners’ verification of SDL systems 91 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29



General Mn-procedure
Multiple processes3

 the 
e out-

pro-
ce 
onent. 
g the 
 pro-
 
roce-
 cases 
 inter-
dure. 

tion 
Since 
 used 
xecu-

 ele-
ake 
ich 
ocess 

0 (p. 

 

This simplifies the search for non-confluence patterns considerably since most of
theoretical non-confluence patterns of the combined CFSM can be eliminated at th
set since the signals are handled in different processes.

Projection Our “piecewise” execution of the Mn-procedure is actually a projection of the Mn-
cedure applied to the combined process. We notice which potential non-confluen
pairs cannot ever produce non-confluence since they involve more than one comp
Said differently the M0-procedure for a combined CFSM consists basically of takin
M0-procedure for each component process. Higher generations may similarly be
jected. The M1-procedures involve the components which receive output from the
process which triggered a generation change in its M0-procedure. Often the M1-p
dures can be performed for one process at a time, but there are also (theoretical)
where the set of processes receiving the M1 input, interact mutually and then the
acting set should be included all at the same time when performing the M1-proce
Similarly an M2-procedure may in principle be even more involved.

Stabiliza-

tion

The pure confluence search can be performed very much piecewise, but stabiliza
which is an important part of Mn-procedure often involves more than one process. 
the piecewise execution of the Mn-procedure is a projection of the Mn-procedure
on the combined process, it should be clear that stabilization is not only a linear e
tion. If we analyze non-confluence of a component process U which outputs to a 
component process V, stabilization of a state pair in U will involve executing V, and we 
must make a sequence of assumptions concerning the state of V. Thus a stabilization is 
in principle an execution tree.

Stabilization should, however, be performed breadth first since whenever the two
ments of the node pair are equal, we may halt the stabilization. Furthermore we t
advantage of the fact that the stabilization can be performed in any order wrt. wh
internal channel to choose signal from. Thus we execute all signals input to one pr
before going on to the next.

Example: 

UV

We shall give an example of piecewise execution of the Mn-procedure in Figure 5
92).

We connect the process U shown in Figure 49 (p. 89) with another process V shown in 
Figure 51 (p. 93). We shall show that block UV is confluent by applying Mn-procedure
piecewise.

Process V takes the internal signals u and v and produces external output e and f on sep-
arate channels.

Figure 50: Block UV
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We apply Mn-procedure piecewise to procedure U. The M0-procedure is quite similar
to what we did in Section 3.2.2 (p. 88), but when the difference in production of 
sequences onto c4 is encountered this is not a direct sign of non-confluence, but me
a sequence permutation which may be resolved when changing generations sincc4 is 
an internal channel of block UV. The M1-procedure originating from potential non-co
fluence pattern (S;ø;i,j;ø) of process U, activates V. The output alphabet of M0 of U is 
{(u,u),(v,v)}. This is the input alphabet to M1. It is parallel. The state from which th
generation change should take place is ((T;uv;ø,ø),(T;vu;ø,ø)) relative to V. Stabilization of 
this node must take place in V and leads directly to a confluent result.

The generation change leads to initial set of M1 equal to {((T;ø;e,f),(T;ø,e;f))} relative to 
process V (which is equal to the stabilization results).This is directly confluent.

To apply Mn-procedure to process V is trivial since V has only one input channel and n
conflicts may arise. Thus block UV is confluent. It is progressive due to signal orderin
criterion and therefore block UV is also reducible.

3.3.5 Progress

Progress in a system of processes is equal to progress within a process as we intr
it in Section 2.3 (p. 50). Normally there are some feedback loops which prevent the
ple signal ordering criterion from holding. What is normally needed is to consider e
of these cases individually.

Even though progress is not a major part of this thesis, we shall spend some time
cussing three ways to ensure progress. We have already presented the signal order 
criterion in Section 2.6.4.1 (p. 80). In Section 3.5 (p. 97) we show how fairness in 
determinism can ensure progress and in Section 3.7 (p. 119) we show how timer
prevent an infinite loop.

3.3.6 Concluding multiple processes

Since a system of multiple component processes can be seen as one process, th
approach can also be used for systems.

Progress must be determined globally in the system by examining possible feedb
loops.

Figure 51: Process V
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Confluence may be determined piecewise meaning that non-confluence patterns
always in one component only. M0-procedure can be done one component at a t
while higher generations may be more involved. Still the work needed in a piecew
approach is normally much less than transforming the system to a process and pe
ing a total Mn-procedure from there.

3.4 Save

Saving signals to a more appropriate state is the only way SDL can express permu
of incoming signals. Save can be seen as suspending some transitions such that co
ence more easily can be established. On the other hand the existence of saved i
signals makes it necessary to modify our notion of stable state.

The designer may also want to establish that the saved internal signals will disap
eventually. This problem modifies the concept of progress. To establish the disap
ance of saved internal signals is the same problem as the reachability problem wh
not determinable in the general case [48].

SDL has the property that all signals eligible to the process are legally consumed 
state of the process. This is not necessarily the case with other notations where f
state machines are described by graphs where not every possible combination o
and input signal is defined. Of course a major problem when implementing system
that signals show up in states where there was no intention that they should arrive
is the interpretation of this if there are no default transitions? To cope with undes
signal receptions, SDL has the option to save the signal for later. One may interpr
to mean that all the saved signals of a process are put in a separate save-queue
to the input port. When the process changes state the whole save-queue is inser
front of the rest of the input port. Alternatively one may interpret a save as just ignoring 
the signal and taking the next. The saved signals are kept in the queue, but ignored
in a state which saves them. The latter interpretation suits our basic model best sin
assume a queue for each channel.

In a state where there is a save construct, confluence is more easily established sinc
there is no need to look for non-confluence patterns involving any saved signals s
they cannot be consumed before the state has been left.

3.4.1 Stable states revisited

In Section 2.1.3.6 (p. 47) we defined a stable state as a complete state where all the inte
nal input channels were empty. As we introduce saved signals, we run the risk of
reaching complete states where there are only saved signals in the internal queues
a stable state? At least it is certain that no more stabilization is possible as no mor
nal signals can be immediately consumed (since they are saved in this state). On
other hand the internal queues are not empty.

We decide to define two specializations of stable states. A totally stable state is a stable 
state where the internal queues are empty. This corresponds directly to the forme
nition. A semi-stable state is a state where no more stabilization can be performed,
where the internal channels are still not empty.
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During confluence calculations, however, we may find states which are not totally s
as end results of stabilizations. When we introduce non-deterministic saves in Se
3.5.4 (p. 106) that we must be even more lenient with the stability of states.

3.4.2 Save and Progress

It is a question whether progress should mean that all stable states must be totally 
Otherwise there are internal signals in the system which must originate from some
nal input and that input has not been fully handled.

At this point we should remind the reader that progress plays two slightly different
in our approach. Firstly it is a goal in itself that a system has progress which is sy
mous with the system getting things done. Secondly we need progress for our Mn
procedure to function properly. The second aspect of progress is only to ensure th
execution graph of any complete state is finite.

When analyzing progress as an end in itself, we want to examine whether all sav
nals will eventually disappear. We define strong progress to mean that all stable states
are totally stable.

Progress is closely related to termination and to reachability both of which are in ge
not decidable. Our task may still be manageable for each individual practical case
to the theoretical complexity of the establishment of progress, we must accept that
proof will require use of advanced proof techniques. That is not the topic of this th

For the sake of the Mn-procedure it suffices to establish weak progress, which we shall 
define to mean that the execution graph of any complete state is finite. This definit
satisfied if stabilization ends in semi-stable states.

Weak progress suffices for the Mn-procedure to work since every stabilizing exec
is finite and therefore the assumption that all complete states in the execution gra
a non-confluent state are confluent can be kept (Section 2.4.3.2 (p. 53)).

Weak progress is significantly simpler to establish than strong progress. We only
to ascertain that feedback loops do not run forever.

3.4.3 Save and confluence

We introduced save for the explicit purpose of controlling the order of signal consum
tion, which means that confluence should be more easily established.

Nevertheless we need to clarify a few points concerning the comparing of the two
ments of the Mn-nodes. How different may two semi-stable states be before they
considered non-confluent?

It is perceivable that two non-identical semi-stable states are such that whatever 
consumed, either the signal is saved or both states are resolved into totally stable
which are identical. Should such a state pair indicate non-confluence?

The simplest approach, which we will adopt, is that two semi-stable states are co
ered confluent only if they are identical (with the possible modification of “glue” as
presented in Section 2.4.5.2 (p. 61)).
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During M0-execution, the only problematic situation is a potential non-confluence
tern where both signals are consumed from the starting basic state, but (at least)save 
is invoked in the follow up state. This leads to at least one of the elements of the p
have a save. All other situations are trivially confluent when save is involved.

3.4.4 Save and reducibility

If we have established weak progress, we know that the Mn-procedure can be app
the system. If the Mn-procedure returns confluence, the system is reducible and 
reduction algorithm can be applied.

If the reduction contains no basic states which correspond to a semi-stable state 
original system, we may also conclude that the system is strongly progressive. Th
son for this is that any stable state reachable in the original system is also reacha
the reduction.

We explain this in more detail. Assume that there is a reachable stable state Q of the 
original system which is not in the reduction. Since Q is reachable, there is some com
plete state W of the set of initial states Z which has an execution path leading to the 
stable state Q. This initial state W is also an initial state in the reduction. We execute
reduction from W and because it is progressive, we reach some set of stable statesL. The 
execution in the reduced process corresponds to an execution tree of the original s
as a consequence of the reduction algorithm. According to the assumption Q is not a 
member of L. Then W must be a non-confluent state of the original system since th
is one path leading to Q and other paths leading to L which does not include Q. But our 
assumption was that the system was reducible, and thus confluent. The conclusio
be that our assumption that Q is unreachable in the reduction cannot hold. All reacha
stable states of the original are also reachable in the reduction.

Our Alternating Bit Protocol example Section 3.5.3.1 (p. 100) is shown to be redu
since it is weakly progressive and confluent, and the reduction Figure 61 (p. 105) s
that it is strongly progressive and that there cannot be any deadlock in the waiting
since the reduction includes no stable states with the waiting states as componen

3.4.5 Concluding Save

Introducing the SDL save construct makes it easier to obtain confluence, but we hav
modify our notion of stable states.

The property of progress becomes slightly more involved as we distinguish betwe
strong progress and weak progress. Strong progress means that only stable stat
no internal signals (totally stable) should exist in the execution graph, while weak
progress only requires that stable states should be semi-stable where also saved 
signals are present.

We show, however, that weak progress is sufficient for determining reducibility. F
thermore we show that strong progress can be deduced from reducibility and the fa
no basic states of the reduction originates from semi-stable states of the original.
Alternating Bit Protocol example shows this.
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3.5 Non-determinism

The requirements for reduction are that the race conditions between external and
nal signals (and between internal signals) should not be significant. Explicit non-
determinism can be handled by a generalized Mn-procedure by talking about sets
states rather than single ones.

SDL has defined two different kinds of non-determinism, the anyvalue expression
decisions and the spontaneous transitions. We shall cover them both and then w
introduce a couple of new mechanisms which extend SDL, but add expressiveness
description of reduced processes.

3.5.1 Anyvalue expressions in decisions

Decisions with pure anyvalue expressions are the simplest form of non-determini
The only change is that a transition does not necessarily result in one specific sta
may result in any of a set of states. This does not prevent the process from being
ible! Already in our definition of reducibility given in Section 2.2.1.1 (p. 48), we 
foresaw this and defined that the final set of leaves should be independent of the
conditions between channels with signals to be consumed.

Our Mn-procedure must be elaborated such that every complete state in our simp
cedure becomes a set of states in the more elaborated one. Still our proofs and o
extensions to the simplest model are not dependent on there being only one com
state as the result of every transition and the results may be generalized accordin

We give a simple example just to show how the execution of the Mn-procedure lo
when generalized to sets of states.

The block NonD (Figure 52 (p. 97)) does not do much sensible computing. It consu
an a signal in N1 which then produces either an a or a b, if it produces a b an x reply will 
come back from N2, but N1 will only respond by sending a y. In N2 the y and a signals 
will result in outputting either a or b. If the reader is confused by this informal specif
cation, please take a look at Figure 53 (p. 98).

We show the computations of the Mn-procedure through a graph in Figure 54 (p.

There is only one possible non-confluence pattern of N1 and no patterns for N2 since N2 
has only one input channel. The initial set Z0 of M0 shows a pair of sets of states whic
we see is sequence permuted and we decide to change generation. The initial staM1 
is obviously confluent since the input alphabet A1 is parallel and the pair of state sets ha
equal elements.

Figure 52: Block NonD, a reducible block with non-determinism
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The evaluation of the nodes of the Mn transition systems becomes slightly more 
cate. Stabilization may certainly determine non-confluence as easily as with the 
deterministic case. Conversely confluence is not so hard to spot either. The sets m
equal and the input alphabet parallel. The distinction between sequence permute
state different may be slightly less obvious. We have also seen that the exact poi
which to perform generation change can be moved as a result of heuristics and e
ence also for the simple case. When it becomes clear that further execution on th
generation cannot succeed in establishing confluence, we change generation.

Figure 53: The processes of NonD

Figure 54: Executing the Mn-procedure
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Changing generation is also somewhat more involved. Our example in Figure 54 (
is too simple to show the complication. The input alphabet of the new generation 
output alphabet of the former. The output alphabet is dependent upon the basic sta
which the input has been applied. When there are several states as when non-de
ism is involved, there will be several (possibly different) output sequences as well
need to record one output element for each complete state in the set. Keep in min
these elements are different only if the basic states of the complete states are dif
This is the reason why the complication does not show up in Figure 54 (p. 98). It 
important to keep the association between the states and the signals as shown g
cally in Figure 55 (p. 99). Each element of the output alphabet is associated with a

one element of the input alphabet. Futhermore for every individual state of the no
determinism set of states, there is a symbol component within the output alphabe
lowing a generation change the alphabet is applied as a pair of tuples to the pair of
representing the Mn-node.

3.5.2 Spontaneous transitions

Spontaneous transitions in SDL are transitions where the input symbol contains none. 
The transition may execute without consuming any signals at any time when the pr
is in a state where a none-transition is specified. We have two quite different approach
to this, either the spontaneous transition is considered triggered by an external ev
it is considered internal.

3.5.2.1 Spontaneous transition as externally invoked

We define that none is a signal type which comes on a special channel external to 
possible enclosures. It is consequently considered exactly as any other external s
In states where there are no spontaneous transitions this is considered to be equ
to executing a default transition for none. A default transition means that the signal is
merely consumed and no state change takes place.

Spontaneous transitions do not add much to the question of progress since none-signals 
cannot be produced by any process.

potential non-confluence pattern

non-determinism

element of input 
alphabet

element of output 
alphabet

Figure 55: Symbol alphabets and non-determinism
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Concerning confluence, any internal signal must be insensitive to whether a poss
none-signal arrives before or after its consumption. This is exactly the same as wit
mal external signals.

3.5.2.2 Spontaneous transition as internally invoked

Alternatively to the interpretation of spontaneous transitions as external signals is
interpretation which considers the spontaneity as internal. During an execution th
cess may either halt in the state with spontaneous transition, or it may continue alo
spontaneous transition. This becomes exactly similar to interpreting a spontaneou
sition as a non-deterministic decision (Section 3.5.1 (p. 97)) at the end of all trans
leading to a state with a none input. The non-deterministic decision decides between
empty branch and a branch corresponding to the body of the spontaneous transi

It is possible that there is a cycle of (non-trivial) spontaneous transitions. The inte
tation of spontaneous transitions as internally invoked will then yield an infinite se
states. For an automatic application of the Mn-approach, infinite sets are not very
tical. Theoretically the infinite sets may not pose any extra problems.

3.5.2.3 Concluding spontaneous transition

Both interpretations affect our notion of stability in states. A state which looks sta
but which has a none input is not absolutely stable after all.

Both interpretations allow reducibility provided their respective confluence criteria h
been met. The reduction algorithm in the two different cases will give two differen
reduction results since the reduction algorithm applies the execution interpretatio
reduction under the external interpretation of spontaneous transitions will include 
taneous transitions, while a reduction under the internal interpretation may appea
without spontaneous transitions, but with non-deterministic decisions.

3.5.3 Fair Anyvalue-expressions

While the standard SDL decision does not assume any kind of fairness, we find t
many times fairness is what you would like to have in order to use non-determinis
terminate a loop in the execution. Fairness is defined as a restriction on some infinite
behavior according to eventual occurrence of some events [49].

A perfectly valid implementation of the anyvalue expression in SDL is to pick one v
from the start and stick to that value every time the anyvalue expression is execut

that sort1. Thus the anyvalue expression does not ensure random drawing when it
applied.

3.5.3.1 Alternating Bit Protocol

The Alternating Bit Protocol example shows how fairness constructs can be used t
ensure progress. The example was introduced by Bartlett et al. in [3]. It has later 
used as a simple, but illustrative example of a provable protocol for unreliable com
nication. We shall use it to show that non-deterministic decisions with fairness ca

1. “Sort” in SDL means “datatype” in programming languages.
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used to resolve infinite loops to achieve unbounded non-determinism. That the non-
determinism is unbounded means that it is not possible in advance to determine an up
bound for the number of iterations of the loop.

The example is a protocol of full-duplex transmission over half-duplex links. In 196
was important to point out that only one control bit is needed to ensure reliable co
nication assuming that all errors in the transmission are detected. Our aim is to sho
by a small extension of SDL, we can show that the protocol is progressive. We ma
show that the protocol is confluent (under some reasonable conditions) and thus th
tocol is reducible. The reduction shows trivially the correctness of the protocol.

The structure of the protocol is given in Figure 56 (p. 101).

We have actually abstracted away the real contents of the message and show on
control information. The signals between the Sender and the Receiver represent the value
of the control bit. A0 and A1 are values 0 and 1 of the bit on the message from the Sender 
to the Receiver, while B0 and B1 are values 0 and 1 of the bit on the acknowledgment 
from the Receiver to the Sender.

Figure 56: Alternating Bit Protocol structure

Figure 57: Sender of Alternating Bit Protocol
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The messages are never lost, but they may be corrupted. If a message is corrupt
will be discovered.

The Sender (Figure 57 (p. 101)) will test for the correctness of the returned acknowl
ment. Whenever it concludes that it is wrong, it will ask for a repetition of the 
acknowledgment.

The Receiver (Figure 58 (p. 102)) will test for the correctness of the message sent. W
ever it concludes that it is wrong, it will ask for a repetition of the message.

The big issue here is the progress. We can quite easily conclude confluence sinc
saves eliminate the conflicts which may occur.

In order for the protocol to terminate, we need that both the message from the Sender to 
the Receiver is checked ok and the acknowledgment from the Receiver to the Sender is 
checked ok. If things go very wrong, it is even possible that the acknowledgment fr
the Receiver which is meant to ask for a retransmission of the message is not receiv
the Sender properly, but the response by the Sender is still adequate as the only sensibl
thing to do is to retransmit.

Let us look at the possible eternal loops of the protocol.

1. The original message is not received properly. This gives the infinite signal sequ
 which may be terminated only by the check 

finally giving ok.

2. The acknowledgment of a well received message is corrupted. This gives the in
signal sequence  which may be terminated 
only be the check finally giving ok.

There are two additional cases that are symmetric to the above two where the sta
state of the Sender is Send1 instead of Send0.

The first loop is only dependent upon the Receiver checking ok sooner or later, while the
second loop is dependent only upon the Sender checking ok sooner or later. The SDL 
anyvalue in the decision cannot ensure that this happens. We need a construct th
ensures that whenever the decision is visited infinitely many times one (or more) 

Figure 58: Receiver of Alternating Bit Protocol

e A0 B1 A0 B1 …→→→→→

e A0 e B0 A0 B0 …→→→,→→
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ified alternatives will appear infinitely many times. We need a fair decision. Often for 
pure specification purposes we are not so interested in the sort of the decision or t
ues of the alternatives.

3.5.3.2 Fair decision

We shall specify a construct which is a fair decision which has arbitrary sort and o
specifies that some alternatives will be infinitely-often chosen in an infinite sequen
choices.

A fair decision specifies some alternatives denoted by “(+)” which are certain to o
infinitely many times when the decision is encountered infinitely many times. The o
alternatives may or may not occur. We have in principle no knowledge of their pos
ity or probability.

Defined in this way our fair decision construct is a construct for weak fairness [49 p37]. 
The (+)-specified alternatives are the helpful directions which are continuously enabled
when the decision is encountered. Our construct is defined such that the helpful d
tions will never be postponed infinitely.

For those more imperatively inclined, the following transformation of the construc
Figure 59 (p. 103) gives a definition inspired by the method used by Apt et al. in [
referred in [49].

In the definition given in Figure 60 (p. 103), S1 is the helpful direction, which in our 
notation would be denoted by (+) and S2 is a normal branch, optionally denoted by (0

The Integer variable z1 designate the priority of alternative S1 while z2 designate the pri-
ority of alternative S2. Whenever the helpful direction S1 has been chosen the initial 
setup is repeated and we are back to square one. Whenever the non-helpful direcS2 
has been chosen, the priority of the helpful directions (here: S1) is decreased (improved).
Whatever z2 becomes (greater than 0), sooner or later z1 will become less than or equa
to z2 and the helpful direction will be chosen.

Figure 59: Fair Decision

dcl z1 Integer:= any(Natural);
dcl z2 Natural:= any(Natural);
...
z2:= any(Natural);
decision (z1<=z2)

  (true):  S1; z1:= any(Natural);
  (false): S2: z1:=z1-1;
enddecision;

Figure 60: Imperative definition of fairness
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3.5.3.3 Extremely fair decision

Are we completely happy with our definition of a fair decision? It turns out that mo
programmers would like to be “even more fair” than our weakly fair definition in S
tion 3.5.3.2 (p. 103). Most practitioners will have an implementation-oriented attitu
towards a fair decision. They will be thinking about how the decision should be im
mented, and they would like it to be implemented as locally as possible. A local 
implementation means that the outcome of the decision should not depend on othe
of the description than the construct itself. Neither should the global state be consi
nor should the process scheduling matter.

The practitioner will think about implementing a random selection between the alt
tives where the helpful directions are assigned constant positive probabilities and
other alternatives possibly a zero probability. Such an approach is called probabilistic. 
From probability theory we get that the probability of being postponed infinitely wh
having had an infinite number of constant positive chances is zero. Thus we have
achieved our fairness for the helpful directions.

It turns out, however, that a probabilistic approach is not equivalent to the weak fai
approach sketched in Section 3.5.3.2 (p. 103). An example will clarify this. Assume
the Receiver receives messages from multiple Senders. Since the messages always car
their origin (SDL predefined value SENDER), the Receiver should only take care to send
the acknowledgment back to SENDER. In this many-to-one situation, however, the wea
fairness construct for the decisions in Receiver is not sufficient. To see this we may con
sider the specific sequence of signals which is such that every time the Receiver decision 
is OK, it is the process A which may terminate its loop. Process B never seems to win an
OK from the Receiver. This situation is legal from the point of view of the Receiver deci-
sion because it actually returns OK infinitely many times, but process B never gets the 
benefit of it. From the definition of weak fairness of the decision, this is legal. Fro
probabilistic point of view, this situation cannot occur. Since process B has infinitely 
many independent decisions taken in the Receiver, the helpful directions with positive 
probability must turn up!

The clue is that our “starvation” of B was legal according to weak fairness since the 
selection of the events was made according to some global state while the weak fa
concentrated on the decision alternatives and not the global state. We want a fair
concept that is independent of which global state there is. Francez defines extreme fair-
ness in [49]. Weakly extreme fairness means that for any global state in a finite set Γ, 
helpful directions shall occur infinitely-often in an infinite sequence of decision inv
tions as long as they are continuously enabled. In our case the global state set Γ would 
cover different Senders approaching the Receiver.

For practitioners the probabilistic interpretation is most often the best since it mode
sense of stepwise execution best. Even with the extremely fair interpretation we c
apply the transformation shown in Figure 60 (p. 103) only demanding that the any
expression is really a random drawing from a distribution where all Natural numb
have the chance to be chosen. That the priority of the helpful direction is improved 
time the other direction is chosen, is actually of no importance. The clue is that the
ful direction always has a non-decreasing probability to be chosen.
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We may also express the notion of extreme fairness in terms of the sequence of a
tives chosen by the decision. For any infinite subsequence of the sequence of 
alternatives, there is an infinite number of helpful directions.

3.5.3.4 Wrapping up the Alternating Bit Protocol

Having defined our notion of a fair decision, we return to the Alternating Bit Proto
which has four such fair decisions where the helpful directions are those which ar
labelled OK.

The question of weak progress of the Alternating Bit Protocol is a question of the t
nation of all the feedback loops, which should now have been covered, even thou
have not performed a formal inference of the termination of all possible loops.

Assuming now that we have made reasonable both weak progress and confluence
Alternating Bit Protocol, we may reduce the block described in Figure 56 (p. 101) 
SDL process shown in Figure 61 (p. 105).

The process ABP can easily be reduced even more to only one transition consumine 
and outputting the very same signal e. Even a practitioner (or should we say: even a f
malist?) may be convinced that the protocol is correct.

Strong progress is also the question of avoiding that saved signals are never bein
dled. The progress problem of the Alternating Bit Protocol is whether we are certa
receive B0 or B1 in Wait0 and Wait1 such that the Sender will proceed. We have already
shown in Section 3.4.4 (p. 96) that reduction of the Alternating Bit Protocol implie
strong progress since the problematic situations do not turn up as stable basic st
the reduction.

The same result of strong progress can be reached through the following argume
Every entry to a Wait state is directly preceded by output of an A0 or A1 to the Receiver. 
Every transition of the Receiver will output a B0 or B1 back to the Sender. Thus we are 
certain that when the Sender is in a Wait state there is something coming from the 
Receiver sooner or later.

We have been able to divide the problem of the correctness of the protocol to que
of progress and confluence.

Figure 61: Alternating Bit Protocol Reduced
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3.5.4 Spontaneous save

We have introduced constructs for the explicit specification of non-determinism. In
tion 3.5.1 (p. 97) we presented the plain SDL non-determinism in decision and in
Section 3.5.2 (p. 99) we covered spontaneous transitions which are also a part o
SDL standard. Finally in Section 3.5.3 (p. 100) we presented a new construct wh
introduced explicit fairness into decisions.

In our basic execution model (Section 2.1.2 (p. 42)) we have also assumed anothe
of fairness, namely the fairness between the channels of a process. A signal sha
tually be consumed no matter what channel it is on. In standard SDL this is norm
also considered the case only obstructed by priority signals which may always pre
the normal signals. In SDL all signals of a process will enter into an input port which is 

basically a FIFO queue which is fair1.

Confluence means that the choice between internal channels and between extern
nels and internal channels are irrelevant wrt. the final result of the subsystem. Wha
if the non-determinism between channels is significant for the final result, and this is 
totally acceptable? Are such systems not reducible?

3.5.4.1 Explicitizing race conditions

We could need a construct to express that a certain race condition is actually “ac
able”. Furthermore the construct must make it possible to talk about progress and
confluence and preserve the desired non-determinism. In that way we may speci
reductions of systems which also include race conditions.

One problem is that the number of legitimate outcomes is usually infinite. If we wa
express the non-determinism of the race condition between an external and an in
channel, we must express that the internal signals may come in between any num
external signals. This is an infinite set of alternatives. We need a shorter notation fo
set.

Let us look even closer at the problem. We want to accept the permutations cause
race condition as acceptable. In order to be able to utilize our concepts of confluen
reduction, we must be able to express that a system (say Sk as shown in Figure 66 (p. 
110)) containing a component FM with an acceptable race condition is confluent. Fu
thermore we must be able to apply our reduction algorithm to the system Sk and obtain 
a reduced process.

The reduction algorithm can choose to execute any internal signal present in the 
mediate instable complete state. We realize then that the execution path of the red
algorithm may never actually encounter a complete state where there are signals p
on several channels which should be (fairly) merged. We need a mechanism which
care of the race condition even when there is no race condition! We need a mech
which describes a potential merge situation.

We should emphasize that we have no intention to make a construct which chang
SDL semantics. What we want to find is a way to describe a race condition which
serves the fact that the outcome of the race condition is significant for the final re

1. Some doubt has been raised whether the formal definition of SDL [79] actually defines this fairness, but
common interpretation is that there is a fairness between channels in SDL.
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 106



General Mn-procedure
Non-determinism 3

 from 
nals 
els 
ting 

s on a 
s us 
ve to 

. The 
input 
which 

el tem-
el 

ays 
 
d 

con-

 
struct 

. 99). 
 tran-
 

 being 
 above. 

l, 

ecifier. 
cifier 
omatic 
Let us imagine ourselves as a signal on a channel in a race condition. If we suffer
some random delay, or we are disabled for some random period, we fear that sig
from some other channel will win the race. But we cannot know. The other chann
may also be hampered on their way to the finish, or there may be no other compe
signals around at this point in time. On the other hand, there may be other signal
number of other channels such that there are several signals which suddenly pas
before the finish. The clue is for how long we are being disabled or delayed relati
the other competing signals.

Taking the position of one signal is exactly what the common SDL execution does
different signals have no knowledge of other signals. When a signal is first in the 
port, the state of the process is all that matters. We have to find extensions to SDL 
are operations on one individual signal in harmony with SDL in general.

It seems that we need a mechanism that disables the consumption from a chann
porarily, and then some mechanism that enables the signals of the specific chann
again.

To simulate disabling of a signal we resort to the only SDL mechanism which del
signals which are first in the input port – the save construct (see Section 3.4 (p. 94)). A
save means that the tentatively consumed signal will not be consumed anyway an
rather saved for later until the process is in a state where this signal type can be 
sumed. Save by itself does not introduce non-determinism, but it introduces 
permutation. Our disabling mechanism will be a kind of save which not only saves the
first signal of a channel, but all signals of a channel. We call this special save con
a spontaneous save.

To simulate enabling, we turn to spontaneous transition covered in Section 3.5.2 (p
A spontaneous transition introduces non-determinism such that the time in which a
sition executes is not known. This corresponds well with an unknown delay of the
signal. Our modified spontaneous transition concept will be dependent upon there
some signal which has been saved by our spontaneous save construct sketched
This special spontaneous transition is called spontaneous consumption.

Relative to an enclosing system (say Sk) the spontaneously saved signals are interna
but the consumption will appear as a spontaneous transition on top level (i.e. Sk-level) 
as described in Section 3.5.2.1 (p. 99).

Spontaneous save and spontaneous consumption is not intended for the SDL sp
The extensions are used in the Mn-procedure and in the reduction. The SDL spe
gets a way to annotate that a race condition is acceptable and there will be an aut
transformation to spontaneous save and spontaneous consumption.

Figure 62: Merge state
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In Figure 62 (p. 107) we introduce notation for an acceptable race condition, a merge 
state. Normally if there is one merge state in a process all the other states of the p
reachable from the merge state should also be merge states. This is because rea
states must also be able to consume spontaneously saved signals. Notice also by
tion that a merge state cannot be the base of a non-confluence pattern since we 
all possible mergers of signals.

In Figure 63 (p. 108) we define the notations for spontaneous save and spontaneo
sumption. We notice that a spontaneous save may have a part of a transition bef

and a part of a transition behind it. This is because the signal (here: sig) of the sponta-
neous save is normally an internal signal and the transition of a reduction may ha
spontaneous save as an intermediate action. The transition of the reduction may 
consuming other internal signals of other component processes. Likewise the spo
ous save may succeed a series of internal transitions. Remember also that all 
spontaneous consumptions similar to spontaneous transitions (Section 3.5.2.1 (p
are lifted to the top level of the reduction.

The transformation from the merge state of Figure 62 (p. 107) to the new mechan
is given in Figure 64 (p. 108).

The merge mechanism is extremely fair in the sense that any spontaneously saved
will eventually be consumed. The spontaneous consumption requires that a sponta
save has occurred and that such an object is first in the channel.

In Figure 65 (p. 109) we give the definition of the merge mechanism. We show com
states where the component process containing the merge state has only two ch
We show merely those parts of the complete state which are relevant to the execu
the component process containing the merge state. We assume the concatenatio
ator “+” for concatenation of signal sequences of the complete state, and the tran

table .

Figure 63: Spontaneous save and spontaneous consumption

Figure 64: Transformation of merge state

T S A K→×:
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1. Spontaneous save. An internal signal i is first in a channel in the merge state S. Then 
the signal i is spontaneously saved and so are all the other signals on that chan
This will lead eventually to a semi-stable state (Section 3.4.1 (p. 94)). A semi-s
state may accept signals from other channels. The reason for saving all signals
channel is that we do not want to have signal overtaking on one channel. This 
ferent from normal save.

2. Spontaneous consumption. From a semi-stable state spontaneously saved signal
may be spontaneously consumed. This means that at any point in time non-det
istically either nothing happens, or one spontaneously saved signal is consume
spontaneous saved signal must always be the first on some channel. Spontan
consumption is extremely fair such that no spontaneously saved signal will be 
delayed for ever. Said in a probabilistic way, there is a positive probability at ea
decision event that a spontaneously saved signal will be consumed when it is fi
its channel.

What we have defined is no new semantics, but merely a notation which makes i
sible to describe acceptable race conditions in reductions. By introducing the 
spontaneous save, we have made a complete state which before was considered i
into a semi-stable state. This means that the reduction algorithm halts its executio
internal signals. The consumption of the internal signal which was spontaneously 
is made external as a spontaneous consumption. This boils down to lifting interna
sitions up to a global level. If all component processes are full of merge states, th
transitions are lifted to be global and no real reduction has taken place. We would
gain anything from performing the reduction and that is exactly what one would ex

Since our new mechanism depends solely on signals of one channel (at the time)
is no problem with the reduction algorithm. Thus we have been able to describe m
situations without actually executing complete states with signals on more than o
channel.

3.5.4.2 Fair Merge and the Brock-Ackerman anomaly

The Brock-Ackerman anomaly was described in [14] in 1981. The point of the exam
was to show that history-relations do not have the expressiveness sometimes req
for real time asynchronous systems. A history relation is a relation which describe
process as a relation between external inputs and external outputs.

Central to the problem with the Brock-Ackerman anomaly is the concept of composi-
tionality. By compositionality we mean that the analysis of a system can be built f
the analysis of its structural components. What the Brock-Ackerman example sho

Figure 65: The merge mechanism

1. Spontaneous save: 

2. Spontaneous consumption: 

merge S iϕ θ ϒ;,;( ) i→ merge S isavedϕsaved θ ϒ;,;( )

merge S isavedϕsaved θ, ϒ;;( ) none i→ ϕsaved θ ϒ;,( ) T S i,( )+( )
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that when a component is described by history relations, this description is not al
sufficient to use in the analysis of some enclosing entity. We may also express th
saying that history relations cannot quite capture the full semantics of a system o
municating finite state machines.

The Brock-Ackerman example contains non-determinism deep inside the system
reach the necessary expressiveness it is necessary to find some means to expre
inner non-determinism on the global or external level. Broy and Stølen [19] presen
ways to lift the internal non-determinism out as an external stimulus. One way is 
include time ticks in the signal stream. The other way is to define a “prophecy” wh
describes the possibilities of the inner non-determinism as a parameter to the (glo
stream processing function. The stream processing function then becomes a set o
tions. In our version below we shall use spontaneous consumptions as the extern
defined non-determinism which expresses the inner non-determinism.

We shall go through the example described by our SDL-like notation and show tha
reduction strategy is expressive enough to capture what history relations do not ca
Central to the problems of the example is the non-determinism introduced by the
condition in the Fair Merge component which is internal to the system.

The Brock-Ackerman example includes two variants of a system, systems T1 and T2. 
They both have the same structure as given in Figure 66 (p. 110) where k is either 1 or 
2. The overall idea for the systems Tk is as follows. The processes D duplicates the 
incoming signal. FM merges fairly the two channels into one output channel which i
turn input into Pk which forwards the two first signals and then terminates. DA forwards 

Figure 66: The Brock-Ackerman example system
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the incoming signal one by one onto the environment as well as generating a j signal onto 
the internal feedback channel every time an i is consumed. In Brock-Ackerman’s versio
of the example the DA is represented by the signal being fed back with a positive
increase in the value of the parameter. Our version shows the point equally well wi
introducing data into the CFSMs.

The difference between T1 and T2 lies in P. P1 outputs one signal when it consumes th
corresponding one, while P2 buffers the first signal and outputs both when the seco
arrives.

As shown in Figure 67 (p. 111), the processes D, DA and FM are quite trivial. The clue 
is the difference between P1 and P2 shown in Figure 68 (p. 111), and the way the sy
tem is connected shown in Figure 66 (p. 110).

Figure 67: Processes D, DA and FM

Figure 68: Processes P1 and P2
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Brock and Ackerman show in their paper [14] that the history relations of S1 and S2 are 
identical and equal to the definition in Figure 69 (p. 112), but that S1 and S2 actually 
behave differently when appearing in the contexts T1 and T2. This shows that history 
relations are not compositional in the sense that we argue in Section 4.1 (p. 143) th
reductions are.

Let us now see how our reduction strategy works on Tk and what results we reach.

Progress of Sk is easily established since the signal ordering criterion holds when w
annotate signals with their channel. Progress of Tk is worse since there is a feedback loo
of j being fed back from DA to D<j>. Progress is assured through the termination of Pk 
after having issued two signals. Confluence of Tk is also easily established since it is 
only FM which has a potential conflict and that has been resolved by the merge-m
nism. By definition of the merge-mechanism, we conclude that FM is confluent relative 
to all levels enclosing it. Thus Sk and Tk are all reducible.

We start by reducing S1 illustrated in Figure 70 (p. 112). The state names inside the c
plete states refer to the state names of P1 since all the other processes have only one st
each which cannot change. Semicolons separate state, external input, internal qu
and external output. The stable states are enclosed by rectangles and labelled.

We notice in Figure 70 (p. 112) that we reach some semi-stable, but not totally st
states. The stabilization of the stimulus j from the start state is symmetrical to the show
stabilization of i. The totally stable state is marked by a fat enclosing rectangle. It i
the state term, which in this case means that P1 has terminated. Termination means th

Figure 69: History relation for Sk

Sk ø ø,( ) ø{ }=

Sk iX ø,( ) ii{ }=

Sk ø jY,( ) jj{ }=

Sk iX jY,( ) ii ij ji jj,,,{ }=

Figure 70: Stabilization during reduction of S1
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states with internal signals are still totally stable since no more signals will actuall
processed for output. Equivalently we may assume that a terminated process alwa
consumes its input.

We should also notice that the system state P1 comes in two variants, one totally stabl
and one semi-stable where there are spontaneously saved signals. This is a conse
of the spontaneous save rule. The state W1 seems also to come in these two variants, b
that is not quite true because it is a provable invariant that when the system is in W1, 
there is a positive odd number of spontaneously saved signals. It can also be prov
in P1 there is an even non-negative number of spontaneously saved signals. In ou
these extra invariants are not really needed for the reduction as such.

The picture is symmetrical for the consumption of external input j. We have no benefit 
from separating as different basic states of the reduction those without and with s
neously saved signals. The defined extreme fairness of the spontaneous consum
takes care of the merging.

We can now show the reduced S1 process in Figure 71 (p. 113).

It is uncertain whether the reduced process description of S1 is more transparent than the
block description given in Figure 66 (p. 110) supplemented by the process descrip
of Figure 67 (p. 111) and Figure 68 (p. 111). It may be argued that the process de
tion shows the real complexity of the description while the block description hides
problems. In this section the readability of the description is not the main issue. He
concentrate on showing that our SDL notation is powerful enough to express the 

Figure 71: Reduced S1
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ence between S1 and S2 when we apply these reductions to T1 and T2 respectively. The 
difference reappears in T1 and T2 contrary to what happens when history relations ser
as the reduced descriptions.

By reducing S2 we reach the following similar, but not equal SDL-like description in
Figure 72 (p. 114).

It is not obvious that the difference in structure between S1 and S2 is actually significant 
wrt. any enclosing system, but it turns out to be very significant in the context of Tk.

We continue to use the very same strategy on T1 and T2. They are also reducible, and 
now the reduced processes turn out to be significantly simpler to read. We show al
reduction steps in Figure 73 (p. 115) to demonstrate that the reduced processes 
reached stepwise according to the compositionality of our method as argued in S
4.1 (p. 143) and not directly from the original systems.

We see from Figure 73 (p. 115) that the W1 state may have spontaneous iFM-signals and/
or jFM-signals. This is the reason behind the two transitions for spontaneous 
consumption.

In Figure 74 (p. 115) we observe that T2 can never produce jFM-signals, while iFM-signals 
are at least produced when more i-signals arrive when in W2i. Actually due to the invari-
ant mentioned earlier, there will always be another iFM-signal when T2 is in W2i.

From the reductions we can make the SDL-like reduced processes shown in Figu
(p. 116).

Figure 72: Reduced S2
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In Figure 75 (p. 116) we see the difference between T1 and T2. We can see that T1 may 
produce the sequences ii and ij, while T2 can only produce the sequence ii. This is accord-
ing to the Brock-Ackerman findings. The cause of the difference is of course that T1 
there is possibility for a feedback, but in T2 it is not possible that the fed back j-signal 
will ever reach DA since both i-signals have to come first.

We summarize:

1. Non-determinism caused by a race condition that is considered acceptable, ca
be modeled in our framework such that confluence and reducibility can be esta
lished and reduction performed.

Figure 73: Reducing T1

Figure 74: Reducing T2
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2. The clue trick to describing acceptable race conditions is the spontaneous sav
makes it possible to specify the desired non-determinism without sacrificing the
plicity of the reduction algorithm. The non-determinism of the race condition is
transformed into the non-determinism of the spontaneous consumption. The g
the transformation is the possibility to use our reduction technique.

3. Our technique is expressive enough to explain the Brock-Ackerman anomaly. 
inner non-determinism of the system is preserved in the reductions which then s
are used in the analysis of enclosing systems. The difference between the two v
of the Brock-Ackerman example system is easily seen from the final reductions
inner non-determinism is also present in the final reductions.

3.5.5 Concluding non-determinism

Non-determinism can be included in our Mn-approach with some penalty in comple
The Mn-node can no longer be a pair of plain complete states, but must be a pair
tuples of complete states where each state tuple represents the non-determinism
execution. Likewise, the Mn alphabets must have symbols that are pairs of signa
sequence tuples and not merely pairs of signal sequences. The tuples correspond
with the tuples making up the nodes of the transition systems in the Mn-procedur

The SDL construct of spontaneous transitions was modeled in two ways, either a
external input with its own channel, or as an internal non-deterministic decision.

Figure 75: Reduced processes T1 and T2
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We introduced fairness in decisions as a means to provide better ways to ensure p
of the system. The Alternating Bit Protocol example showed this approach and it 
successfully analyzed.

Finally we introduced a way to define specific race conditions as desirable. A new
struct “spontaneous save” was introduced. Our analysis of the Brock-Ackerman 
anomaly showed that the construct was useful and that our model was expressiv
enough to cover the Brock-Ackerman anomaly.

3.6 Data

The handling of data variables in the processes is definitely not the topic of this th
The reason for that is mainly because our interest has been the problems concerni
conditions. Furthermore we experience that systems (or subsystems) where concu
conflicts are in focus very often have rather simple data handling. However, when
is important, they may lead to any complexity, and decidability issues may be eith
unsolved or negative (undecidable). There are numerous other scholars concentra
data.

Data as such is only supported by symbolic execution in our Mn-approach. Decis
based on data give rise to alternatives guarded by an expression. Instead of pure syste
states, we introduce guarded system states.

We do not go into detail about how data expressions are simplified.

There are two major ways to treat data in the process of verifying concurrent syste
the kind that we are trying to verify, either the data are ignored or they are include

3.6.1 Ignoring the data

To ignore the data means that we consider them irrelevant for the major problem 
system under analysis. Either we believe that the data are non-decisive for poten
problems, or we mean that we cover whatever values the data have.

We start by transforming the original system under analysis such that the data ar
removed. The resulting system represents an abstraction of the original one (see also 
Section 4.3.3 (p. 157)). We believe that any problem of the original will also show u
the abstraction, but the abstraction is (supposedly) easier to handle.

The following transformation rules will produce a system without traces of data:

1. Remove all tasks,

2. remove all parameters to procedures, processes and signals,

3. change all decisions to non-deterministic decisions.

This abstraction is true to the original in the sense that any statement which holds
any execution path of the abstraction will also hold for any path in the original. Th
because there are no paths in the original which does not have a path in the abst
since every branch of every decision is represented and there are no changes in th
sets.
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The disadvantages with this abstraction are that progress may be more difficult to
lish in the abstraction, and that errors in the original concerning data values are 
obviously invisible in the abstraction. Confluence may also under special circumsta
be more difficult to establish, but normally it will not matter.

Failure to establish progress of the abstraction may be remedied by adding fairne
the non-deterministic decisions with helpful directions to exit the feedback loops. 
necessary, however, then to add some argument that the original system has the
of fairness in the problematic places.

The biggest disadvantage of this strategy is that an eventual reduced process is 
reduction of the original, but of an abstraction of the original. Thus for the purpos
applying the reduction in other analysis, we have to take this fact into account.

3.6.2 Including the data

To include the data means to do calculations with them. Since our approach is ba
calculations from all basic states in the finding of confluence in the Mn-procedure
including the data would mean to perform symbolic executions as opposed to no
executions where values are used. The complete states will be supplemented wit
symbolic values of the variables.

To assert confluence it is necessary to verify equality between data expressions.
times this is trivial, while in other cases it is beyond the reasonable scope of a too
assert the equality. Simplification of data expressions is not a part of this thesis.

The branches of decisions are represented by symbolic boolean expressions. Som
they may evaluate generally to true or false regardless of the values of the variables, b
more often they cannot be evaluated to a constant. This means that the continued
tion must be performed under the assumption that the branch expression evaluat
true. This is what we shall call a guard. Every complete state is in principle guarded b
an assumption. When the guard is not present, the default is true.

The RPC-Memory example in Section 6. (p. 229) shows the use of guards and si
symbolic execution.

When the executions of the reduction algorithm are brought back to the shape of a
diagram, the converse strategy is applied. The guards become the branches of de
and changes of the symbolic values must be made into assignments.

3.6.3 Concluding data

We have decided to exclude a thorough discussion of data in this thesis. It is obv
that data may play significant roles regarding confluence and reducibility. Still we
present only two very simple methods to cope with data.

1. Abstract the data.

2. Perform symbolic execution on the data.

The success of the first approach is dependent upon the ultimate analysis goal sin
system is transformed to a system which comprises more behavior than the origi
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 118
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The success of the second approach is very dependent upon the complexity of th
expressions.

We believe that real, reactive systems are such that either the data are quite simp
is possible to encapsulate the data complications in data operators which is then u
atomic concepts in the Mn-approach.

3.7 Timers

Timers in SDL are special signals which the process (in principle) sends to itself, 
which are delayed a specified duration. Timers which have not timed out, can be reset 
and thereby cancelled. The timers are set by a special set-construct which can be con-
sidered as a special output of a delayed signal. Timers are said to be active if they have 
been set, but not reset or timed out.

Timers are used to conclude operations which have taken too much time or to mak
that certain actions do not start until they should. Timers are basically the only way
handles time. We notice that timers are imperative. We cannot in SDL reason abo
duration of an operation or a transition.

3.7.1 Basic model of timers

Since timers are signals when they have timed out, they are merged into the same
port as the other “normal” signals. Still in our (modified) basic model we shall ass
that timer signals have a channel each and thus may be executed independently
other normal signals.

On the other hand we shall not expect our systems to be insensitive to the expira
timers. By this we mean that we would expect that the expiration of a timer would r
in a different final stable state than if it had not timed out. Thus we accept that tim
introduce non-determinism of the final result. Thus confluence is not dependent o
absence of non-confluence patterns between timers and other internal signals. In
respect our handling of timers resemble our model for acceptable race conditions i
tion 3.5.4 (p. 106). The setting of a timer can be compared with a spontaneous sa
the expiration and following consumption of the timer is similar to a spontaneous 
sumption. But there are differences as well, while all signals in a merge state would
into spontaneous saves, this is not the case with timers. The existence of a timer do
mean that all other normal signals are subject to an acceptable race condition.

We want to establish confluence between channels with normal signals, but we s
have to assume that timers may be necessary parts of such non-confluence patte
any state where a timer is active it may in theory trigger since we have no concep
timed executions in our basic model so far. Therefore there is always a non-determ
choice whether an active timer times out or not.
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3.7.2 Progress

Our analysis method is oriented towards reducibility through the determination of
progress and confluence. Timers often help provide progress. Since time is fair in
sense that all future points in time will eventually arrive. Therefore all active timers
eventually time out if they are not reset. This means that the expiration of a timer c
compared with a non-deterministic decision where one alternative is a helpful dire
with positive probability. Loops which are guarded by an active timer will eventua
terminate.

3.7.3 Confluence

We accept the non-determinism of timers. Thus non-confluence patterns may inc
active timers in situations with a race condition between normal channels.The exis
of an active timer could be necessary to show non-confluence.

In Figure 76 (p. 120) we see a state overview diagram of a process where the exi
of timers in non-confluence patterns is shown to be necessary. The legend is that 
cles are basic states, the edges represent transitions where the text is “input/outp
Default transitions are not shown. In Figure 76 (p. 120), x and y are input on different 
channels, t is a timer and when it is on the output side of the slash it means that it 
been set in the transition. u,v,w are external output on the same channel.

We can see that in basic state Z, the potential non-confluence pattern (Z;x,y) does not lead 
to a non-confluence since we have the Mn-procedure branches shown in Figure 
121).

We notice also that we have considered the timer which is set in the transitions an
included the continuations when the timer expires.

Figure 76: Non-confluence with timers
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Likewise in basic state S no non-confluence can be found for pattern (S;x,y) as can easily 
be seen from the commutative geometry of the transitions from S. The pattern (S;x,y;t) 
where t is an active timer, however, does lead to non-confluence as we can see fr
execution tree in Figure 78 (p. 121).

We summarize confluence and timers by the following points:

1. Timers are considered to have an external channel of their own;

2. Active timers are considered to have the option to time out;

3. It is not sufficient to consider potential non-confluence patterns without the timer
shown by the example in Figure 76 (p. 120)). It is not sufficient to consider the tim
only in the transitions where they are set.

4. Potential non-confluence patterns in processes containing timers must also co
all situations where the timers may be active.

3.7.4 Reduction

When having considered progress and confluence it is reasonable to consider the
tion once the process has been shown to be reducible.

We shall see that we have two possible approaches to how the final reduction sh
appear:

1. The timers are completely eliminated.

2. The timers of the components appear as timers in the reduction.

The first approach sees the timers only as means to ensure progress and possib
non-determinism. The second approach wants to retain the element of time also 
reduced process. So in fact our choice of strategy should be dependent on the pu
of the timers of the components.

3.7.4.1 The Alternating Bit Protocol Revisited with Timers

We shall give one example of the use of timers which also reveals a few interestin
tures of timers and reductions when applying timers. We take the Alternating Bit 
Protocol presented in Section 3.5.3.1 (p. 100) as our starting point. In our first ver
the assumption was that all signals will arrive to the opposite process, but the signa
have been corrupted. Any corruption will be detected. We shall now relax our ass

Figure 77: Timers and confluence (1)

Figure 78: Timers and confluence (2)
Practitioners’ verification of SDL systems 121 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29



General Mn-procedure
Timers3

ls go 
he sig-

he 

h. The 

. 

 

y com-
ll.
tions by allowing a signal to be lost on the way. We model this by making the signa
through a process which either forwards the consumed signal or just consumes t
nal. The architecture is given in Figure 79 (p. 122).

The definition of the lossy channel is given in Figure 80 (p. 122). We notice that t

lossy channel cannot be constantly lossy meaning that no messages come throug
alternatives to actually transfer the message have positive probability.

A timer is introduced in the Sender which now is modified and shown in Figure 81 (p
123).

The Receiver remains as defined in Figure 58 (p. 102).

3.7.4.2 Progress and Confluence of ABPT

In Section 3.5.3 (p. 100) we argued for the progress and confluence of the originalAlter-
nating Bit Protocol where the signals could not get lost. The introduction of lossy 
communication and a timer does not alter the general argument.

To assert progress we consider the changes made by the introduction of the loss
munication. If no signals are lost, the arguments of the original version applies sti

If the A-signal is lost on its way from the Sender to the Receiver, there will be no action 
by the Receiver, but eventually the timer expires and another equal A-signal is re-issued. 
This is very similar to what happens if either the A-signal or the B-acknowledgment is 

Figure 79: Alternating Bit Protocol with Timers

Figure 80: Modeling the lossy channel
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found to be corrupted. We are back to the starting situation where the A-signal is s
the lossy channel. Since the lossy channel cannot be lossy forever this tight loop w
resolved by the lossy channel finally forwarding the A-signal.

If the B-acknowledgment is lost on its way from the Receiver to the Sender, this is a sim-
ilar situation as above from the point of the Sender. The Sender cannot know what has 
happened beyond his sending the A-signal. Whether it is lost on its way to the Receiver 
or from the Receiver is not different at the Sender. At the Receiver, the situation may be 
slightly different as the Receiver may know that the A-signal has been properly received
and thus output the external signal. Still a lost return from the Receiver is similar to a cor-
rupted return, the Sender should retransmit the original A-signal, which is exactly what 
it does when the timer expires. When the A-signal eventually occur at the Receiver again 
(due to earlier argument), the Receiver will again issue the acknowledgment, but refra
to output another external signal. Eventually the lossy communication from Receiver to 
Sender will forward the necessary number of B-acknowledgments such that one is co
rect and also the Sender understands that the message has been successfully transm

Considering confluence, the argument is still simpler. Since we are only interested 
race conditions between the external input signal e and internal signals to Sender B0,B1, 
the use of save in the Sender makes sure that such race conditions are made illegal 
impossible. Thus ABPT is confluent.

Since ABPT is both progressive and confluent it is also reducible.

Figure 81: Modified Sender of Alternating Bit Protocol with Timer
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3.7.4.3 Reducible does not mean error free!

Here it is in its place to recall that reducibility is not the same as lack of errors. Ev
the ABPT is reducible it may not do the job it was designed to do. What we know is
the reduction will show the same behavior as the full system, but that behavior ma
be desirable.

In ABPT we know that the behaviors of the original version ABP is included in the newer 
version since ABP is equal to an implementation of the channels which always forw
the signals. Still there may be more possible behaviors of ABPT than in ABP. Such addi-
tional behavior patterns may be due to the timer expirations.

We said in Section 3.7.1 (p. 119) that a timer could trigger whenever it is active. I
start reducing ABPT and let the timer expire very quickly, we see that the Sender will 
retransmit A-signals not as a result of a lost signal, but just because the timer has ex
too early. This may quickly lead to an internal error. Assume that the lossy channe
reliable for a while. Assume that the quick timer expiration results in two A0-signals 
having been sent to the Receiver. The first A0 results in an acknowledgment of correc
reception B0, the second results in an acknowledgment in Rec1 designating corrupted 
signal which in that state is also B0, The Sender then consumes the first B0 and concludes 
that the A-signal was correctly transferred and moves to Send1 state. Before another 
external input has arrived the Sender has to handle the second B0. This is an internal 
error.

The small fix of ABPT which consumes any B-signals in the Send states will theo
cally work provided the external input is finite. The solution is not infinitely progress
very much the same way as process G in Figure 41 (p. 70). Very similarly to that e
ple the Mn-procedure does not halt without manual intervention with induction pro
The clue here is that a message can be conveyed from Sender to Receiver by any number 
of (equal) A-signals and the acknowledgment can also be with any number of corr
sponding B-signals. The eventual consumption in Send states will make the situation 
stabilize. A practical problem is of course that the very quick timer expiration prod
more new signals than what is being processed and then this means that the num
internal signals in the system will increase regardless of new external input or no

Conclusively it is important that the timer does not expire before it is certain that th
nal is actually lost and not just on its way.

3.7.4.4 Sufficiently big duration of timer t

We must make the timer sufficiently big such that it will not expire before it is cert
that a signal either is lost between Sender and Receiver or the other direction. On the 
other hand we do not want the timer to be set to a duration much above what is n
because that would slow down transmission on a lossy line.

Firstly let us assume that the timer is set to a sufficiently large duration. Firstly we 
assume that “sufficiently large” means that the ABPT can always finish other internal 
signals before the timer expires. Under this assumption one half of the reduction 
rithm execution is given in Figure 82 (p. 125). The other half is symmetrical taking
other totally stable state S1R1 as starting point.
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The legend is that a complete state has the form (state Sender state Receiver; external input; 
internal channels:Sender->LossyA,LossyA->Receiver, Receiver->LossyB, LossyB->Sender; 
eventual active timers; external output). The states of Sender is abbreviated “S” for “ Send” 
and “W” for “ Wait”. States of the Receiver is abbreviated “R” for “ Rec”.

Since progress is due to fairness, the reduction tree is a directed graph with cycles
sitions leading to states which has already been reached is shown by upwards ar
The cycles represent loops which will eventually terminate by the process escapi
through branches marked with (+). The branches denoted by fat lines are transiti
where the timer is set (again). Thin line rectangled states are semi-stable when c
ering an active, but not expired timer as a saved signal. The totally stable state is s
by the fat rectangle.

By pruning all the loops, there is only one possible stable state which is the S1R1 state. 
This is exactly equal to the original reduction in Figure 61 (p. 105).

Our next question is how we may find such a sufficiently large timer duration.

Figure 82: Reducing ABPT
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3.7.4.5 Reductions and timed executions

We want to find some measure of how long the worst case execution of ABPT is without 
lost signals. It may not be certain that there is any upper bound. Let us rush to emp
that our basic model does not actually contain time. The arguments in this sectio
therefore ad hoc in relation to the mainstream of this thesis, and yet another exam
how one verification approach alone may not be sufficient.

Firstly we assume that saving an external signal takes no time at all. Otherwise w
always postulate a burst of any number of external input signals such that any giv
upper bound is exceeded.

Secondly we assume that all transitions have a common upper bound of the dura
the transition itself. When confluence is determined by M0-procedure only, we can
clude that all different execution traces depending on the choice of input channel
the same upper bound. If also timers are included we must make sure that both s
every potential non-confluence pattern contain the same number of timer time-ou
transitions.

In ABPT the save construct ensures that only one course of action is legal at any p
time. Race conditions never apply.

Still the loops of our reduction graph of Figure 82 (p. 125) may in principle be such
any duration timer could be too small. The loops must not be such that internal si
are executed unboundedly (not infinitely, because progress has been determined
out the timer being set again. Inspection of the reduction graph reveals that every
has at least one transition which sets the timer. Thus we may conclude that the exe
without loss of signals is bounded. Closer inspection shows that 5 transitions are
maximum including the transition setting the timer.

In the general case to find the worst case trace is by no means trivial and our red
strategy does not offer much help since the different choices cannot be described
advance. We have summarized below the cases where our strategy can be of som
We assume that the system is reducible and the problem is to find the smallest su
duration for a timer.

1. Restrictions on the possible race conditions (by save) make sure that only one choice
is valid at any point in the execution.

2. There is a reasonable common upper bound for all transitions and for every pot
non-confluence pattern the two branches are equally long.

3. It is possible to determine from the Mn-procedures for every potential non-con
ence pattern which choice will make the longest execution.

Otherwise manual invariants must be found.

3.7.4.6 The reduction which retains the time behavior

We showed in Figure 82 (p. 125) the reduction graph. Our reduced process can ha
forms as pointed out in Section 3.7.4 (p. 121), either eliminate the timers complete
elevate the timers to the system level. In this situation where the timers are used o
break a possible deadlock situation, time as such is of no significance. Therefore t
ural strategy is to eliminate the timers and reach the reduction shown in Figure 6
105).
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Alternatively we could keep the semi-stable states as basic states in the reductio
reach the reduction shown in Figure 83 (p. 127). The diagram shows half of the to
graph as the other half is symmetrical by exchanging 0 by 1 in all identifiers.

This example is hardly a very good example to show the use of this kind of reduc
since the only thing that can happen in states W0R0 and W0R1 is that the timer triggers. 
The normal signals (here: e) are saved.

3.7.5 Concluding timers

Timers are a common means to ensure progress in real systems. Message loss a
ware break down can be made less critical if the continuation of the system execu
supervised by timers. We consider timers a special variant of non-determinism an
general we assume that an active timer may always time out. The problem arises
the timer expires too fast. We show that it may be necessary to assume a “large e
timer value”. To find such a timer value may be difficult and the Mn-approach offe
little help other than in fairly special situations.

Having established progress and confluence (with sufficiently large timer value), t
are two variants of reductions. One variant eliminates the timer and leaves a proc
graph without any trace of timers. This is the normal choice if the timers have been
exclusively for progress purposes.

Figure 83: Retaining the timer information
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The other variant of reduction keeps the timers and thus the reduction may also k
loops where the timers are involved. The benefit of the latter variant is that it may
simpler to use when there is a need to simulate a system and time is of the essen
the first variant, the duration of a transition of the reduction is typically unbounded
time.

3.8 Procedures

The SDL procedure mechanism is used to structure the behavior of SDL processe
Mn approach can easily be applied also for such systems by transforming it to ind
dent processes. Once the procedure is working, the mother process is inactive. W
transform an SDL process with SDL procedures into a system of two (or more) pr
cesses which together is reducible. The point of this transformation is to get the n
basic SDL into the framework that we have already developed. 

When the SDL process occurs in larger contexts, the only part which has to be ana
for confluence on the first generation is the mother part of the SDL process. The p
dure processes only communicate one by one with the mother part. This scheme
recursive such that each procedure process themselves may be a system of a mot
and a procedure part. In subsequent generations procedure processes come into

3.8.1 A Fictitious Procedure Example

The transformation can be shown by an example in Figure 84 (p. 128).

By the transformation rules given in Section 3.8.2 (p. 129), the process with proce
is transformed into the reducible system of two interacting processes shown in Fi
85 (p. 129)

The two transformed processes are shown in Figure 86 (p. 129).

Figure 84: Introducing SDL procedures
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3.8.2 The transformation scheme

The transformation rules can be summarized as follows:

1. Create the structure of the transformed block from the process (here: Q) by:

1.1 Create a process for the mother part (here: Q) and one process for each proce
dure (here: P).

1.2 For each incoming channel, create a corresponding internal channel betw
the mother part and the procedure part.

1.3 For each outgoing channel, create a corresponding internal channel betw
the mother part and procedure part.

2. Create the mother part from the process main body by:

2.1 For each invocation of the procedure transform it to an output of a starting
nal to the procedure P (here startP) and move to a state with a unique name 
(here: Pwork). Such states are called “work-states”.

Figure 85: The structure of the transformed process

Figure 86: The transformed processes
Practitioners’ verification of SDL systems 129 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29



General Mn-procedure
Procedures3

ro-

re, 
tate 
-

as a 

tate 

uld 
 end 

dure 

te.

ere is 
tatic 
s that 

andled 

blem 
r here. 
sing 
2.2 For each such created work-state, handle four different kinds of signals:

• Normal external input signals. They are saved.
• External output signals which come from the procedure. They are re-

layed on to the surroundings of the mother process.
• endP. This is a signal which designate the Return of the procedure. This 

transition should contain the rest of the original transition after the p
cedure invocation.

• transP. This designates the termination of a transition of the procedu
but no Return. This means that the procedure waits in a state. Nexts
should be another unique state (here: Pwait). Such states are called “wait
states”.

2.3 For each such created wait-state handle two different cases:

• Normal external input signals. They are relayed to the procedure.
• Everything else which designate an internal error and is represented 

save.

3. Create the procedure process from the procedure by:

3.1 The start transition of the procedure process is empty leading to a new s
(here: Start).

3.2 From this start state handle two different cases:

• startP. This is the real starting of the procedure and the transition sho
be equal to the start transition of the original procedure which should
by either the output of endP or transP (see explanation below).

• Everything else designates an internal error.

3.3 Every transition of the original procedure should be repeated in the proce
process, but they should end by either outputting endP or transP.

• endP: should be output when the transition terminates with a Return. 
The nextstate should be the start state.

• transP: should be output when the transition terminates in a nextsta

There are some minor problems concerning this transformation scheme. Firstly th
the problem of modeling recursive procedures. The transformation scheme is a s
transformation and it cannot handle the unlimited number of procedure invocation
recursion needs. If we used process creation instead of sending the startP signal, and let-
ting the process terminate at Return, recursion could also be handled. The dynamic link 
of the call stack would be represented by the predefined SDL function parent. In this the-
sis we have not covered how systems with dynamic process creation should be h
by the Mn-approach.

Secondly there is the problem of naming and of name scopes. This is a trivial pro
which can be handled by clever naming schemes which we find no reason to cove
If we also want to model a procedure accessing or modifying variables in its enclo
scopes, we need to introduce a pointer (SDL: PId) called a static link between the trans-
formed processes which would represent the linkage between different levels of 
enclosure.
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3.8.3 How to analyze procedures

It is quite evident that the transformed block is reducible to a process which dynam
corresponds to the original process with procedure. The transformation scheme c
a one-to-one mapping between transitions of the original and transitions of the tra
formed. To perform the reduction is of little use as it will amount to expanding the
procedure in the original. If the procedure has been used more than once, this is 
effective. The gain in work load must lie in considering the mother part of the proc
separate from the procedure part. The procedure part should be analyzed separate
gain becomes even clearer when one considers the situation where the procedure
to an enclosing scope unit and thus used inside different parts.

How can we analyze the procedure (as process) separately? When we analyze fo
ibility a block of processes, determination of confluence can be done piecewise ta
each process by itself. This corresponds partly to separate analysis.

3.8.3.1 What is special with procedures

Procedures have no gates. Thus we have no idea from the procedure definition it
what input channels and output channels it has. The procedure takes on the chan
(signalroutes) of its enclosing process, but in SDL-92 procedures may be local to a
and therefore it may be used in principle in all processes of the block. Thus we m
cover all situations represented by the intersection of signal lists on channels and
input signal set of the procedure to find the potentially problematic signal pairs. We
lyze the procedure for confluence relative to these potential situations. They repre
the use of the procedure in each of the components processes.

Procedures are tightly coupled to its enclosing process (or procedure) which mean
there is no need to consider progress or confluence problems involving the specia
trol signals between mother part and procedure part (Here: startP, transP, endP).

3.8.3.2 Progress

Often progress cannot in general be determined piecewise. Non-progress (i.e. live
may in certain (very odd) cases be determined. We may determine whether the s
ordering criterion holds within the procedure. This may indicate whether an enclo
scope unit is in turn progressive.

Some procedures may not produce internal signals at all, and then the procedures
cause live-lock and as such they can be said to be locally progressive.

3.8.3.3 Confluence

Can the procedure be analyzed separately wrt. confluence? The answer is not a 
“yes” or “no”. The transformation scheme makes it possible to see the mother pa
transparent wrt. the incoming and outgoing signals of the procedure. Furthermore
control signals (Here: startP, transP, endP) can surely not be involved in any non-conflu
ence pattern.

We have a few different alternatives corresponding to the evaluation categories o
Mn-procedure. For each possible channel configuration the following verdicts can
reached.

1. Confluence. During M0-execution confluence of all branches is established.
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2. Non-confluence. A potential non-confluence pattern is found. We must be aware 
stabilization are often dependent upon other components and then it cannot be
formed separately.

3. Sequence permutation. M0-execution shows sequence permuted internal output. 
non-decisive output of the separate analysis is the M1-internal signal sequence
the M1 input alphabet. M1 of the procedure is not executed by the procedure i
but rather the components which communicate with the caller of the procedure

3.8.3.4 Conclusions of separate analysis of procedures

Conclusively we can say that a procedure does not lend itself easily to separate a
for reducibility of its users or enclosing scopes. This is not very surprising and the c
can be divided in two groups:

1. A procedure has no channel interface (or signalroutes, or gates). This means that w
must look at the usage of the procedure to find which channel configuration we 
to compare against. The reason for this is mainly because procedures defined
blocks are basically shorthands for many definitions of similar procedures insid
processes of the block. When the procedure is defined within a process, the ch
interface of the procedure is the same as the one for the process.

2. Communication is central to the concept of reducibility. To conclude confluenc
separate analysis the procedure needs to be confluent regardless of the comm
tion. We would expect this to happen rather seldom.

We feel that expanding the procedures during the analysis will probably often pay
When a separate analysis concludes confluence, which is what we want, this wou
probably be quite simple to conclude also from the expanded process where the 
dure calls have been expanded. Expanded procedures also have the advantage 
reachability situations have been resolved, while the separate treatment of the pro
also handles situations which can never occur.

Separate treatment does have an edge when the procedure is recursive because
expansion may not be statically decidable. Furthermore separate treatment is mo
robust wrt. changes in the use of the procedure. Typically errors occur when proce
are used in ways which they were not really designed for.

3.8.4 Concluding procedures

We apply a simple transformation scheme to convert a procedure call/return into 
chronous communication between the mother part and a process corresponding 
procedure. This transformation makes it possible to treat procedures in the same 
work of processes as we have devised already.

The separate analysis of procedures shows strong limitations, but it is very depen
upon the procedure, what a separate analysis can find. One important problem is t
procedure, unlike a process, does not have clear channel interface. This makes i
difficult to establish which race conditions are potentially present.
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3.9 Object orientation: Inheritance and virtuality

How does the object-oriented concepts of SDL-92 affect the Mn approach? By “o
oriented concepts”, we consider pure types, inheritance and virtuality. In Section 3
128) we handled procedures which are an example of a pure type. We shall go in
detail into what we can expect to reach when analyzing a type separately. This we
use as base for our handling of simple inheritance. Virtuality adds another dimens
the analysis as an internal part is partly unknown.

3.9.1 Pure types

The main idea about pure types is that instances of the type can appear several t
within the defining scope of the type. Thereby the same type definition is applied se
times. This is what is normally called “reuse” of a pattern. In SDL the instances o
type will be identical up to the interface while a superfluously similar construct ma
may lead to very different situations when applied several times since the seman
dependent upon its expansion environment.

Thus a reduction of a block type B to a process type BP means that during the analysi
of blocks and block types surrounding instances of the block type B, we may instead of 
B use BP to find out the behavior. In many cases this simple compositionality explai
in Section 4.1 (p. 143) is very practical to reduce the complexity of the analysis. In c
where we do not want to use our reduction strategy on this enclosing level, we ma
use the reduced BP in stead of B as it externally behaves identically. This use of the 
reduced version in place of the original one, we may call the inwards use of reduction 
for the analysis of an encloser.

The outwards use of reduction is when we want to use our reduction strategy also
the encloser. We recall that progress typically is not done piecewise while conflue
typically is determined piecewise.

Let us here concentrate on confluence. Assume that we are analyzing the enclos
confluence. In the first place this means analyzing whether each component (and
fore also any B) can produce a non-confluence pattern. Whether the B can produce a non-
confluence pattern is dependent upon whether the input and output channels of B 
(described as gates since B is a type) are internal or external to the encloser under a
ysis. Seen from B only, paying no attention to which enclosing unit we analyze, we m
qualify its confluence by the kinds of the channels (gates).

We assume first that B is confluent as such, meaning that it is confluent given that a
input channels are external and all output channels are external. This we may callbasic 
confluence, but we have both weaker and stronger forms of confluence. The strongest 
form of confluence is when a B never can show a non-confluence pattern in any enclo
This happens if B is confluent when all input channels are internal. We notice that s
a configuration is typically a component of a system since the input channels are
necessarily connected to the outputs. Therefore stabilization will in general need 
processes as well. Conclusions can only be drawn from this when stabilization ca
decided from this component alone. Otherwise eventual strong confluence is depe
upon a successful stabilization. The weakest form of confluence is when all the output 
channels have to be internal because B produces sequence permutations onto the ch
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nels and it must be up to the process receiving signals from B to compensate the non-
confluence of B. Between the strongest and the weakest forms of confluence there
all variants depending on which kind the problematic channels are. We call this o
wards use of reduction because during the analysis of B we can specify the role of B in 
the confluence of enclosers.

We have here concentrated on the M0 confluence of B. It is possible also to keep as 
annotations to B, higher generation information. Assume that during the analysis o
some enclosing entity C of B, we found that component A to be weakly confluent depen
dent upon the compensation by B on M1. This means that we find an M1-alphabet an

an M1-origin
1

 from A which we try on B. If B is able to compensate for the non-confl
ence of A, this ability to compensate could be stored as a property of B. It is not practical 
to try and solve the M1 situations in advance since there is an infinite number of po
M1 situations. Such practical considerations will be covered in greater detail in Se
5. (p. 177).

3.9.2 Simple inheritance

Inheritance in object orientation means that a new type is derived from another al
existing type. The relation to the existing type is established only by referring to the
in an inheritance clause. In SDL this referencing is done in the header as can be s
Figure 88 (p. 136). The semantics is that the new type starts as a copy of the inh
type and adds new features in its own description. Hierarchies of inheritance repr
conceptual structures where the most general concept is at the root and the more 
ized concepts closer to the leaves.

Inheritance without virtuality is not much more than plain aggregation when it com
analyzing it for reducibility.

3.9.2.1 Inheritance of block types

Inheritance of block types means that a mother part and a specialization part are
gated as two blocks besides each other. There are three different possibilities.

1. The specialization and the mother part share nothing.

2. The specialization and the mother part share gates.

3. The specialization adds channels which go to/from the mother part.

Let us assume that we have proven reducibility of the mother part. Our aim is to p
reducibility of the inherited type.

The first case is very simple. It suffices to prove reducibility of the specialization p
The second part is slightly more intricate as we in principle need to include fair m
components (with one merge state as shown in Figure 67 (p. 111)) wherever the outp
are merged in gates. The third case is the most intriguing as it is necessary to stud
potential non-confluence patterns of the mother part since new input channels im
new race conditions.

1.  Mn-origin is a double complete state where the generation change take place. Here the pair of sequence
signals are of highest significance.
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3.9.2.2 Inheritance of process types

Inheritance of process graphs means that the transition matrix is expanded. Durin
analysis for confluence this means that for the specialization many of the potentia
confluence patterns have been handled by the analysis of the mother part. They na
need not be taken again. Thus it boils down to analyzing the new situations defin
the specialization. We need to consider new states with all signal pairs, and old s
for new signal types.

3.9.3 Virtuality

Here we shall reengineer the Brock-Ackerman example presented in Section 3.5.4
109) by letting the varying part Pk be a virtual process. Sk and Tk are then stable block 
types representing the context of the variations as shown in Figure 87 (p. 135).

The specific variations can then be described as inherited system types T1 and T2 where 
the different variants of Pk are redefined as shown in Figure 88 (p. 136).

To analyze the Brock-Ackerman example relative to this object-oriented approach
start by trying to reduce the remainder of the block type enclosing the virtual Pk. This is 
depicted by Rk in Figure 87 (p. 135). The remainder is not necessarily reducible as s
but in this particular case Rk is reducible. Progress of Rk follows immediately from the 
signal ordering criterion, and confluence follows from D being incapable of showing 
non-confluence patterns on any level as it has only one input channel. FM is by definition 
also confluent for all enclosing levels.

3.9.3.1 The reduced Rk

To reduce Rk and to observe the reduced Rk (Figure 89 (p. 136)) may give valuable 
insight into the requirements to Pk and the potentials of Sk and Tk.

Figure 87: Brock-Ackerman and virtuality
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The reader should make sure he accepts Figure 89 (p. 136) as a reasonable redu
the block Rk.

3.9.3.2 Progress of Sk

Sk will be progressive as long as Pk is internally progressive since there are no feedba
loops in Sk as such. With variants of Pk, P1 and P2 they are trivially internally progres-
sive since there are no signals internal to P1 and P2.

3.9.3.3 Confluence of Sk

Since Rk is reducible as such, Sk is confluent because Pk cannot include any non-con-
fluence pattern since it has only one input channel. Any non-confluence pattern inRk 
relative to Sk would also be a non-confluence pattern in Rk relative to itself since Sk and 
Rk share input channels.

Figure 88: Variants of the Brock-Ackerman example

Figure 89: Reduced Rk (Sk except Pk)
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3.9.3.4 Progress of Tk

Tk has a feedback loop as DA may produce a j which is fed back into Sk, which in turn 
produces [i,j] onto DA. Since DA produces a j from an i, but nothing from a j, it suffices 
that Sk does not produce any i’s from consuming a j to secure progress of Tk. This suffi-
cient condition may prove to be too strong. Conversely it is quite simple to find a 
redefinition of Sk (by redefinition of Pk) such that Tk is not progressive. The clue is of
course to produce i’s from j’s.

In our cases T1 and T2, the fact that P1 and P2 actually terminates after having issued
two signals ensures progress (or termination) in a very abrupt way.

3.9.3.5 Confluence of Tk

Provided that Tk is progressive according to Section 3.9.3.4 (p. 137), Tk is also confluent 
since DA cannot contain a non-confluence pattern since it has only one input chann
is reducible and Tk’s channels are a subset of the Sk channels. Therefore Sk cannot con-
tain a non-confluence pattern of Tk.

3.9.3.6 Possible restructuring of Tk

If we consider it important to give a description of everything except the (unknown)
tual part, we should try and restructure the block such that the virtual part becom
isolated also in Tk. This is shown in a slightly non-standard SDL-diagram Figure 90
137) mixing processes and blocks.

It is simple to assert that also RTk is reducible and the reduced RTk is shown in Figure 
91 (p. 138). In order to avoid confusion concerning the different i- and j-signals, we have 
annotated some of the signals with FM to signify that we talk about signals internal to
the original FM process, and by P to signify that we talk about input/output to/from th
Pk process(es).

What can be seen from the RTk is dependent upon the knowledge and the experienc
the reader, but at least it shows the whole environment of the virtual Pk in one process.

Figure 90: Restructuring of Tk making RTk as Tk except Pk
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3.9.3.7 Virtuality constraint

SDL gives the possibility to specify a virtuality constraint for the virtual entity. In fa
the default is that the default definition of the virtual also acts as the virtuality constr
A virtuality constraint is a type which every redefinition of the virtual must have as
mother part (on some generalization level). Informally speaking the virtuality const
is some properties that at least must be present. In our context of reducibility, we
sorry to say that virtuality constraints do not help much. We cannot by a virtuality
straint specify that the redefined entity must be reducible, or that the encloser of t
virtuality shall have to be reducible for any legal redefinition. Reducibility, progress
confluence are features that are “fragile” since it is simple to have just a few new p
of behavior ruin the property.

Still the virtuality constraint plays the same role as any mother part does in inherit
as described in Section 3.9.2 (p. 134).

3.9.3.8 Concluding virtuality

We summarize our attitude towards analyzing types containing a virtual type.

1. Collect all parts not virtual in an entity and analyze it for reducibility.

2. If the remainder is reducible, reduce it and observe the reduced process to ge
intuition about the potentials of the system and the variability of the different pos
redefinitions.

3. If the remainder is not reducible, this means that the virtual parts have some s
generation requirements to fulfill in order for the container to be reducible. The
confluence requirements can be made explicit (but not in standard SDL).

4. Consider progress and confluence of the types containing a virtual type by figu
out what requirements the virtual parts must fulfill to secure progress and conflu
of the enclosing type. These derived requirements can be made explicit as a (n
SDL) virtuality constraint.

Figure 91: RTk reduced
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 138



General Mn-procedure
SDL Service 3

fini-

cess, 
nalysis 

le, the 
 about 

arts 
al 
es not 

uc-
an, 

ch 

ore 
h 

service 

 our 
ute a 

e that 
eed 
nal-

 could 
5. The (non-SDL) virtuality constraints can fairly easily be checked for every rede
tion of the virtual type. Thus the original analysis work was well worth the job.

3.9.4 Concluding object orientation

The object-oriented features of SDL-92 which serve well to support the design pro
give some support for our Mn-approach since reuse of types also means reuse of a
(wrt. reducibility).

The concept of a pure type is practical, because if the type can be proved reducib
reduction can be used in stead of the expansion of the type for all instances. More
compositionality of reducibility can be found in Section 4.1 (p. 143).

Simple inheritance may also give some gain in Mn-procedure efficiency since it 
amounts to reusing the mother part (or large parts of it).

We treat virtuality by conceptually transforming the system such that the virtual p
are outside a “core” part which is checked for reducibility. If there are several virtu
parts, it is reason to believe that the core may not be reducible, or the reduction do
really give much gain in perceived complexity.

Virtuality constraints expressible in SDL-92 cannot ensure that the property of red
ibility is maintained, which of course is a disappointment. Virtuality constraints me
however, that redefinitions must reuse large parts of formerly analyzed types whi
implies that much of the analysis for reducibility can also be reused.

All in all, extensive use of object orientation will make the analysis for reducibility m
efficient through the use of reductions and of earlier analysis efforts provided suc
efforts are properly recorded.

3.10 SDL Service

Services are light weight processes in SDL. They are communicating finite state 
machines that share the same input port and that execute alternately i.e. only one 
of a process runs at any point in time.

That the services share the same process input port is of no relevance relative to
basic model (see Section 2.1.2 (p. 42)) since we consider every channel/signalro
queue.

That the services execute alternately is not very important either, since we assum
the transitions are atomic in our model. The only consequence is that we do not n
implicit fair merge components where the services output to the same channel/sig
route since the transitions have no need to be merged with other transitions which
have run concurrently.

We conclude that SDL services are very much like ordinary SDL processes.
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3.11 Priorities

Basic SDL gives neither priority to specific processes nor to specific channels or sig
but the concept priority input modifies the picture. There is also the question how ev
tual priority schemes would influence the Mn-approach.

3.11.1 Priority input

In principle the priority input feature is a way to permute the consumption of signa
similar to the effect of save. But the differences are more evident than the similar
Priority input is significant when there are more than one signal present in the inpu
of a process and later signals are priority input while the head signal is not. For ana
however, most often we cannot know whether we have one or more signals in a q
The Mn-approach emphasizes the independence of signal receptions.

One could think that priority input would play a role in resolving sequence permute
uations on the next generation as the permuted sequences could have a priority o
signals which would harmonize the result. Then the reader should bear in mind th
Mn-procedure does not state that the signals are actually present at the same tim
only that there is a certain sequence of signals on the different channels. At which
in time the signals appear in the sequence is not part of the Mn-procedure.

Rather the contrary, if we have sequence permutation, this means that on one ch
the sequences of signals may differ from situation to situation. The signals have t
sent in sequence and we have no guarantee that the receiving process cannot co
them at once. Therefore we cannot ascertain that the second signal is given priorit
the first since when the first signal arrives, the second may not be known to the rec
process at all!

The situation is of course different when we have a process which does feedback to
without delay. Our example process D can be seen as such a process with imme
feedback. If we gave priority in all states to the internal signals (0,1), we would triv
have that the process was confluent since all internal signals produced had to be h
before the next external signal is consumed. Again if the feedback channel was w
delay, we are back to the more general situation again where nothing can be cert
about the concurrent appearance of different signals.

A special case of the immediate feedback situation is a process which is decomp
into services and the services communicate via priority inputs (and there are no o
priority inputs). This will be very close to the SDL-88 [25] definition of services and
noted above the process as a whole will be confluent.

3.11.2 Priority for internal signals in blocks

The immediate feedback situation can also be implemented on a higher level tha
each process. If an SDL system (or SDL block) is implemented on one processor (
operating system task) then it is reasonable to assume no delay on communicatio
atomicity of each transition.
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If we also have a scheme of priority to the internal signals, we find ourselves in a 
tion very similar to the situation with services in Section 3.11.1 (p. 140). But the 
situation is not identical as the processes of such a one-task block are still in prin
independent and share no input port. Therefore if several internal signals are outpu
one transition to several different processes, their individual orders are not prede
mined. We must also enforce the invariant that the internal (prioritized) signals sh
be consumed in the order they were output. If there is a central scheduler in the b
this invariant can easily be implemented. The result would be a block which is redu
by its concrete implementation.

We have in our special situations considered only possibilities where the signals 
given priority in all states of a process. We have not exploited the possibility to let 
nal be prioritized in some states and not in others. In fact our special implementa
have given priority to specific (internal) channels rather than to signals.

3.11.3 Concluding priorities

Priorities seems more promising at first glance than after more careful study. It is 
that priority input may often optimize the execution of a system, but the Mn-appro
analysis is not automatically made simpler.

Combined with global scheduling of signals, priorities may be used to facilitate ac
ing confluence and reducibility of a block.

3.12 Concluding Mn-procedure for SDL

In this chapter we have studied how the Mn-procedure must be modified to cope 
SDL systems which have more features than the simple process studied in Section
41). To our great satisfaction, the Mn-procedure can be modified through simple m
to cope with the most important mechanisms of SDL.

Firstly we established that the Mn-procedure performed well on systems with mul
processes communicating through multiple channels. We found that the Mn-proce
was approximately linear in effort with the number of processes since a non-conflu
pattern could only appear inside an individual process.

Secondly we found that the save mechanism was actually very practical to ensure co
fluence. We had to make a distinction between totally stable states and semi-stab
states, and correspondingly between weak progress and strong progress. An inte
result was that strong progress very often could be deduced from weak progress
reducibility by studying the reduction.

Thirdly we introduced explicit non-determinism and the Mn-procedure had to work
more complicated set structures. Still the extension made the Mn-approach more e
sive. We suggested extensions to SDL which also would make SDL specifications
expressive.
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Fairness in non-deterministic decisions makes it possible to determine progress w
introducing data. Our definition of fairness has been labelled extreme or probabil
fairness, and it is an imperative style of fairness. In a non-deterministic decision s
branches may be labelled (+) designating a positive probability to happen. We ap
this to the Alternating Bit Protocol example.

Spontaneous save was introduced to cope with race conditions which were expli
acceptable. Typically spontaneous save was used in connection with fair merge c
nents. The spontaneous save (or merge state facility) is only a syntactic reformul
which makes it possible to express race conditions in cases where only one com
is actually known to be present. This new feature uses a well known SDL mecha
the save, to express in a finite way an infinite set of merge situations. By applying
notation to the Brock-Ackerman anomaly we showed that the expressive powers 
adequate.

Fourthly we showed that timers could also be handled as special cases of non-de
ism. Still we realized the general shortcoming of SDL and our approach to cope w
real time constraints.

Fifthly we applied a simple program transformation scheme to convert SDL proced
into a system of communicating processes such that procedures could be handled
same framework as we have already established.

Sixthly we showed that object orientation could give performance effects since reu
types also means reuse of reducibility analysis. We distinguished between inward 
reduction, meaning reductions used in place of originals in subsequent analysis, a
ward use of reduction where the aim is to analyze a type separately and specify m
closely what assumptions it makes about its usage environment. We were disapp
to realize (but hardly surprised) that it is not possible for an SDL virtuality constrain
ensure reducibility of the redefined type (or its encloser).

In addition to the above points we also discussed infinite input streams, SDL serv
and priorities, neither of which had much influence on the Mn-approach as such.
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4. The Mn-approach and formal analysis

Once we have used the Mn approach to reduce a system or a part of a system, h
this new form of the system be used for verification purposes?

4.1 Compositionality of reducibility

Having shown how reducibility of a system (or block) can be performed piecewise 
tion 3.3.6 (p. 93)), it becomes interesting to discuss how reducibility results of analy
components can be used for the analysis of the whole block. We would prefer that
we have found a component to be reducible (on its own), the reduction can be used
the enclosing block is to be analyzed for reducibility. This is indeed the case and 
section explains how and why.

4.1.1 Confluence and context

Reducibility is dependent upon the boundaries of the unit which is to be reduced. 
though the Mn-procedure can be applied piecewise, this is not the same as assert
reducibility of a part is equivalent to reducibility of some enclosing unit. Any reduct
is relative to a set of external and internal channels. The distinction between wha
external and what is internal may be crucial to the property of reducibility since th
whole purpose of reducibility is to show independence of internal actions.

The importance of the distinction between internal and external is easily seen from
block UV shown in Figure 50 (p. 92). By itself process U is non-confluent since the out
put on c4 may be permuted and when seen as external output this is sufficient to be
confluent. In the wider context of block UV the channel c4 becomes internal and the pro
cess V remedies the permutations of c4 by separating the external output.
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We may consider the position of a process relative to confluence of its enclosers.
wider the context, the more sensitive the process is for input channels because e
input channels may become internal and thus require independence. On the othe
the wider the context the less sensitive the process is for output channels as exter
put becomes internal and therefore subject to allowed permutations.

4.1.2 Defining: compositionality

Compositionality means in general that the result of the analysis of the component
used in the analysis of the whole system.

Compositionality of reducibility in an SDL system means that the result of the reduci
ity analysis of the components can be used in the analysis for reducibility of the w
system. The result of reducibility analysis is a reduction, a reduced process. Thus
positionality of reducibility means that in order to analyze a full system it suffices to
the reductions of the (reducible) components to replace the original components.

4.1.3 Proving progress

We argue that progress of the whole system can be found by analyzing a system
taining reductions of the original components.

Progress is basically the absence of eternal loops of consumption and production
internal signals. When a component is proved to be progressive, it is without eter
loops regardless of in which order the external input signals come. Therefore encl
this component in a block cannot make the component have an eternal loop inside

Any eternal loop of the block must come from a loop which is at least partially exte
to the mentioned component.

In such a situation the reduced version of the component is just as good as the o
since the signalling interfaces are identical.

4.1.4 Proving confluence

In this section we argue that confluence of the whole system can be found by ana
a system containing reductions of the original components.

The reader may already be convinced that our compositionality statement above 
rect, but we shall go through the argument in greater detail.

For any system which is non-confluent, the non-confluence shows up in its individ
components. Therefore it is meaningful to state that a system AAA is non-confluent by 
non-confluence in its component A.

Assume that we have a system AAA consisting of subsystems AA1 and AA2 as shown in 
Figure 92 (p. 145). Furthermore AA1 contains a process A. We have established that AA1 
is reducible, and the reduction we name AA1Reduced. AAASubst is AAA where AA1 is 
replaced by AA1Reduced.
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4.1.4.1 If AAAsubst is reducible, so is AAA

Is it possible that for AAA, non-confluence can show up in A?

If non-confluence can show up in A relative to AAA, there must be a non-confluence pa
tern in A consisting of a race-condition with at least one internal queue. We have 
different cases:

1. The internal queue involved in the assumed non-confluence relative to AAA is also 
internal relative to AA1. Then the situation has been covered when A was analyzed rel-
ative to AA1. Since AA1 is reducible by assumption, there is no such non-conflue
pattern within AA1.

2. The internal queue involved in the assumed non-confluence relative to AAA is external 
relative to AA1 described in Figure 92 (p. 145). This means that the pattern has 
been considered during the analysis relative to AA1.

The question with 2 above is whether the situation has been considered during th
ysis of AA1Reduced relative to AAA.

For the non-confluence pattern to be really interesting it has to be reachable whic
means that there is an initial state of the whole system AAA (which includes the initial 
state of A) with a sequence E of appropriate AAA-external signals such that some exec
tion of it will reach the assumed non-confluence pattern and from there two differen
of stable states relative to AAA can be reached.

1. Assume complete non-confluent state of A:  reachable in 

AAA. (Irrelevant other parts of AAA has been omitted in the complete state show

2. Assume NA reached by applying the external signals E onto the initial state and per-
forming an appropriate sequence of internal transitions.

3. Assume that L1 is the result of applying to NA the signals xcexci and stabilizing. 
Assume correspondingly that L2 is the result of applying to NA the signals xcixce and 
stabilizing. We have that L1≠L2.

4. Then it is obvious that L1 and L2 are reachable in AA1 only be projecting the execution
within AAA onto AA1. The involved external signals relative to AA1 to reach L1 is 
E+xcexciϕ and to reach L2 it is E+xcixceϕ.

Figure 92: Compositionality

NA S xce xciϕ θ;;;( )=
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5. Applying E to AA1Reduced will bring it to some state X. Then applying xcexciϕ will 
bring it to L1 since L1 is stable and the reduced process is identical to the original w
external signals have been applied and the result stabilized. Applying xcixceϕ to X 
leads to L2.

6. Then we have two different execution results from X depending on the permutation
of xce and xci. Since ci is internal relative to AAA, this means that X is a non-confluence 
pattern of AA1Reduced relative to AAASubst.

7. If AAASubst has been shown to be confluent relative to AAA, such a state X cannot 
occur.

8. Thus the conclusion is that confluence can be established in a compositional w

4.1.4.2 If AAASubst is non-confluent, so is AAA

This is trivial. If AAASubst has a non-confluence pattern, this must show up in eith
AA1reduced or in AA2. If it shows up in the latter, it will of course also show up in
AA2 in AAA.

If the non-confluence pattern is in AA1reduced, the same non-confluence pattern mu
occur in AA1 of AAA since AA1 has a path corresponding to every path of AA1reduced 
due to the way the reduction algorithm works.

We must conclude that non-confluence of AAASubst implies non-confluence of AAA.

All together we have that AAASubst is confluent iff AAA is confluent.

4.1.4.3 The reduction of AAASubst is the same as the reduction of AAA

That we can use AAASubst as the base for reducing AAA is also almost trivial.

We assume that we have found AAA reducible by finding AAASubst reducible. 
Assume that we want to perform the reduction algorithm on AAA. Whenever there are
internal signals which are also internal signals of AA1 we execute these. This is legal
because the reduction algorithm opens for executing any internal signal as pointe
in Section 3.2.4 (p. 89). By this strategy the reduction of AAA will include elements of 
the reduction of AA1 into AA1reduced and thus executing the result of that reductio
(namely AA1reduced) must give the same effect.

4.1.5 Concluding compositionality of reducibility

Since both progress and confluence are compositional wrt. reducibility, reducibilit
also compositional wrt. reducibility.

In enclosing blocks, reduced versions of components may be used when analyzi
reducibility. The reductions can also be used in the reduction algorithm.

4.2 Verifying refinement

Refinement has become a buzzword in software engineering. The idea is that by 
a description on a high abstraction level first and then giving corresponding descrip
on lower abstraction levels afterwards, it should be possible by formal means to p
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that the descriptions actually correspond. If the increments can be made small, it 
posedly possible to move from abstract to concrete solutions and keep the descr
complete and consistent at all times.

As a practical way to design systems, we do not believe in this paradigm, as we de
in more detail in Section 5.1.3 (p. 180). Still the idea of refinement is a very attrac
and practical concept. It is beyond doubt that there will be both abstract and more
crete descriptions of the same system, and there is a definite need to keep the 
descriptions inter-consistent. In this section we shall give an example how the Mn
approach can be used to support verification of refinement.

4.2.1 The Refinement model

SDL We assume that we have an abstract description in SDL and a more concrete desc
also defined in SDL. In general refinement may also be defined as a relation betw
descriptions of different languages, but relating different languages is beyond our
rent Mn-approach. To compare descriptions of different languages, it is necessar
have a common semantic base to which both descriptions could be translated. It 
sible to suggest that CFSMs (processes) could constitute such a common base. H
this thesis we shall limit ourselves to descriptions in SDL.

Definition We define refinement to mean the following. By R refining M, we will understand that 
if an environment E acts with R or M, any behavior of E with R should also appear in 
E with M. By implementation we shall mean the same as refinement. The two word
appear both in the literature and sometimes they may have different meaning, bu
we give them the same meaning. We summarize this definition in Figure 93 (p. 1

The idea is that any behavior of the implementation is also a behavior of the more
abstract description. This means that the implementation is always a restriction o
abstract description. In practice this seems often too limited as implementations o
offer features which was not thought about in the abstract version. This is a practic
methodological question and we shall cover this in more depth in Section 5.3.4 (p.
In this section we take for granted that the two descriptions do talk about the sam
verse of discourse and that the descriptions are directly comparable wrt. which se
they provide.

Figure 93: Refinement (implementation)

Let R and M be two processes <SR;C;ZR;TR> and <SM;C;ZM;TM> with the same 
external interface shown here by assuming the same alphabet.

R is a refinement of M iff

1.  where 

2.  where the m function 

is extended to complete states and sets of complete states in the obvious wa

By implementation we mean the same as refinement.

m s SR∈( )∀∃ m s( ) SM∈• m SR SM→:

e E∈( ) s SR∈( )∀∀ m LR s e ø ø;;;( )( ) LM m s( ) e ø ø;;;( )⊆•
Practitioners’ verification of SDL systems 147 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29



The Mn-approach and formal analysis
Verifying refinement4

a com-
se the 
aton of 
y with 
nd 

 
ct 
tions. 

 must 
er, we 
y 
48). 

, and 
e say 
Behavioral 

refinement

We are interested in a behavioral refinement, which means that we need to have 
mon representation of the two descriptions which we shall compare and we shall u
process form as our canonical form and try and see if one process is a sub-autom
the other by comparing the processes transition by transition corresponding closel
the definition given in Figure 93 (p. 147). This is illustrated in Figure 94 (p. 148), a

described more closely in Section 4.2.2 (p. 149).

Interface 

refinement

Behavioral refinement in its pure form requires that the abstract and the concrete
description have the same signal interface. It is typical, however, that more abstra
descriptions have interfaces of a higher granularity than the more concrete descrip
When the behavior is described in more detail, also the pieces of communication
be detailed. When the interfaces of the abstract and the concrete descriptions diff
talk about interface refinement. Our model of interface refinement is largely inspired b
the same concept of FOCUS [20] and it is schematically shown in Figure 95 (p. 1

The idea is that we add two more SDL processes, T and R, which transform the inter-
faces. T transforms from the abstract input interface to the concrete input interface
R transforms from the concrete output interface to the abstract output interface. W

[e] [o]

[e] [o]

x

e

xx

y

yy

e

refinement

Figure 94: Behavioral Refinement

o

o

m

m

[e] [o]

T

[x] [y]

R

refinement

Figure 95: Interface Refinement

block C

A

D
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that A is interface refined to D subject to the interface mappings T,R. This corresponds 
to A being behaviorally refined to C where C consists of T, D, R. This corresponds to 
the U-simulation as defined in [35].

For our purpose it is equally applicable to combine the interface mappings with th
abstract description A, and let the concrete description D stand alone. This would corre

spond to a U-1-simulation according to [35].

Composi-

tionality

Refinement is compositional (see Section 4.1.2 (p. 144)). Assume that the abstra
description A appears in an enclosing block AA. If we substitute A by C where C is a 
behavioral refinement of A, the resulting block AC is a refinement of AA.

This is quite obvious. Firstly AA and AC have the same interfaces since the interfac
have not changed due to the internal substitution of A by C. Furthermore as every behav
ior or C is also a behavior of A, every behavior of AC must also be a behavior of AA, 
and that is the definition of refinement.

We may want to go one step further. Assume that AA consists of abstract descriptions
A1, A2 etc. connected. Assume furthermore that for every abstract Ai there is an inter-
face refinement Di with interface mappings Ti and Ri. Assume that DD is the system 
where every Ai is substituted by a Di. The question is whether DD is a refinement of AA. 
This cannot be concluded in general. It is not even certain that DD is a valid system since
we do not know whether the interfaces match.

Our approach would be the following. Substitute in AA every Ai with the corresponding 
Ci. Then we know that the resulting system CC is a refinement of AA. In CC there are 
clusters of Ti’s and Ri’s which help combine the Di’s. In DD these clusters are reduce
to mere channels. The question we ask ourselves is whether these clusters can re
reduced to channels. A channel is some kind of identity process, what comes in, 
come out. The question is whether all these clusters have the proper identity proc
a refinement. With the Mn-approach we would try to reduce the clusters and com
the resulting process with the identity process. This would amount to finding out 
whether the reduced cluster could possibly act as an identity process.

4.2.2 Mn-approach

We now summarize the Mn-approach to (interface) refinement.

We assume that we have SDL descriptions A and D. We want to determine whether A 
is (interface) refined to D.

Sub-

automaton

1. Reduce A and D to two process descriptions. If any one of them is not reducible, 
Mn-approach is not the right thing to use, or the design is possibly wrong?

2. Specify the interface mappings T and R. Strictly speaking there is no real reason t
keep closely to the scheme of Figure 95 (p. 148). T and R may be any SDL processes
such that the interface of block C is identical to the interface of A. Thus there is tech-
nically no obstacle to R receiving input from T in addition to D.

3. Reduce block C (consisting of T,D,R). This is usually a simple task if T and R are 
mere transformations of signal formats.
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4. Compare the reduced A and the reduced C transition by transition (if possible). The
basic state mapping is built during the comparison (see below).

4.1 Map start symbol of A to start symbol of C.

4.2 Compare start transitions of A and C.

4.3 Map the nextstates of the start transitions.

4.4 Take one of the basic states of C which is not analyzed. Find the correspondin
state in A. For every input signal do:

• Compare the two corresponding transitions.
• Map the set of nextstates of the C transition to the set of nextstates of th

A transition.
• Repeat this step until there are no more basic states in C which are not 

analyzed.

5. If all transitions of C has been analyzed and no critical discrepancy has been fo
then we may conclude that A is refined to C.

Compare 

transitions

We still have to be more precise about what the comparison of two transitions bo
down to. The following criteria should be sufficient. We compare the transitions b
going through the C transition in the order of execution.

1. Every output of the C transition has a corresponding output in the A transition.

2. Every decision of C has a corresponding decision of A.

3. Every answer to a decision in C has a corresponding answer in the corresponding
decision in A.

4. Any answer to a fair decision in A with positive probability (+) should have a corre
sponding answer with positive probability in C. An exception to this is if the positive
probability is not needed in C to terminate a feedback loop.

5. It may be necessary to do some local semantics-preserving rewriting to cope w
tasks, timers and procedures.

Ad hoc 

adaptation

Our technique will not be able to prove all proper refinements, but it catches intere
ones and it applies the general Mn-approach. The final comparison between the 
cesses can obviously be improved and it is possible to utilize other formal method
prove refinement between two processes such as e.g. FOCUS if it is sufficiently i
tant. If we assume restrictions on the size of channels, variables etc. we turn into th
finite state machine situation and the model checking methods mentioned in Sec
1.6.2.1 (p. 30) applies.

Typically the structure of decisions may vary between A and C. The ad-hoc approach is
to separate the analysis in two where the finite behavior is analyzed first and then
infinite behavior. In the analysis of the finite behavior a hierarchy of non-determin
decisions can be flattened to one non-deterministic decision with a set of alternativ
the analysis of finite behavior succeeds, the infinite behaviors of C are considered in A. 
If the infinite behaviors of C are possible also in A, we have correspondence between
the decision structures of this transition.
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4.2.3 Example: the rejected or accepted signal

We want to give a very simple example which shows the principle behind our appr
to interface refinement. We could not resist the temptation to show that a quite re
able design is easily proven wrong during our search for reducibility. After having
corrected the flaw we give the proper concrete implementation and show the inte
refinement.

Our example is a component which takes some input and either accepts it or reje
The abstract definition is given in Figure 96 (p. 151).

We want to implement this in a system which takes a number as input and decide
whether the number is above, below or between two given bounds. The input num
consists of a sequence of digits d terminated by a point p. The system should of course
handle an unbounded stream of numbers. The system has two equally structured
checkers, one checks the upper bound and one checks the lower bound. Their res
combined by the outputting process. The structure is given in Figure 97 (p. 151).

Process N compiles the digits and when the point arrives, calculates the number and 
passes it on to ub and lb as shown in Figure 98 (p. 152).

The boundary check type Bound just checks and returns above or below as specified 
in Figure 99 (p. 152).

process A

S

q

any

acc rej

— —

[q] [acc,rej]

Figure 96: The abstract process A

ub:
Bound

lb:
Bound

VN

[t]

[t]

[above,below]

[above,below]

[above,
between,
below]

[d,p]

block D

Figure 97: Structure of the implementation

Bound
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Now finally we want to design V, the verdict producer. V should take one signal from 
ub and one from lb. If it gets two above-signals, the verdict is that the number is abo
the upper bound. If V gets two below-signals, the verdict is that the number is below t
lower bound. If it gets one above and one below, the number must be between the 
bounds. This informal specification should lead to the definition of V given in Figure 
100 (p. 153).

We follow our strategy outlined in Section 4.2.2 (p. 149) and try and see if the bloD 
(Figure 97 (p. 151)) is reducible. Firstly it is obvious that it is progressive since ther
no feedback loops, and there are no internal data loops which are independent o
nal signals. Secondly, then we should have a look at confluence. N, ub and lb are 
definitely confluent wrt. D since they have only one input channel each. The poten
problem must be with V.

m:= 0

m:= 0

m :=
m*10+n

dcl m,n 
integer

N

d(n)

N N

p

t(m)

t(m)

to ub

to lb

process N

Figure 98: Process N: compiling the number

B

B B

t(n)

n >bound<=bound

dcl n, bound 
integer;

process type Bound

below above

Figure 99: Bound: the bounds checker
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No potential non-confluence patterns with basic state First give problems, but for states
Above or Below there is non-confluence! Our first thought may be that we have to
with states which are unreachable, but alas, they are very reachable. The problem
V is not ensured that the inputs alternate between ub and lb. Due to asynchrony and the
concurrent processing of numbers, it is quite possible to get a series of signals froub 
before the first from lb. This will obviously lead to unreliable results! This example 
gives us valuable experience:

• The solution which meets the eye may not be correct.

• When we have merge situations (i.e. more than one input channel and decisions
on signals from more than one), confluence is an important criterion.

Here we shall have to restructure. We find that it is important that V can control which 
signal it gets. To make it as simple as possible, we want to force it to alternate be
the channels. Still we need a way to distinguish between the channels, and in SDL
is no sign of the channel in the signal. Therefore we must make sure that ub and lb send 
different signal types. This can be done easily by letting Bound be parameterized wrt. 
signals above and below. The modified version of V is given in Figure 101 (p. 154).

In the modified version we use save to be certain that we alternate between the uppe
bound and the lower bound. We always start with the upper bound. Since we can
fairly sure that the two bounds checkers execute at comparable speeds, this delib
sequencing is acceptable. If their execution times both varied, better throughput i
achieved by a version where either upper bound or lower bound could be taken firs
that the second input always had to be the other.

That the system D is confluent is now obvious and we may reduce the block. This i
automatic and result in the process definition found in Figure 102 (p. 154). We ha
given the single basic state of the reduction the name New. The reader should notice tha

First

First

above

above

above

First

between

First

between

First

below

below above below

below

above below

process V

Figure 100: Process V: the verdict, first attempt
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we have paid no attention to the initialization of ub and lb, which are the constant bound
So far so good. The question now is whether this reduced process D of Figure 102 (p. 
154) is a refinement of the abstract process A of Figure 96 (p. 151)? We make a config
uration as sketched in Figure 95 (p. 148) and try and reduce block C. Progress is no 
problem since T, D and R are each progressive and there is no feedback loop betw
them. Confluence is also simple since T, D and R have only one input channel each.

First

First

above

lbabove

above

First

ierror

First

between

First

below

lbbelow lbabove lbbelow

below

ubabove ubbelow

process V

Figure 101: Process V: the verdict, second attempt

lbabove,
lbbelow

ubabove,
ubbelow

ubabove,
ubbelow

m:=0

New

m :=
m*10+n

d(n)

—

p

m>ub
falsetrue

m>lb m>lb

—

above

—

ierror

—

between

—

below

process D

Figure 102: The reduced process D

true truefalse false

dcl n, m,ub,lb 
integer;
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We suggest the definitions of T and R in Figure 103 (p. 155). T takes the signal q and 

produces a non-deterministic sequence of digits before the p. Notice that both the num-
ber of digits and their values are non-determinant. Notice also that the loop produ
digits are terminated by a fair decision with a positive probability alternative. R simply 
defines that the number should be between the bounds to be accepted.

The reduction of C is shown in Figure 104 (p. 155). We compare it with the abstract 

cess A of Figure 96 (p. 151) by the scheme in Section 4.2.2 (p. 149). The mappin
states is simple as there is only one for each of the processes A and C. S maps to New.

T

q

any

d(any)

—

p

(+)

process T

R

above between below

rej acc rej

— — —

process R

Figure 103: Interface mappings T and R

m:=0

New,T,R

q

m>ub
falsetrue

m>lb m>lb

—

rej

—

ierror

—

acc

—

rej

process C

true truefalse false

Figure 104: The reduced process C

m:=any

dcl m,ub,lb 
integer;
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We need to apply some simple, manual arguments to compare the two transition
expression comparing something which has been produced from any, is very close to 
any-valued itself. The implementation has introduced an extra alternative which en
internal error. This is not according to the refinement rules since all alternatives o
implementation should find its counterpart in the abstract definition.

Therefore we have to conclude that D is only conditionally interface refined from A with 
interface mappings T and R. The condition is (as usual) that the execution does not 
in an internal error. Actually A and D are conditionally interface equivalent.

4.3 Simplification

In more general terms both Mn-reduction and refinement are examples of a wider
of transformations which may be called simplifications or abstractions. The goal i
find a system which has the same properties as the original in specific areas.

The original is not analyzed as such because the method used for analysis cannot
it. The reason for this is either that the original model is outside the range of the an
technique or that the original model is too complex.

An example of a model which is outside the range of the analysis method is when
original model is infinite state while the method can only handle finite state.

An example of a model which is too complex is typically exhaustive search in a re
SDL system modeling a telephone switch.

4.3.1 Conceptual clarification

We shall make a few distinctions and separate between some subclasses of 
simplifications.

1. Pure simplification

2. Abstraction

3. Projection

4. Optimization

We shall present these classes, but shall not go in great detail about this general
which is an important field of research.

Our distinction between subclasses of simplification are more based on their use 
software engineering development process than the theoretical differences. The o
framework is depicted in Figure 105 (p. 157). The original system is simplified via
simplification procedure into a simplified system. In the simplified system it is poss
to prove abstract properties relative to a purpose such that the corresponding con
properties are implied by the abstract ones.

The simplification purpose is crucial. The simplification procedure is dependent u
the purpose and so are the abstract and concrete properties.
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4.3.2 Pure simplification

Pure simplification means that the simplified system covers all aspects of the orig
system, it is just more clever built. The simplification purpose is universal: to cove
(interesting) properties of the original. There should not be one single situation wh
one would rather have the original than the simplified.

This does not mean that they have exactly the same properties, since the original
different from the simplification, but the difference is not beneficial in any known w

This kind of simplification occurs when new research discovers new algorithms w
are better than the old ones. We mention this extreme kind of simplification since i
resents one end of the simplification spectrum.

The Mn-reductions may lead to pure simplifications. It may become clear after a f
iterations using the Mn-approach that the distribution of a certain activity into sev
sub-processes may not be needed or beneficial. Then the reduction could take th
of the reduced unit also in the original.

4.3.3 Abstractions

The word abstraction is used in a number of different contexts. When abstraction
intended to mean simplification we are often in more formal contexts. The simplif
tion procedure is represented by an abstraction mapping and the purpose is often
preserve properties described in a certain language or such general properties as
lock freedom [21].

The preferred engineering strategy is to define abstraction mappings and reason
ally about their characteristics.

When a specific analysis problem is encountered, the abstraction mapping is app
and some abstract properties (faithful to the purpose) are proved. Then the chara
tics of the abstraction mapping leads to finding concrete properties which are sat
in the original system

The significance of the simplification is relative to the purpose, which often is wid
than the abstract properties. In this way the abstraction can be used for experimen
on a wider basis than only predefined properties.

simplified system

original system

purpose

abstract property

concrete property

simplification procedure

Figure 105: Simplification framework
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In approaches which combine different proof techniques [126; 127] there is a nee
divide the original system such that the different approaches can be applied to on
aspect. Typically abstractions are made which abstracts to finite state situations, e
factoring out the induction aspects which generalizes over numbers.

In formal contexts the abstraction mappings are formally defined and the proofs c
principle be performed formally. In practice, however, abstractions are made mor
informally and it is not always so obvious what their characteristics are.

Since formal methods have little success with large programs, it is commonplace
define a simpler system. The construction of the simpler system is meant to be a
abstraction wrt. the original purpose, but the truth is often that the simplification is d
manually by the verifiers mostly guided by what they are able to verify rather than 
the needs for verification are.

Refinement is the inverse of abstraction as presented in Section 4.2 (p. 146). The 
that the simplified (abstract) system is made first, and the refinement which corresp
to the original (concrete) system is made afterwards. The abstraction purpose is th
behavior of the refined system is also possible in the abstract system. This mean
universal properties of the abstract system should be preserved in the concrete, w
existential properties of the abstract system may not be preserved since there is be
in the abstraction which is absent in the implementation.

4.3.4 Projections

While we characterized abstractions by the focus on preservation of a wide class
properties, projections are characterized by focus on the simplification procedure

The simplification procedure is well established, but it may be more fuzzy what th
characteristics of the implicit abstraction mapping are.

We have suggested abstractions for data in Section 3.6 (p. 117) which is obviously
tical for the simplification of the system, but the characteristics of the data abstrac
wrt. reducibility is not absolutely trivial.

Assume that we have applied the projection described in Section 3.6.1 (p. 117) to
inate all explicit data. It is clear that the simplified system may be reducible while 
corresponding original is not. In Figure 106 (p. 159) we show extracts of a proces
which consumes external input e and internal input i producing external outputs x,y on 
one output channel. The behavior is dependent upon a Boolean variable b which is not 
changed in the transitions shown here. The Mn-procedure shows that there is no
fluence since regardless of whether b is true or false, there is a difference between 
executing e first or i first. Assume that b is true, then executing e first yields xy, and i 
first yields yx. If b is false the situation is the opposite.

If the data variable b is abstracted, the decision becomes a non-deterministic decis
where either branch can be executed. This gives confluence since both executinge first 
and executing i first yields the set {xy, yx}.

Thus reducibility is not preserved by the data abstraction. Still it is not without value
perform the data abstraction, but our example shows that we need to be sober in
generalizations.
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Other simple abstraction procedures include elimination of “uninteresting” signal ty
or parameters to signals.

This kind of abstraction, which we choose to call projection, because we delibera
eliminate certain syntactical elements of the original system, has its great worth insug-
gesting problems rather than proving the existence of certain properties.

Lam and Shankar [95] defined projections which they called image specifications. They 
were based on manually subdividing the state space of the processes. They also s
how stepwise refinement of the image specifications could be applied to produce
proper image specification strong enough to verify a given abstract property. In ge
their image specifications would preserve safety and liveness properties of the or

Seltveit [121] describes filters, which are also projections (in our terms). Their main p
pose seems to be to present a complicated original system in a more manageable
the developers. This is also a purpose we have with our Mn-reductions. She also 
that certain modifications made to the projections (filtered systems) can be faithfu
brought back to the original.

Bræk [11; 12] has developed a projection technique to study interfaces between 
entities. The technique also includes simplification of both sides of the interface. T
technique will calculate a measure of how great the risk of complication is, given ce
signs of inconsistency. The idea is that the risk situations should be analyzed aga
the original. The risk index of [12] resembles our notion of a complexity profile ba
on the Mn-procedure as presented in Section 5.2.2 (p. 193).

The Mn-approach is a projection in the tradition of Lam and Shankar, but the redu
of the state space is produced automatically provided that the original system is c
ent. We claim that any property expressible in terms of the reduced system is als
preserved in the original system limited to its stable states. This is basically a taut
since a reduction is defined (Section 2.2.1.1 (p. 48)) as being equal to the original f
stable states. Still it is what we want. From outside the system, the instable states 
be observed.

S

e i

b b

x y y x

S S S S

(true) (false) (false)(true)

Figure 106: Non-confluence pattern eliminated by abstraction
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4.3.5 Optimization

By optimization (here) we mean that the process of verification is optimized. More 
cisely: from a given a concrete property produce a simplification procedure which
makes a simplified system (on the fly) such that proving the property (or its derive
abstract correspondent) becomes simpler in the simplified version of the system.

The idea here is to focus on the actual property to be verified, and transform the s
relative to the concrete property. This is a meta-strategy used to optimize verifica
and Holzmann [75] reports that using a partial order reduction method based on t
given LTL property, reduces the execution time and space by between 10% and 
The idea is that for a given correctness criterion many execution sequences are in
guishable and it is not necessary to visit more than one representative of each suc
of sequences.

4.3.6 Simplifying large numbers

Finally we want to touch upon a special kind of simplification which is very commo
systems in our domain (i.e. real SDL systems). Real systems are big. This means t
description of the system is big – and that the executing system is big. In system
dynamic structure the size of the executing system may not be reflected in the size
system description. Our validation should have a complexity which is proportiona
the size of the description of the system and not the size of the executing system

In SDL systems there are two constructs which create executing systems which a
nificantly different (and larger) than the description.

1. Block sets.

2. Process creation and addressing by pointers (PId1).

4.3.6.1 Block sets

Block sets are described by one symbol which covers a set of statically created b
instances. All channels connected to the block set represent sets of singular chan
For the Mn-procedure block sets do not represent serious complication. Since the
procedure checks channels in a pairwise fashion, there is little complication relate
whether there are 20 rather than 2 block instances in a block set. The distinction is
ever, that there are two rather than one instance. This means that what appears 
channel as input to another block, is actually two channels, and their interaction s
be analyzed. During such analysis the signals should be annotated by some iden
the SENDER or the channel on which they came.

Multi-gate The architecture is typically like Figure 107 (p. 161). The block set is connected to 
common part X by a channel C. The channel C is therefore what we could call a multi-
channel since it contains a set of normal channels. The same holds for the channel D and 
therefore also for the gate g. We will therefore call g a multi-gate, which means that it 
actually contains a set of normal gates. We assume that every individual gate can

1. PId = Process Identifier, SDL data type which represent pointers to processes
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identified such that the signals can be annotated by the identity of the individual g
For input, very often such identification can be the PId of the SENDER of the sign
g.

Indepen-

dence

The next question is whether the communication via the block set bset is such that it is 
significant that there are several Bs in the bset. We find often that the different blocks
of the block set are independent. By independent we mean that the behaviors of one 
block instance has no direct effect on the behavior of others. Even more precise w
that a block set is independent if for every consumption of one external input in th
enclosing block type only one block of the block set need to be executing.

In an architecture as in Figure 107 (p. 161) this means that an input on g will be handled 
by some block (say: b) in bset which communicates with X via C. The eventual return 
will pass through the same block b onto the same gate of the multi-gate g. If the return 
communication involves another block of the blockset, the block set is not independent.

If reducibility has been established, independence is easily seen when performin
reduction.

Block set 

representa-

tive

When independence of a block set is established, the functional behavior of the b
set can be determined from assuming only one block instance in the block set.

Block set 

reduction

The reduction of a block (type) enclosing an independent block set consists of an
extended SDL description. Firstly there is the reduced block where only one bloc
seen as representative for the whole block set. This system we call the simple reduced 
system. Secondly there is a state-vector indexed by the individual identifiers of the
multi-gate which corresponds to block identifiers of the block instances. The state
reduced total system is in, is depending on which individual gate the external inpu
comes via. Because of the independence and the confluence, the simple reduced
will show the needed transitions. The interpretation of the full system reduction is
any state operation (such as nextstate) is performed on the state-vector and any op
on variables inside the blocks of the block sets must also be considered operations
element of such vectors indexed by a process identification.

This composed description is a shorthand for a reduction with many states and m
(similar) transitions. If each of n blocks of a block set may end in k basic states when 
reducing, we have n*k stable states. The n may not even be known.

X bset(n):B

block type BL B

gC D

Figure 107: Block set architecture
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We summarize our approach to block sets in a principle which we call practitioners’ 
induction which is based on very simple experiences:

1. A real system is never such that a block set with large n makes a significant functional
difference from the same set with rather small n.

2. The individual blocks in a block set behave independently. Therefore we can de
the overall functionality with a simple system where the block set is represente
one singular block.

3. If a block set is not independent, there is good indication that the block set shou
conceptually divided.

The experience behind what I have called “practitioners’ induction” was also prob
the reason why SDL-88 had no block set concept at all.

There are examples of systems conforming to the practitioners’ induction in Secti
(p. 229).

4.3.6.2 Process creation

Process creation and use of PId addressing does not make problems for the Mn-
dure to determine confluence. The Mn-procedure must be careful to annotate sig
with their SENDER which is implicit in SDL anyway.

In situations where we have process sets, the practitioners’ induction can be app
the processes are independent. We may consider each communication with a un
external PId as an external channel.

4.3.7 Integrating the Mn-approach with other methods

The Mn-approach is friendly towards other methods. This means that since the M
cedure delivers an SDL process description from an SDL block description, the n
of the system does not change when having applied the Mn-approach. The system
an SDL system if we consider our suggested notational extensions as parts of SD

This means that any other method which is able to handle SDL, can also handle 
reduced system. The question is whether the analysis must be restricted when inc
a reduction rather than the original.

We claim that since the reduction is observationally equivalent to the original, any
ysis which does not address properties internal to the reduced sub-system may e
well work on the modified system where the reduction has substituted the origina
system.

We should make the reader aware that this is not the same that every property e
ible in the terms of the reduced is faithfully preserved from the reduction to the orig
A simple example is depicted in Figure 108 (p. 163). There is no doubt that the pr
X is reducible and that the reduction will also include the declared variable ni. The 
reduction is simply a process which consumes e and produces z, but does not change ni 
at all. Thus it is simple to see that ni=0 always. If we checked for the LTL formula say
ing that ni is always 0, we would get that it is valid for the reduction. For the origina
however, it is not difficult to see that there are states where ni is not 0.
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If we restrict ourselves either to only stable states in the original or to indicators w
are external to the reduced process, the original is faithful to the reduction.

Since some of the most popular methods to verify SDL systems have serious pro
to keep the state explosion under control, the Mn-approach should be a valuable 
bution to reducing the state space without losing the interesting aspects.

4.4 The expected behavior of the Mn-procedure

Here we should summarize how the Mn-procedure behaves with different kinds o
systems.

4.4.1 Studying Progress

Progress enters into our Mn-approach in two ways:

1. The Mn-procedure assumes (weak) progress.

2. The Mn-procedure itself should preferably terminate.

4.4.1.1 Progress of the system itself

The progress of the system itself was studied in Section 2.3 (p. 50), and we emph
that this thesis is not about termination or progress. Still for our Mn-procedure the e
lished progress of the process under analysis is important as we showed by the ex
in Section 2.4.3.2 (p. 53). It is possible to find processes which the Mn-procedure
evaluate to be confluent, but which contains a livelock. Thus the reduction is not 
proper reduction of the process as it may fail to recognize the livelock.

S

e i

i

S

ni:=ni+1

z

S

ni:=ni-1

ni:=0

Figure 108: Original process

process X
dcl ni 
integer;
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Just as many formal methods we may resort to “partial correctness” [30] which ha
an assumption that the program (or program statement) covered terminates norm
When progress is established, we talk about “total correctness”. In practice, howe
there is a big difference between a system which is in a livelock and a system wh
reports an internal error. We shall cover these aspects closer in Section 5. (p. 17

Since communicating finite state machines can be seen as rewrite systems, and p
in our terms corresponds closely to termination of rewrite systems, we should see
advice in the strong literature of rewrite systems to find the most appropriate mea
establish progress [37]. Our “signal ordering criterion” is in this tradition. We find 
well-ordering of the signal types (which corresponds to elements of the symbol uni
of rewrite systems) such that every transition produces signals of less value than
consume. The implicit ordering thus becomes a reduction ordering which implies
the system terminates.

To find such an signal ordering is simple and automatic if it exists. If there is no s
ordering, there are cycles in the directed graph that represents the attempted ord
Such loops may or may not imply that there is a livelock. If the loop includes exte
signals as well as internal ones, we may have finite progress (Section 3.1.3 (p. 86
not infinite progress. Finite progress is what is needed for the Mn-procedure. Fini
progress is achieved when the internal signals can be partially ordered.

The pure signal ordering criterion does not consider the basic state. By also consi
the basic state in the production of a reduction ordering for the process, more case
be covered.

Our approach to resolve loops constructively is to let fair decisions with helpful esc
from the loops, or to let a timer do it as time itself can be certain to progress.

4.4.1.2 Progress of the Mn-procedure

Termination of the Mn-procedure was studied in Section 2.4.7 (p. 69). There are tw
ferent situations where the Mn-procedure does not terminate. Either it loops durin
execution within one generation, or the sequence of generations is infinite. In prac
pragmatic constant limit to the length of an execution path within one generation a
limit to the number of generations will be sufficient to terminate the Mn-procedure s
that few interesting confluent systems are considered impossible to prove conflue
the Mn-procedure.

Through theory we should be able to give some indication to what these two num
should be.

Execution 

path

Our proof of the correctness of the Mn-procedure (Section 2.4.6 (p. 65)) is not de
dent upon when a generation change takes place. We say that if a node of the M
transition system is evaluated to sequence permuted, there must be a generation 
sooner or later. This is not completely true since the criterion “external stuttering” 
ifies this. With our example process D, we use exactly this in Table 4 (p. 64) where sta
12-1 is sequence permuted, but we continue the execution in this generation and
external stuttering already in state 12-1-1.

The disadvantage of changing generation is that we have to continue on the next
ation from all conceivable basic states reachable from the origin of the generation
change. This will often mean that we must include situation which cannot occur in 
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tice. The higher the generation the more unreachable situations must be covered
more unreachable situations which must be found confluent, the bigger chance th
problematic, but fictitious situation will prevent the Mn-procedure from concluding
confluence.

On the other hand, another level within the same generation will also produce mo
uations which have to be confluent. The execution tree within one level of Mn is l
other execution trees – it grows exponentially. Going from one node onto the next
will produce exactly the same number of new nodes as there are symbols in the An 
alphabet. But they may be more pleasant to handle by external stuttering or gene
change.

It is also possible to backtrack within the Mn-procedure. If the generation change 
into non-confluence situations, a second try may execute one level more on the fo
generation.

In the end a constant limit to the number of execution levels within one generation
ensure that the Mn-procedure will continue and the game is not lost.

Sequence of 

generations

If the signal ordering criterion holds, the number of generations is limited, too. This
lows from the fact that the number of signal types present in An is less than the number
in An-1. Since there is only a finite set of symbols in A0, we cannot have more genera
tions than the number of symbols in A0.

If there is a loop, this occurs normally in a system through a cycle of channels an
cesses. In a piecewise execution of Mn-procedure (see Section 3.3.4 (p. 91)) the
be one new generation per process in the loop. If no decision (either way) has be
reached when the sequence of generations “returns” to where M0 started, the qu
is whether the alphabet An is smaller than A0. If it is not smaller, nothing can be gaine
from continuing changing generations in a piecewise execution.

The picture is more complicated if the feedback patterns are more complicated th
simple feedback loop. Still we advice to compare alphabets when the process inv
in M0 is again involved in a higher generation Mn.

4.4.2 Studying Confluence and the Complexity of the Mn procedure

Here we present some thoughts on complexity of the procedure relative to what we
expect.

Our aim is to determine confluence of a process which normally consists of a num
interacting components which themselves are such systems of components.

Our approach is a practical one where we do not try to cover the worst case, but 
an interesting set of common cases. There is no doubt that the Mn-procedure be
is very much dependent upon the architecture of the system under analysis.

In this section we shall look at some of the factors which influence the behavior a
needs of the Mn-procedure. We shall not go into detail about the complexity of the
rithm in any mathematical way. It is not difficult to construct systems which are no
confluent. It is not difficult to construct cases where the Mn-procedure loops (as we
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seen in Section 2.4.7 (p. 69)). It is not difficult to construct system architectures w
makes the actual execution of the Mn-procedure complicated. Such architectures
typically when all components communicate with all other components.

We have, however, shown in this thesis that there are interesting theoretical and 
cal cases which benefit from the Mn-approach, and we have provided arguments
why it is reasonable that the Mn-approach will work in many cases.

4.4.2.1 The obvious challenger

Could we determine reducibility by other techniques than the Mn-procedure e.g. by
cution from the initial state supplemented by some termination criterion?

To eliminate the internal signalling of a system of communicating finite state mach
appears to a newcomer to be a manageable problem. The obvious first thought is
merely executing the system from the initial state until some (simple) criterion says
there is no reason to execute beyond this point because “nothing new” will be foun
other words after having produced a finite (and hopefully small) execution tree, it is
sible to infer that confluence in this tree implies confluence in the whole, infinite 
execution tree.

Unfortunately there is reason to believe that the obvious challenger is not a good c
We list a few reasons:

1. The expressiveness of communicating finite state machines is underestimated
far more expressive than meets the eye. Actually a system of communicating f
state machines with infinite buffers has the power of a Turing machine [13].

2. It is reasonable to believe that a (simple) cut-off criterion cannot be found in gen
Related unsoluble problems which also seem simpler than they are include to 
mine whether a given complete state is reachable [48].

3. To execute from the initial state has the advantage of considering only reachab
states, but this is outweighed by the fact that such execution may go through s
cases numerous times and fail to reach the problematic ones in proper time.

Our idea is that “nothing new” must mean that all reachable non-confluence patte
have been checked. The plain execution strategy cannot give a limit to when all n
confluence patterns which are reachable have been reached.

4. Even if they could guarantee when all reachable non-confluence patterns have
found, it is probable that the time to reach it is prohibitively large.

It is probable that the criterion would have to check that a reached complete state
ficiently similar to one already encountered. It is difficult to specify what “sufficien
similar” should mean, but equal state and some strong similarity between the sig
sequences seem reasonable. If the cycles produce internal signals, we have to c
their consumption. In general this leads to a cycle of cycles. Futhermore these se
generation cycles may themselves produce internal signals etc. Our conclusion m
that the complexity of the worst case is formidable.

4.4.2.2 The factors of Mn complexity

In this section we shall go through some of the factors concerning the complexity o
execution of the Mn-procedure.
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 166



The Mn-approach and formal analysis
The expected behavior of the Mn-procedure 4

n on 
at the 

e prob-

ase 

e of 

 the 
element 
e exe-
e it is 
ent is 
 sig-
aired. 
tput 

eded 
habet. 
e tree 

ntial: 
it is 

e irre-
Generation 

structure

The execution of the Mn-procedure is a tree of executions of transition systems M
different generations as shown in Figure 109 (p. 167). There is no requirement th

tree is balanced in any way. In practice the opposite is the case. Some parts will b
lematic and the tree complicated, while other parts will be trivial and the Mn tree 
likewise. Since the generation structure is a tree, the total number of nodes incre
exponentially with the number of generations.

One Mn-

execution

One single Mn execution is illustrated in Figure 110 (p. 167). The origin is one nod

the generation above. In M0 this is implicitly the initial basic state. From the origin,
initial set of nodes has a basic state element and a signal element. The basic state 
is found by determining the set of basic states reachable from the origin through th
cution of the former generation. In M0 we use the set of basic states as we believ
reasonable that they are all reachable from the initial basic state. The signal elem
copied from the internal signals of the origin. In M0 we use all possible pairs of one
nal from one channel and another from another channel. External signals are not p
See the definition of Mn in Figure 37 (p. 60). The alphabet is dependent on the ou
of the former generation. In M0 the alphabet is the pairs of equal internal signals.

The growth of the tree is exponential and from every node where a new level is ne
the number of nodes on the next level is equal to the number of elements in the alp
But the total size of the Mn-execution tree is very dependent upon the fact that th
is not balanced.

Worst case? From the reasoning above, the worst case execution seems to be double expone
first a tree of nodes in one Mn-execution and then a tree of Mn-executions. Now 
time to remind ourselves that the changing of generation is instead of going another level 
down in the current Mn-execution. The fact is that the size of the tree is comparabl

M0

M1

M1

M2

The origin of a gen-
eration change

Figure 109: Tree of Mn-executions

origin

initial set of nodes

the alphabet

confluent nodes

Figure 110: One Mn-execution
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spective of the choice between changing generations or taking a new level of the
generation. To explain this, let us look more closely at what may happen in one no
an Mn-execution.

If the evaluation is that another level of the same generation should appear, the n
nodes on this branch to be evaluated amounts to exactly one for each symbol of 
alphabet. If the evaluation indicates a generation change, the next nodes on this 
to be evaluated are the set of initial nodes on the next generation. The number is s
than the set of basic states.

If we assume that we may perform our execution piecewise (see below), every Mn
cution takes place within one process. The set of basic states of a finite state mac
often smaller than the set of signals, but in general we can only say that they are a
imately the same regarding complexity.

Further execution in the new generation will use an alphabet which is normally sm
than the alphabet in the former generation. Thus to change generation will norma
slightly decrease the complexity of the execution since the number of states is pro
less than the number of alphabet symbols of the former alphabet, and the alphabe
new generation is smaller than the former. The order of complexity is the same.

From this we conclude that the overall execution of the Mn-procedure is comparab
complexity with a plain M0 execution, which is comparable with a plain execution
the system from the initial state.

But execution from the initial state runs into state explosion problem very rapidly. W
is the Mn-procedure considerably better? And the answer is twofold. Firstly our e
tion is directly targeted towards the solution of our confluence problem. Secondly
are able to perform the execution piecewise in most cases.

Confluence 

target

Exactly as any reachability strategy may find what it looks for very rapidly, our Mn-
cedure may find confluence along a branch almost at once. In practice the compl
cases are very few compared to the number of potential non-confluence patterns

Piecewise 

execution

Piecewise execution (Section 3.3.4 (p. 91)) means that we may execute the Mn-p
dure within one process at the time. This reduces the state universe from a carte
product to a plain set for every Mn-execution. In M0 it is obvious that piecewise ex
tion is possible, but also with higher generations it is highly probable, but it is depen
upon the architecture of the system.

In Figure 111 (p. 169) we show which processes are involved in which generations
potential non-confluence pattern is in the leftmost process shown grey in M0. If a
sequence permuted node is encountered the next generation, which should reso
permutations of the output channel, takes place in the grey process of M1. The s
happens again in M2, while in M3 two new interesting things happen.

1. Two processes are connected to the outputting process of M2. If there are seq
permutations on both of these, both connected processes must be considered
next generation, but they may be considered separately.
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2. The original M0 process is involved again, now on M3. This is the time to check
the alphabet has actually been smaller. Otherwise chances are that more gene
changes will not conclude the case. In M3 the initial state space of the leftmos
cess is only the space reachable from the state where it all started in M0.

Conclusively piecewise execution of Mn makes the Mn-procedure approximately li
wrt. the number of components of a system and the complexity is greatly depend
upon the architecture of the system. The simpler the architecture, the simpler the
procedure execution.

Thus piecewise execution means that the Mn-procedure scales reasonably well, 
the opposite situation occurs for reachability analysis where the size of the system
terms of independent components is extremely important.

Nested 

execution

Piecewise execution refers to the fact that components of the system which are o
same aggregation level [56] can be handled one at a time. Nested execution refers
property that components on different aggregation levels can be handled separat
This is obviously another important advantage of the Mn-procedure and a proper
which is at the heart of the aim of the procedure.

The compositionality principle (Section 4.1 (p. 143)) combined with object orienta
in SDL-92 (Section 3.9 (p. 133)) make the Mn-procedure even more attractive fro
complexity point of view. As long as the systems are composed of reducible com
nents, large systems can eventually be analyzed with the Mn-procedure.

Stabiliza-

tion

We have in the arguments above concentrated on the number of nodes. The Mn-
dure also specifies that every node needs to be stabilized. This means a plain exe
sequence since the order in which eligible signals are executed does not matter. 
must, however, take into account that stabilization may involve several of the intera
processes. Thus the stabilization is actually a tree structure which branches on the
states of the processes activated by the state to be stabilized. See also Section 3
91).

M0 M1

M2M3
Figure 111: Piecewise execution of Mn
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The number of internal signals in a node is normally very small since we try expli
to try out only one internal signal at the time. Furthermore we do not always need to
the sets of leaves explicitly. Whenever the two elements of the node are equal, w
cut off the stabilization. Therefore stabilization is not very time or resource consum
but it adds a linear factor to each node.

Heuristics The evaluation of nodes plays an important role in the Mn-procedure. It may be de
whether a generation change is performed or not for the success of the procedure
tracking means loss of time. Therefore the evaluation of the node, the potential alph
and state spaces could probably be made into smart heuristics. Since we would e
the systems to be analyzed over and over again (after small modifications), such 
tics could also take special aspects of the system into account.

Such heuristic on the evaluation of a node, can be used as a measurement of com
which is similar to the complexity profile in Section 5.2.2.2 (p. 197).

Time and 

storage

The Mn-procedure is basically a depth first algorithm. Since we prefer to conclude
fluence, there is no gain to go breadth first unless we suspect that we will not find
confluence. Depth first requires very little storage. Apart from the system represen
itself only the stack of nodes from the initial state is needed with the associated in
mation about every transition system (Mn) which is invoked on the stack. So the 
minimal storage requirements are almost none.

The time consumption of the Mn-procedure is proportional to the number of nodes
erated. To minimize the number of nodes generated, it is possible to include data
structures such that nodes which are sufficiently similar to earlier and analyzed n
can be recognized. The nodes of the Mn-procedure requires more information than
execution since in principle symbolic execution is performed. In theory of course th
state hashing technique known from [73] could be applied if we settle for less than
lute certainty of match. This is most probably not a good strategy with the Mn-proce
since the number of nodes within one process should still be less than the number
is manageable in large computers.

Non-

determin-

ism

Non-determinism (including timers) in the system under analysis will make matte
worse in all respects. Non-determinism increases the number of simple nodes, an
plicates the evaluation. Data is in this respect equal to non-determinism because
involves more alternatives (with guards). The guards may be resolved manually. 
manual intervention will of course have detrimental effect on the overall performa

Total Mn-

procedure 

depth

The complexity in terms of time and possibly space (when optimizing time) is ver
much due to the expected number of levels in the tree. There are two different 
approaches to this issue:

1. What are the chances of succeeding to find confluence when the number of le
increases?

2. Which structural elements normally set the limit to progress of the Mn-procedu

The first approach is based on the assumption that the probability of succeeding d
with the number of levels. This is probably true simply because more nodes must b
fluent. Changing generation also means that the system must have even greater 
of orthogonality. Even more unreachable situations must be covered by the conflu
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But there is also a psychological dimension. Assuming that the designer has inte
the system to be confluent, the more levels the more complicated knowledge mus
been behind managing to make the system confluent. Unless the designer has gui
specification by some well sort out invariants, the designer will normally be able t
overview only a very small number of levels of sequence permutation. More abou
in Section 5.2.2 (p. 193).

The second approach searches for the theoretical limits. There are two types of c
which indicates that the limit has been reached.

1. During one Mn-execution, if a basic state which is in a node on the execution s
reappears in the current node;

2. When changing generations, if the component to execute this generation is the
as a process which has executed earlier generations of the same potential non-
ence pattern (c.f. Figure 111 (p. 169)).

Neither of these indicators are certain indicators of failure. They do indicate, how
that the Mn-procedure may be entering a loop.

4.5 Conditional reduction

It is not always the case that the whole system can be proven reducible through s
automatic techniques. There may exist questions which cannot be solved by the M
cedure itself. These are “proof obligations” and the reduction is “modulo” these pr
obligations. Typically we have proof obligations concerning:

• progress,

• unreachable non-confluence patterns,

• impossible transitions,

• resource restrictions.

4.5.1 Possible attitudes to proof obligations

The Mn-approach has three possible attitudes towards these proof obligations:

1. Prove the obligations by ad hoc techniques,

2. Assume the obligations valid,

3. Check for the obligations during runtime.

It is also possible that a combination of these attitudes represents the best altern

To prove the obligations valid, is definitely the most desirable attitude, but it may no
practically feasible. It may be more feasible for small (but interesting) systems su
our process D (Section 2.2.3 (p. 49)), the Alternating Bit Protocol (Section 3.5.3.1
100)), the Brock-Ackerman anomaly (Section 3.5.4.2 (p. 109)) or the Dagstuhl exa
(Section 6. (p. 229)).
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To assume the obligations valid, is definitely the least desirable attitude. It may be
sory to assume progress without having proven it such that the problems of the 
confluence search (Mn-procedure) appear. This attitude may also be characterize
“postponing” the proofs until the desired reducibility has been established. Often 
lems will arise more than one place such that getting preoccupied with one problem
not be cost effective. Still we do not advise to leave too many assumptions unprov
the end of an analysis.

To check for the problems at run-time is the practitioner’s attitude. If you cannot p
something, check for it. Even if you can prove something, check for it! Checking or 
exception handling divides the execution of the system in two layers: the system e
tion layer and the monitoring layer (see also Section 5.3.5.2 (p. 207)). In practica
system engineering this is a very attractive approach. The verification results bec
“modulo” the monitoring. Said differently, the reducibility is dependent upon the sys
not escaping to the monitoring layer. Either the system behaves according to the 
tion or it calls an exception and enters the monitoring layer. The verification is 
conditional.

Since the conditional verification is not the most desirable, we may want to try and
bine the monitoring attitude with a recovery strategy. When an erroneous situatio
detected, a warning is issued to the monitoring layer, but the system execution is
instructed to try and recover as best as it can. As we pointed out in Section 4.4.2 (p
the save-approach to internal errors may well constitute a good recovery. The sig
should not have been here at all, the best thing to do is probably to save it to a state
we have something sensible to do with it. In principle any recovery action could be
able, but it has to be tuned to the problem at hand.

4.5.2 How do we typically check for the proof obligations?

Progress Progress is not simple to check for. We may introduce timers at the monitoring la
The reason for not including them in the system execution layer may be that this w
complicate the system more than we want. The monitoring layer may also have a
to mechanisms which are beyond the system execution layer such as the supporti
time system.

Unreach-

able states

Unreachable states cannot in general be proven unreachable. In particular cases
ever, it is possible to do it. To check for reachability is sometimes possible. All com
states can be checked for each component process. One problem with this is bas
the overhead in execution time which originates from checking every state reache
Another problem is that the state which we want to check unreachable is divided 
between independent components. The projection onto each component may be
reachable, but the combination is supposedly unreachable.

Impossible 

transitions

Impossible transitions are simpler to test for. They require no extra overhead as th
is not invoked unless the transition which should be impossible is about to happen
reason for considering the transition impossible can usually be found locally. Explic
implicit invariants of the basic state accounts for this.
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When the Mn-procedure encounters an impossible transition (exception call) durin
confluence search, this branch of the search is concluded with success. This mea
non-confluence cannot be concluded from this branch.

4.5.3 The impossible transitions

SDL is a language which by definition defines a total finite state machine. It is tota
the respect that for every basic state, any signal in the input signal set (alphabet)
accepted. If the transition is not explicitly specified, a “default transition” is used wh
means merely to consume the input signal. But, there are many transitions which
designer knows are impossible, or equivalently: constitutes an internal error. To e
ine progress and confluence of impossible or erroneous transitions seems a was
time. We have the following choices:

1. to accept the default transitions,

2. to define a special exception construction for the internal errors which e.g. write
error message and terminates,

3. to consider the impossible transitions saves instead of consumptions,

4. to prove that the impossible transitions are really impossible and skip their ana

Default 

transition

To accept the default transition is normally the worst alternative since the default 
sition is a very rudimentary recover action. We would expect it to produce non-
confluence patterns.

Exceptions To define a special exception construction is often the approach in practice (Sect
5.3.5 (p. 206)), but exception constructs have also been seriously discussed with
ITU standardization body [112]. If this attitude is adopted then any execution of su
transition during Mn-procedure should lead to the termination of that branch with 
cess. This means that the Mn-procedure recognizes that the exception mechanism
care of the case and for the Mn-approach this means that the case can be consid
impossible and safely discarded.

Save To consider the impossible transitions saves is often a better approach than consump
tion. The signal is not consumed, but left to some state where it is welcome, and w
its consumption is explicitly specified. Within the standard SDL this is probably the 
solution. A mixture of the two latter alternatives could be to give an error messag
some console, and use the save as the recovery.

Proofs To prove that a transition is impossible, means to prove that the state before it ca
have that signal first in the input port. This is not so simple. Backwards execution
made difficult by the fact that the tail of the input port is not known and this is wha
backward execution wants to know! We experience that the backward execution 
into infinite loops from unreachable state to unreachable state. There is a need to
such loops and provide inductive arguments which is not so easily automated. Nor
a better strategy is to find a proper invariant which can be shown to hold for every
sition. The problem with this is also that it is not so easily automated.
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Example: 

Alternating 

Bit Protocol

Take the Sender of the Alternating Bit Protocol (Figure 57 (p. 101)) and try and pro
that the internal signals B0 or B1 cannot appear in state Send0. We shall see how our 
four different approaches to the consumption of B0 and B1 in Send0 turn out.

1. B0 and B1 are merely consumed in Send0. Surprisingly enough it turns out that the
ABP system appears to be confluent still, but showing it is quite involved and fa
voluminous to be presented here. The complexity of the confluence proof reflect
surprise that it is actually the case. This strategy is even more interesting in the v
of the Alternating Bit Protocol which uses timers in Figure 81 (p. 123). This me
that the ABPT could handle situations where the timer occasionally expires too 

2. The B0 and B1 transitions in Send0 are considered internal errors and an exceptio
will be invoked. This means that the confluence is relative to the internal error. W
not prove that the signals cannot occur in Send0, but we are certain to catch them.
(See Section 4.5 (p. 171))

3. We save B0 and B1 in Send0. It is trivial to prove confluence since Sender cannot 
have any non-confluence patterns since either the signals of the external chann
saved (in Wait0 and Wait1) or the signals of the internal channel are saved (in Send0 
and Send1). Performing the reduction will result in the system shown in Figure 
(p. 105) and this reduction shows that there will never be B0 or B1 in Send0 because 
if there was, we would have a reachable semi-stable state including B0s or B1s since 
only external signals exit from Send0. Any reachable semi-stable state would hav
to show up in the reduction as pointed out in Section 3.4.4 (p. 96).

4. We try and prove that transitions (Send0,B0) and (Send0,B1) are impossible. To 
prove that the transitions of consuming B0 and B1 in Send0 are impossible, we can
prove that the signals B0 and B1 cannot appear in Send0. This is done through an 
invariant. In this case shown below the proof is not so difficult, but finding the inv
ant is not automatic.

Impossible 

transition 

proof 

through 

invariant

Alternating Bit Protocol example invariant:

1. When Sender is in Send0 or Send1 there are no more internal signals in the whol
system.

2. When Sender is in Wait0 or Wait1 there is exactly one internal signal in the system.

This is the invariant which should be considered for every transition in the system

Initially:

1. Initially it holds trivially since the start transitions of Sender and Receiver do not pro-
duce any signals and Send0 is entered by Sender.

Sender:

2. (Send0,e) Assuming 0 internal signals before transition, it produces exactly one, 
ing 1 internal signal.

3. (Send0,B0) Not applicable since we are assuming 0 internal signals.

4. (Wait0,B1) Assuming 1 internal signal before transition, it consumes one and prod
one, leaving 1 internal signal.

5. (Wait0,B0) Here there are two cases, in both cases we assume 1 internal signal a
which is consumed:
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5.1 Produces 1 internal signal (A0) and remains in Wait0 requiring 1 internal signal. 
This is OK.

5.2 Exits to Send1 without producing anything. that leaves 0 internal signals an
this is OK for state Send1.

6. The Send1 and Wait1 transitions are symmetrical to the Send0 and Wait0 transitions 
and thus they preserve the invariant.

Receiver:

7. We know that Sender must be in Wait0 or Wait1 because otherwise there is no intern
signal present for the Receiver to consume. All transitions of the Receiver consumes 
an internal signal and produces another. The invariant holds.

8. Thus we have proved that in Send0 and Send1 there are no internal signals and thu
receiving B0 or B1 is definitely an error.

Conclusion Conclusively it seems that the easiest and strongest approach, at least in this cas
describe the impossible transitions as saves. The reduction shows that the transitio
actually impossible. This holds because all the internal signals are saved in the sta
most practical solution is probably to combine the exception approach and the sa
approach. If the designer really thinks that the transition is impossible, the implem
tion could issue a warning and then perform a save as recovery.

4.5.4 Bounded resources – Mn on a finite system

An implementation of an SDL system in real life has to have several limitations co
pared with the ideal world of SDL[11; 12]. In our context the limitations on the num
of processes and signals are of major importance. The number of processes is co
in more detail in Section 4.3.6 (p. 160).

Assume that there is a fixed maximum number of signals for each channel. The nu
needs not be the same for all channels, but for each channel it is fixed. The moni
system checks that the limit is kept and calls an exception if the number exceeds
limit. This means that there is a finite set of complete states. The queues of intern
nals are no longer of any length. This implies furthermore that M0 suffices in theory. The 
Mn-procedure collapses to an M0 execution where the execution is cut off whenev
initial internal queue has reached its limit. If we can keep the channel signal numbe
its small, this may be an attractive approach.

In a situation where the channels are bounded, and data can be handled symboli
the system is finite state. This means that in principle confluence can be decided
exhaustive simulation. It depends on the chosen size of the channel limits and on
communication structure of the system whether this strategy is applicable. If exhau
simulation seems too laborious, we may of course apply random simulation and ac
a certain statistical significance for our confluence conclusion.The big advantage
this approach is that there will be no problem with unreachable non-confluence pa
since only reachable states are examined.
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5. The Mn-approach in practical engineering

The examples given earlier in the thesis are fairly small and theoretical systems. 
can the Mn approach be adapted to more practical engineering environments?

Systems are made and modified by humans. This fact is often overlooked in conn
with validation and verification. The issue should not be for the proof theorist to as
“correct” or “not correct” for a given system, but to assist in improving the system q
ity. Instead of applying immensely complicated verification techniques on a bad 
program, the program should be made simpler such that an automatic verification
nique could be applied.

In this chapter we develop a reference model for the nature of real, reactive syste
Section 5.1 (p. 178) and we apply this to evaluate how the Mn-approach would wo
real, reactive systems. summarized in Section 5.6 (p. 223) and to develop a meth
system engineering which emphasizes the integrated use of the Mn-approach in S
5.3 (p. 199) which we call “confluent design”. In Section 5.2 (p. 192) we describe 
expectations for applying the Mn-approach to real systems. We make a simple es
tion model for the execution of the Mn-procedure and develop a concept of perce
complexity reduction. In Section 5.4 (p. 217) we report from a small case study of a
ing the Mn-approach to a part of a real system at Siemens AS. In Section 5.5 (p. 
we discuss how Mn-tools should be built.
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5.1 The Nature of Real Reactive Systems

Here we postulate what real systems are like, how they are made and how they a
ceived. Our aim is to find out whether there is an interesting class of real systems 
could be analyzed by the Mn-approach. We conclude that there is such a class o
systems.

5.1.1 What is a real, reactive system?

A real system is being used, or will be used. A real system is implemented on some 
ware and actually executed. A real system could be sold on the market.

Systems which are not real systems, but which still may be very interesting, are sy
for education, systems for joy and play and non-implemented systems i.e. system
which have been specified, but not implemented. Typically such systems have be
abstracted considerably (Section 4.3.3 (p. 157)) and a practitioner may not feel c
that the system reflects the problems of a corresponding real system.

A reactive system is a system where the immediate behavior is directly dependent u
the most recent stimuli received. The system reacts to the stimuli and outputs cor
sponding signals to the environment. The key characteristic is that a reactive sys
preoccupied with behavior which is caused by the consumption of input signals.

That a system is reactive is also very much a matter of how we decide to perceiv
system. The same system may be perceived as reactive when studying the signall
the reactions, and as a (static) database system when focusing on data structures
storage of data.

A personal computer system with its windows and mouse has definite reactive ch
teristics, but it may also be considered a data storage system, a mathematical mo
system, a typographic tool, or a video editing machine, depending on its use.

5.1.2 What is typical for real, reactive systems?

Having defined the notion of a real, reactive system in Section 5.1.1 (p. 178), we 
tinue to characterize properties which seem to correlate in practice with real, reac
systems.

The Mn-approach is defined to cope with systems specified in SDL. SDL systems
reactive as they are based on finite state machines and signal interaction. Thus we
limit ourselves to finding typical characteristics of real SDL systems. As pointed o
Section 1.2.2 (p. 3), SDL has been used extensively in the telecom area (for which
developed) and telecom systems are perhaps the most typical reactive systems fo
the Mn-approach is useful.

5.1.2.1 Size

Telecom systems are big. Telephone switches used to be some of the largest pie
software ever made. Now rumors are that the newest windowing systems are eve
ger, but they are also reactive systems even though they are hardly specified in S
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The size of computer systems can be measured in a number of ways. The numb
independent components is one metric, while the total number of lines is another
not very important for our purpose to go in great detail about what metric we use to
sure size, because we want to emphasize that size is not synonymous with comp

Still the pure size of a computer system usually creates problems for automatic ve
tion techniques.

5.1.2.2 Independent components

It is also typical for a reactive system that it contains a set of concurrent devices w
are operated in true parallel. The personal computer has its mouse and its keybo
input, together with telephone lines and computer network. Some machines may 
have video and audio input and output. The interaction between these independe
devices and the management of their cooperation give rise to many challenges.

Real, reactive systems are composed of independent, but interacting components
though they may be interacting such that the graph of channels forms a connected
this does not mean that every external input activates all the components. Normall
a small portion of the components are involved when an input is handled.

In a system of concurrent and independent components, the flow of signals, which
ally determines the flow of control in reactive systems, is very important. While m
approaches to system analysis focuses mainly on static (data) structures [36; 29]
Mn-approach concentrates on behavior.

5.1.2.3 Nesting

By “nesting” we mean that system structure concepts may have a recursive defin
In SDL blocks may contain blocks, and in the end a block contains processes. In 
Charts [54] states contain states. Thus the structure of a system becomes a tree s
(or a directed acyclic graph). Such structures are well suited for optimization of tra
als. Compositional reasoning becomes very attractive [132].

Whether real reactive systems are nested structures depends on the principles u
describe them. SDL systems and systems described by StateCharts are often ne
because the languages allows and encourage it, while systems described by OMT
and implemented directly in C++ [130] will be less nested because OMT and C++ is
oriented towards nesting.

5.1.2.4 Data

A system of communicating finite state machines have the power of a Turing mac
[13; 23] which is sufficient to be able to describe systems where progress (termina
is not provable. Therefore from a theoretical point of view there is no need for data
ables of the SDL processes to describe systems where the Mn-approach will mee
problems.

For a practitioner, the data variables add flexibility and expressive power which m
the descriptions more compact and easier to understand. But data variables will a
more easily create specifications which are more difficult to handle by automatic 
fication means.
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Real reactive systems will normally include a considerable amount of data variable
only in few parts of the systems there will be complicated algorithms or complicat
administration of data. In many cases the data-intensive parts of the reactive sys
have been isolated either as subsystems or in operators. Subsystems may be de
in data-intensive notations such as database languages while operators are often 
in programming languages such as C.

5.1.2.5 Heterogeneous

We cannot expect to use one kind of methodology for all parts. The combination 
methods must be exploited.

We may find systems where data play fairly isolated and minor parts, but seldom
tems where data variables are absolutely absent. We may find systems where th
approach can apply to almost all of the system, but rarely a system where the Mn
approach is all you need.

5.1.2.6 Real Time

Real systems operate in real time. Transitions do have duration and even the me
sumption of signals (or even the save operation) takes time.

We call a system a real-time system when the actual duration of time or the actual 
in time are significant. SDL only provides timers to cope with real time. Timers is 
imperative attitude towards time. We would also like to have means to describe c
straints on time or in general statements about time associated with the specifica

Real systems’ descriptions have real-time constraints mainly in comments and info
auxiliary constructs.

5.1.3 How are real systems made?

Here we want to characterize how real systems are made related to how the Mn ap
can be effectively used in system engineering.

In Section 5.1.2 (p. 178) we characterized real, reactive systems from a static po
view. We characterized systems as they are and not how they develop. We characterized 
the way they functioned and not how they were described. In this section we shall 
describe the dynamic, development dimension and in Section 5.1.4 (p. 185) we s
evaluate the representation dimension [90] (how systems are described relative t
they actually appear).

5.1.3.1 System analysis – the use of different descriptions

In this section we shall point out a few properties which are related to the early ph
of a system development and to the fact that a system is described in many diffe
ways. In Section 5.1.4 (p. 185) we shall go into how different description forms ar
related to how well they are understood.

System development methods which are based on formal methods, like FOCUS 
and VDM [87] tend to hypothesize that it is possible to develop systems by descr
an abstract system first, verify this as far as possible, and then refine this descript
small steps into a perfect implementation. This is a very naïve understanding of ho
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tem development is performed. Even if they in footnotes agree that this one-way 
paradigm is hardly likely to succeed and that “iterations” are needed, the impressio
is still that every “iteration” or modification is something which is due to imperfecti
of the actual system development.

Our basic reference model is different. The earliest phases is not characterized b
abstract and formal specifications. The earliest descriptions are vague and without
detail, but they contain important concepts and give indications of what the syste
should look like in the end. In our SISU Integrated Methodology (TIMe) [12; 58] w
recognize the dialectics of practical refinement. From the initial descriptions there
both a need for more precise descriptions and a need for more detailed description
ure 112 (p. 181)). These two needs require different means, and they are definite
different, but they are interdependent. Still it helps to keep them apart as it clarifies
the pure top-down approach is doomed to fail, and that its modification cannot be u
stood as “iterations”.

Make more 

precise

To make more precise descriptions can be divided in three subtasks: to formalize, 
row and to supplement.

To formalize means to transform the description from an informal one to a formal 
This is non-trivial in itself. It involves the definition of concepts and work on interp
tation of phrases.

During formalization it becomes clear that the original informal description was w
than intended since it implicitly supposed a “friendly” interpretation. Since formal n
tions normally do not have the necessary informal interpretation context, it is nece
to supply the description with definitions which narrow the interpretation possibilit
It is also common that formalization discloses that there are interpretations which
nobody had thought existed. Narrowing cuts away those interpretations which are
incompatible with the overall purpose of the description.

Formalization and narrowing may also discover that there are “holes” in the descrip
Aspects of the system has not been covered by the informal description. It is poss
label this “underspecification” by saying that uncovered aspects means that all int
tations of this aspect are within the description and what we need is narrowing. Th
however, not the way it is perceived by the developer who is trying to make the de

The Whole The Precise

The Details

make more detailed

Figure 112: The Whole, The Precise and The Details

make more detailed

make more preciseThe Precise Details

make more precise
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tion more precise. He distinguishes easily between concepts which are present, b
wide, and concepts which are needed, but non-existent. The non-existent concept
be supplemented.

It is conceivable to perform this branch of the development (“make more precise”) 
out performing the other branch (“make more detailed”), but it may not be optima
the precision branch has been carried out, the result is a formal description on the
level of detail that the original informal description had. Then we are at the point w
the formal methodologies want to start.

Make more 

detailed

To make more detailed can also be divided in three subtasks: to decompose, to b
down and to reveal.

To decompose means to find which structural components the system is compris
This is in itself not a trivial task. It is not obvious what structural parts a system is 
prised of, one cannot merely look at the system and see it. The components are d
through the purpose of the whole system and by the way the system is described
decomposition principles of SDL and StateCharts lead to different components. Fu
more there may be several alternative decompositions within the same conceptu
framework.

While trying to reach the definition of components, the breaking down of behavior
terns and communication may become an issue. Behavior and structure are dual
related. A certain behavior may require a certain structure, and a certain structure
limit the behaviors possible. Still to divide the substance of the system is not the s
as dividing the behavior. Decomposition is timeless, while breaking down involve
timely behavior and sequencing of communication. The practitioner will very often
form decomposition and breaking down in parallel.

While decomposing and breaking down, structural and behavioral details are def
This development can be compared with applying a magnifying glass even thoug
designer himself is making reality as he progresses. When we find more details, w
discover that new aspects become relevant. With higher granularity, some details
too small and insignificant to be included, while now they may be as significant a
details. Still these new aspects are not necessarily obvious “parts” of the already 
described systems. We say that we reveal underlying aspects.

As the precision branch could be performed without the detailing branch, symmetr
the opposite can also happen. Then we are left with a detailed informal descriptio

Distillery Having performed both the precision and the detailing branches, we have a detail
mal description. Recognizing that the two branches may happen in parallel, that t
influence each other and that performing one branch before the other may not be
most fruitful approach, we must have some means to assert that the precise and d
result is a good enough result.

It is reasonable to believe that the precise and detailed description is not perfect.
two development branches have been performed in parallel, the by-products “pre
whole” and “detailed whole” may not be present. A distillery purifies the source. In
respect it means to work from the detailed and precise description and the original
mal specification to form the precise whole and possibly the detailed whole.
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Between the precise whole and the precise details there should be a formal refine
relation which should in principle be asserted. The informal description of the det
can be used as comments to the formal ones, and as informal starting points of th
ing of the next level of abstraction. In Figure 113 (p. 183) we summarize the distil

development strategy.

Metrics of complexity and aesthetics of the description should also be used to mak
descriptions proper for the next phase of description. In this final task, the descript
again modified with the evaluation metrics and the need to make a proper refinem
relation as inputs.

Iteration? That the distillery approach represent a kind of iteration is not correct. Iteration m
something which is repeated. Here we have not described repetition, but a set of
which interact and mutually influence each other. That the mutual influence also im
some loops is obvious, but it is not the main point. 

The major difference in thinking is that our approach accepts as fruitful the interme
descriptions which will not be maintained. Corrective measures are an integrated p
the development process.

5.1.3.2 System design – the dynamics of system development

The Main 

Description

A system description consists of a number of different documents which are made
ferent notations. This is recognized by all methods. Sometimes the multitude of 
notations become a nuisance for the designer and we find in practice that the diff
notations do not have the same weight. Very often there is one fairly complete no
which is the main notation, and the descriptions in this notation become the main 
ments. Traditionally the main description has been the program itself. Subsequen
maintenance and corrections are made directly on the program and the design an
ifications quickly become archaic and partly incorrect. Fortunately the advent of sy

Figure 113: Distillery

abstraction
level

time

precision

details details

precision

distill prove refinement

Precision = formalize, make more narrow, supplement

Details = decompose, break down, reveal
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development techniques with code generation such as SDL-oriented methodologie
44; 59] and OMT-oriented ones [118] have shifted the weight from implementation
entation to design orientation.

Continuous 

develop-

ment

Real systems are never finished. They are maintained before they are delivered. D
and development of a piece of software is a very incremental process. Correction
improvements are combined with new features. Changes take place all over the s
to achieve a new purpose. This means that reachability of a certain system state 
very robust. Some work has been done to analyze the effects of many small chang
ple effect) [139] such that the need for a total validation analysis can be avoided.
fact is, of course, that a total validation is not performed for every change reques
because validation efforts are often very time consuming and expensive.

Concurrent 

develop-

ment

Design development is highly concurrent. Large systems can only be made by la
organizations in the time frame available. Several parts of the total system are deve
in parallel, but the different parts are not necessarily at the same level of maturity. 
parts turn out to be more complicated while other parts are simple.

Plans and 

reality

Projects are always late. Either they turn out to be late in real time, or they becom
in working time which means that overtime and extra resources have to be applied
predictability of development progress is a major concern of technology manager

5.1.3.3 System validation – how to believe they work

When a system is going to be delivered, it is necessary to try and assert that the 
works according to the expectations. We focus in this dissertation on verification 
means for asserting correctness in systems, but we also have realized that real s
are normally not verified in any formal sense of the word.

How is the system and its description validated? How do the developers reach th
clusion that the system and its descriptions are correct and appropriate?

- User error reports. The system is shipped once it runs at all. First it is shipped to
house people, then to beta-sites and then to regular customers. They all report
which they find when they are using the system.

- Systematic testing. The system is systematically tested before it is shipped. The 
ing can either be relative to a test specification, or it may be relative to the exper
of the testers. In the first variant all different outcomes of a test have been give
determined verdicts while in the latter variant the verdict is given in parallel with
test by the experienced tester.

- Formal proofs. The system is proved correct relative to a formal specification. A
transformation of the system description is based on formally defined transform
rules.

- Walkthroughs. The system is validated by human examination of the system 
description.

User error 

reports

Too often it seems that the in-house validation is not as thorough as the customer 
The “hotter” the features of the system, the more anxious the companies are to shi
ucts to a market, and the more tolerant the users are with system defects. The con
“beta-sites” resembles the painting of a fence in “Tom Sawyer” by Charles Dicken
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Tom Sawyer needed to paint a fence, but by persuading his friends that painting w
from boring, he managed to make his friends do the penalty paint job for him. Beta
are likewise “friends” of the software company believing that it is very beneficial fo
them to perform extensive testing of an immature product.

Systematic 

Testing

Traditionally testing was the only means by which the company asserted the correc
and usefulness of their products. Testing will probably always be an important sou
validation and the art of testing has become more scientific [52; 105; 24].

In real life testing is not done optimally. Even though serious companies may have
systematic ways to perform testing with all kinds of recording and special test team
the truth is often that testing is limited to the time available in the end before deliv
When the time is up, companies may resort to the “user error reports” category.

Formal 

proofs

Very few systems have yet been formally verified, but their numbers increase. Es
cially in very technical problems, it is possible to state adequate and formal requirem
which can be verified through automatic or semi-automatic means. WE refer to [10
a collection of formal methods applications in industrial settings.

Walk-

throughs

In recent years it has become more popular to try and perform some validation inte
with the development. In the rigid step-oriented development methods, such as V
[87] and CleanRoom [39; 110] advocate the necessity to assert the step transition
through validation.

Since formal verification lacks tools and practical feasibility, the most cost-effectiv
way to perform validation seem to be by walkthroughs [63]. There are a number of
structured ways to perform thorough analysis through the use of reading teams an
designer scrutiny [50; 140; 51].

5.1.4 How are systems described and how are they understood?

In this section we present a framework for describing system descriptions and for u
standing how descriptions are being understood. In Section 5.1.3 (p. 180) we 
concentrated on the synthesis of system descriptions and how they evolve, but he
look at the fact that systems are not made in isolation. Systems are developed in
and there is a necessity that the team members understand what other developme
neers are expressing. Just as it is important that a description expresses the inten
designer, it is also important that the description is intelligible for others.

We shall go through a number of dimensions of descriptions which we find signifi
and give examples how languages, methodologies and system descriptions can 
placed in this framework.

5.1.4.1 The language dimension

A good language is not good just because it is expressive wrt. a given domain, a 
language is good for a number of purposes.

Syntactic 

form

How does the language describe the core of the problem? How is the syntax suita
supporting the understanding of the core of the problem?

- Is the syntax graphical?
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- Can the core ideas be sketched such that the remainder can be built upon it withou
much changes?

- How much is the understanding dependent upon natural language identifiers (or 
excessive commenting)?

Modern system analysis and development methods use a graphical syntax at least
early phases. SDL[78] and MSC[86], StateCharts[54] and OOA[29], OMT[118] an
UML[Rumbaugh, 1996 #272] are all very graphical. Graphics seems to improve t
structural overview, but decreases the compactness such that a description beco
more easily overcrowded.

Whether the languages are “sketchy” is more difficult to assess. Some of the com
analysis notations could be said to be merely sketchy as they cannot be code-gen
to an executing system. SDL – on the other hand – is a language which performs r
ably well as a notation for sketches as well as it may develop the sketches into a 
consistent and complete SDL description.

The need for natural language identifiers and comments is dependent upon the to
well as the language. Informal notations, and notations with very few basic buildin
blocks normally need auxiliary information in the form of natural languages. More
mal notations as SDL and StateCharts are not so dependent upon natural langua
supplements.

Very mathematical notation is again dependent upon commenting when it is used
system description.

Evolution-

ary aspects

The evolutionary aspects of a language is related to how changes in the descriptio
carried out. What impact does a change have in the description? Is there a reaso
correspondence between the perceived significance of a change and the amount
change needed? The evolutionary aspects of a language is also dependent upon
design of the system, but languages have different ways to cope with changes.

- Pure modification: the system is changed in a number of places. No trace of the
former system can be found. The changes are not marked.

- Specializing: the evolution amounts to specialization of an existing concept.

- Similarity: the change is a new concept which is similar to an already existing o

- Parameterization: the change depends on parameterization of an existing conce

- Granularity: the change demands more detail to the description.

While some languages like SDL and common third generation programming langu
like C++[41; 130] have strong structuring mechanism for both substance and beh
other languages work best on small systems or with large pieces of paper. Object
tation is commonplace in system analysis today while the more formally inclined 
notations like VDM, Focus and Z[64] have put less emphasis on structuring 
mechanisms.

Topology The topology of the description relates to the geometrical structure or the referen
structure of the description. How would a reader browse around in the description

- Locality: how much can be understood from looking locally, and how much is de
dent upon changing view frequently?
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 also 
- History dependence: how important for the understanding is the execution histor

- Structure intuition: does the description structure correspond to the substance a
behavior structures?

- Extrinsic relations. how does the language express relations between objects o
same level, peer-to-peer relations?

- Intrinsic relations: how does the language cope with relations which are intrinsic
the understanding of systems, the MAGIC relations? (See below and [56])

Languages based on explicit states are fairly history independent as the current st
resents the execution history. Such languages include SDL and StateCharts. Lang
with independent and asynchronously communicating components such as SDL c
understood fairly locally while some object-oriented notations seem to motivate fo
descriptions where the execution context change very rapidly, and it is necessary
low the slings and arrows of the execution. Auxiliary invariants are needed to facil
local reasoning. The structure of an SDL system description is very similar to the 
ture of the running system. Again very dynamic descriptions in object-oriented 
languages may have the effect that the structure of the actual system only vague
resembles the structure of the description. Complexities of the actual system may
well hidden within pointer structures that are hard to spot in the description. Also fo
notations tend to hide complexities in aesthetically pleasing and compact formula

How are the peer-to-peer relations described? Are there explicit relations such as
ciations in UML[113], or pointers? If there are pointers, are they unqualified like in
or qualified like in Simula?

The intrinsic MAGIC relations between processes are:

- Meta-relation: when one process modifies the description of another. This kind 
relation is not normally found in programming languages, but it is found in 
LISP[137]. This kind of relation is becoming more interesting as modification of 
tems (reconfiguration etc.) must take place during continuous execution becau
stops of the systems (such as telephone switches) cause great economic loss a
rity risks.

- Aggregate relation: which is the plain “consists-of” relation. It comes in many dis
guises and is present in some form or another in most system description lang

- Generation relation: which in this context means that one process generates oth
processes. Object-oriented languages have this as one of the most important re
and mechanisms. In SDL processes may create other processes, but higher le
structs block cannot create other blocks.

- Identity relation: when processes are similar. Object orientation defines inherita
which is a variant of this relation. The identity relation also covers virtuality (po
morphism) and overloading of operators. To express similarity is very importan
limit the description and validation efforts during maintenance.

- Concepts: to distinguish between singular processes, process sets and process
Older languages like SDL-88[25] had problems with the distinction, and this can
be seen in more modern entity-relation oriented notations like OOA[29].
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Semantic 

form

How a description is understood is dependent upon the appearance of the descri
and the expressiveness of the language, but it is also very much dependent upon
defined semantics of the language.

- Declarative: the language appears as a set of predicates which is supposed to b

- Imperative: the language appears as sequences of instructions to machines.

- Mixed: the language is an interleaving of declarations (invariants) and imperativ

- Formal semantics base: the language is based on a formal semantics.

Declarative languages are typically the more formal notations (which then definite
have a formal semantics base), such as Z, VDM and Focus. Imperative language
those which resembles programming languages such as SDL. Mixed languages 
found also in the programming world such as Abel and Eiffel[101]. Also more pra
matic system description languages such as SDL and MSC may have a formal sem
bases[79; 98; 82; 109; 117; 68].

Communi-

cation

How does the language describe communication between processes?

- Communication strategy, is the communication asynchronous or synchronous or m
both strategies be applied.

- Communication means, is communication performed through signals, shared var
ables or remote procedures?

Languages often choose a specific communication strategy with associated mea
CSP[71] uses synchronous handshaking as was also adopted by Ada. CCS[103]
describes synchronous communication which seems to be the preferred model fo
mal notations. SDL and MSC describes asynchronous communication with signal
SDL can also use remote procedures to simulate synchronous communication.

5.1.4.2 The user dimension

Users of the descriptions come in different categories. We must expect the users t
different competence and different interests and different inclination.

The 

program-

mer

The programmer focuses on sequencing and loops. He specifies imperatively the com-
munication and the variable assignments. He has an imperative approach to time
timers as well.

The 

specifier

The specifier likes axioms and invariants to describe the situations in a system. He ge
eralizes with quantifiers and uses symbols of foreign alphabets. Instead of loops,
understands repetition by recursion, and instead of sequencing he understands beha
as a function from input to output.

The team The designer team is interested that interfaces are described properly. Furthermore th
independence of the different components is important.

The 

observer

The observer wants to understand, more than to influence by creating. He is main
interested in the transparency of the description. As a manager he may also be interes
in asserting progress in the development of the description.
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5.1.4.3 The problem dimension

How well is the problem understood before the design starts?

- The technical problem: the problem is well understood, and the work is mainly to f
malize the problem and to implement it.

- The explorative problem: the problem is reasonably well understood, but there ar
aspects which need to be discussed and clarified.

- The vague problem: the problem is not well understood, there may be differences
opinion and conflicting interests. There is a definite need for improved insight.

5.1.4.4 Comprehension profiles

To give a picture of how comprehension is achieved we define a set of ideal comp
sion profiles: the deceptive profile, the aha profile, the steady profile and the 90%
syndrome profile. These profiles are intended to describe types of understanding 
opment for an individual. A set of comprehension profiles make up a comprehens
body. We want to use the comprehension profiles to formulate how understandin
changes over time and to relate this to the language, user and problem dimensio

The generic comprehension profile in Figure 114 (p. 189) shows that understandin
be perceived differently by the person than what is really the case. For the person
sum of the proper understanding and the misunderstanding makes up his percep
understanding since he has no way to assert his misunderstanding.

Deceptive 

profile

The deceptive profile (Figure 115 (p. 190)) is characterized by the fact that the pers
believes that he understands considerably more than what is actually the case. The
of this may be that he acts with too much self confidence, or that the system gets
delayed, or that it is eventually implemented in an improper way.

proper understanding

misunderstanding

full knowledge

time

perceived understanding

Figure 114: Generic Comprehension Profile
Practitioners’ verification of SDL systems 189 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29



The Mn-approach in practical engineering
The Nature of Real Reactive Systems5

nding 
rofile 

f 
hich 
os-

f the 
rofile 

ngly 
erstand-
the 
m it 
cus-

le rise 
pment 
ing is 
an 
where 
les 
Aha profile The aha-profile (Figure 116 (p. 190)) is characterized by a sharp rise in understa
at some unforeseen point in time (the aha-experience). The problem with the aha-p

is the unpredictability of the aha-experience. If a comprehension body consists o
mainly aha-profiles, the participants will have very varied comprehension levels w
will imply much overhead with discussion and conflict. Still the true aha-profile is p
itive as the aha-experience is very inspiring and encouraging for the remainder o
study effort. The more predictable the aha-experience is in time, the more the aha-p
resembles the steady profile (see below).

There is also sometimes a possibility of a “false aha-profile” where the person wro
believes he has had the aha-experience, but in fact there is a sharp decline in und
ing and massive misunderstanding. This is the worst case of mismatch between 
perceived understanding and the actual one. If the false aha-profile exists in a tea
will most surely exist in combination with true aha-profiles and the conflicts and dis
sions will be even more confusing.

Steady 

profile

The steady profile (Figure 117 (p. 191)) is characterized by a steady and predictab
in understanding. The rise is not necessarily linear, but the clue is that the develo
is predictable from a fairly meager prediction base. The amount of misunderstand
small and spurious. The steady profile gives rise to no surprises, but sometimes 
increased understanding is hoped for in the project. The project leader of a project 
the profile body is full of steady profiles may hope that he has a body of aha-profi
right before the burst of aha-experiences.

Figure 115: Deceptive profile

Figure 116: Aha-profile
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90% syn-

drome 

profile

The 90% syndrome profile (Figure 118 (p. 191)) is characterized with a quick rise
90% of full understanding, but the latter important 10% understanding takes far m
time than expected. The problem with the 90% syndrome profile is that it may be

interpreted as the steady profile with a pleasantly short time frame. Not enough eff
put into covering the last 10%. A project with a body full of 90% syndrome profiles m
spend an enormous amount of time not believing the last 10% are really there.

5.1.4.5 The system development dimensions and the comprehension profiles

The comprehension profiles are correlated with a number of other dimensions. In
ual differences play an important role, but also our development dimensions lang
user and problem are correlated with what comprehension profiles one could exp
find in a project.

Deceptive profiles are most frequent where there is a mismatch between the prob
the user and the language. A problem which is vague, a user which is an observer, 
not be offered a language approach which focuses on declarative, formal and tex
documents. Conversely a problem which is technical, a user which is a specifier s
be using a language which has a formal semantics base and is capable describin
intricate aspects of the problem.

Aha-profiles are e.g. found in projects with premature use of formal techniques. Fo
techniques are characterized with focus on languages with a formal semantics bas
where formal proofs are the major approach to validation. Formal techniques see
require a certain state of mind to understand, and this happens to different people
ferent times. The problem is well understood (a technical problem). That helps in
establishing the positive context for reaching the aha-experience.

Figure 117: Steady profile

Figure 118: 90% syndrome profile
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False aha-profiles occur almost always in situations where there is a pressure to a
the aha-experience. A programmer in a project with a majority of specifiers may f
compelled to admitting that he does understand the issue, even though he does 

Steady profiles are the safest ones. They occur in traditional programming and in
ification work using imperative languages like SDL and simple notations like MSC
They give little surprises, but sometimes the project leaders want faster progress
development.

90% syndrome profiles may occur when a project estimates the problem to be tech
while in fact it is explorative (or even vague). The misinterpretation leads to inadeq
resources for the last, but important 10%. Sometimes the last 10% understanding
a lot of resources of validation. When the first 90% were reached quickly it is eas
ship a product before it has been adequately validated. The poor customers keep
ing errors for a prolonged time.

We try and summarize system development in Table 9 (p. 192) which shows three
types, the formal technique, the programmer’s approach and the sketchy attitude

table shows “ideal types” which means that in reality there are few cases exactly 
ones in the table, but we believe that these “ideal types” represents centers of gra
clusters of system development approaches. In a given project it may be wise to a
sketchy attitude in the earliest part of the project and a programmer’s approach la
the problem turns out to have aspects of pure technical character, a formal techn
could very well be applicable.

5.2 The Mn-procedure on Real Systems

5.2.1 The two facets of Mn

One should be aware of the two quite different faces of Mn:

1. As a way to make reductions, which in turn may be used

Table 9: System development ideal types

formal technique
programmer’s 

approach
sketchy attitude

languages Mathematics, Z, 
VDM, Focus

SDL, MSC, C++, 
Simula, Java

OOA, OMT, UML

semantic form declarative imperative mixed

user specifiers programmers, team observers, team

problem technical explorative vague

validation proofs systematic testing walkthroughs

comprehension aha, false aha steady, 90% aha, deceptive
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us does 
- for analysis of enclosing levels (Section 4.1 (p. 143)),

- inside other techniques (Section 5.3.8.5 (p. 217)),

- as an aid to understanding (Section 5.3.6 (p. 209)).

2. A technique to reveal engineering problems and errors

- potential errors (Section 5.3.7.3 (p. 214)),

- complexities (Section 5.2.2 (p. 193)).

It should be noted that Mn was created mostly to serve the first purpose. Still in pra
wanting Mn-tools, the second purpose is equally important. For engineers who wa
use the Mn-approach, there is less risk to use it to find problems than to find reduci
This follows from the fact that to find reducibility, all intricate as well as trivial proble
encountered must be solved either automatically or manually.

5.2.2 Complexity expectations

We discussed the theoretical complexity in Section 4.4.2 (p. 165). Here we want to
sider the practical complexity which we should expect in real systems if they are a
have supposed in Section 5.1 (p. 178).

Complexity come in three variants:

- Complexity of the Mn-procedure

- Complexity of the system under analysis

- Complexity of the reduced process

These three variations are not independent, but not perfectly correlated either.

5.2.2.1 Complexity of the Mn-procedure in Real Systems

Since the Mn-procedure executes transitions which are the same transitions as th
the system under analysis, it is reasonable to predict that the complexity of the M
cedure is comparable with the complexity of the system. We have also shown in Se
4.4.2.2 (p. 166) that the execution of the Mn-procedure is comparable with an exh
tive execution of the system itself. Since it is not obvious from just looking at the sy
under analysis how complex it is, we shall use the presumed correspondence to 
the complexity of the system in Section 5.2.2.2 (p. 197).

General Here we want to discuss how the complexity of the Mn-procedure relates to the ty
characteristics of a real time system as described in Section 5.1.2 (p. 178). Size is 
tant for the analysis. The Mn-procedure is not extremely dependent upon the size
system as it scales well. As long as the different components of the system are rela
independent, the size is not a limiting factor by itself. Large size is also be counte
anced by nesting where each block can be proved reducible on its own. Complica
data expressions and especially if the behavior is dependent upon decisions wher
complicated data expressions are used, may increase the complexity of the Mn-p
dure considerably since all kinds of non-determinism adds another dimension to th
procedure. Restructuring of the data involved or abstractions (c.f. Section 4.3.3 (p. 
may be necessary to be able to perform the analysis. That a system is heterogeneo
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not really affect the Mn-procedure as it works only on communicating finite state 
machines. Other models and description techniques will have to use other verific
techniques as well. A partial analysis or a conditional analysis may be the solution
ers are also a source of non-determinism and complicates the Mn-procedure.

As pointed out in Section 4.4.2.2 (p. 166) the overall complexity of the Mn-proced
is very much dependent upon the expected number of execution levels (either lev
within the same generation or in several generations). We pointed out that the exp
number may be dependent upon both psychology and system architecture. It is our
that the psychology of the designer is more limiting than the system architecture.

Number of 

generations

Let us first look at what the reasonable maximum number of generations may be
recall from Section 4.4.2.2 (p. 166) that the number of generations can be expect
correlate with the communication structure of the system since we expect to perfor
Mn-procedure piecewise.

Let us therefore assume that we have a fairly simple system architecture where th
basically a sequence of processes. Let us assume that on a certain potential non
ence pattern in the first process we detect a sequence permutation on the chann
the second process. Let us also assume that the designer is conscious about this s
permutation possibility. He knows that he may compensate for this sequence per
tion in the second process. Otherwise he can make sure that the sequence perm
does not become worse. This will normally mean that the signals involved in the 
sequence permutation of the first process are independent in the second process
introduce more sequence permutation among these signals in the second process
most probably go beyond the designers capacity to handle mentally. If we assum
the designer does leave the original signal permutation alone in the second proce
goes on to the third, and the same argument can be put forwards for that process
sooner rather than later the designer must seek to compensate the sequence perm
The farther the compensation is from the origin of the sequencing problem, the m
probable it is that new complications enter the scene, or the designer loses contro
sequence permutation.

Let us summarize. We think that a designer cannot voluntarily introduce more tha
sequence permutation without compensation and not lose control of the logic. It i
sible to have some distance between the introduction and the compensation, but
usually not longer than one or two processes. Since the communication structure
sponds closely with the generations in a piecewise execution of the Mn-procedur
conclude that the number of generations for real systems will not exceed 3 or 4 an
be successful wrt. reducibility.

In already existing systems where the Mn-approach has not been used as guidelin
expect to find that the introduction of sequence permutation is not intended, and th
compensation is either unplanned or due to some hidden invariant.

Number of 

execution 

levels

Let us now turn to the execution levels within a generation. The criterion for contin
to execute in one generation is normally the state different criterion. This means 
from a potential non-confluence pattern, the two branches lead to a pair where the
states are different. Still the two complete states of the node are supposedly equa
some sense since we want to prove confluence. We may also assume that stabil
is all right. Usually the state different node is a situation where there are signal seq
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differences as well as the basic state difference. The basic state difference compe
the signal difference. Very often to change generation is not so attractive because
next generation alphabet is easily non-parallel (Section 2.4.5.2 (p. 61)) due to the 
ence in basic states.

The Mn-procedure fans out quickly on continued execution within a generation, an
are looking for the reversal of the state difference on every branch. If more complica-
tions are introduced during such an execution, the designer is sure to lose his ove
Therefore for every signal in the alphabet, either the state difference is reversed o
kept. If it is kept, the states are possibly changed, and there is another chance on t
level. Again we do not believe that the designer is able to have a conscious attitu
more than a very small number of such levels (i.e. state transitions).

Sometimes external stuttering resolves such a state different situation. The stutte
cycle is expected to be very short, often only one signal.

Conclusion Conclusively our educated guess will be that the number of levels of one generat
could normally not exceed the 3 or 4 without obvious chances that the designer ha
control. Altogether, we would expect the total depth of the execution from one pote
non-confluence pattern not to exceed 5.

Complexity 

estimate

From what we have said above, we could make the following very rough estimate
model:

1. The number of processes is p.

2. The number of basic states per process is on the average s.

3. The number of external signals per process is on the average e.

4. The number of internal input channels per process is on the average c.

5. The number of internal signal types per channel is on the average i.

6. Non-determinance factor is n. The non-determinance factor is how many more nod
there are on the next level of execution due to non-determinism. E.g. if every tr
tion contains a non-deterministic decision which branches in two possibilities, t
factor is 2.

7. The non-conformity factor is f. The non-conformity factor measure the number of
nodes which need another level of Mn-procedure compared with the total numb
nodes on this level.

The number of potential non-confluence patterns is t=(p*s*(e*c*i + i*i*c*(c-1)/2)). The 
number e*c*i is the number of potential non-confluence patterns involving an exte
signal and i*i*c*(c-1)/2 is the number of non-confluence patterns involving two intern
channels. t is also the number of nodes on the first level. The number of nodes nee
another execution level is t*f, and the result of another execution level from these no
will result in (t*f*n*i*c) new nodes. The level factor is thus a=f*n*i*c. If we accept 5 lev-

els as the maximum we get the following total number: T=t*(1+a+a2+a3+a4).

We have here applied the assumption (c.f. Section 4.4.2.2 (p. 166)) that a new exe
level within a generation or a new generation give approximately the same final r
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The estimate will be even better if we instead of using averages for parameters s,e,c,i 
used actual values for each process and then calculated the number of potential n
fluence patterns t as a sum of the individual values for each process.

In Table 10 (p. 196) there are some examples of what the estimates turn out to be

We see that the number of channels to each process is very important for the tota
ber of nodes. The number of internal signals per channel is likewise extremely de
for the estimated number of nodes. If we assume that it takes 10 ms to produce a
resolve a node, it takes almost 3 hours to resolve the Real System 1 in Table 10 (p
The Mn-procedure is, however, easily distributed since the analysis of every pote
non-confluence pattern is independent. Put 3 machines to work, and it is done in 1

We also notice that in this model there is no gain by compositional application of 
Mn-procedure unless there is reuse of block types within the total system.

The estimate is also an estimate of the execution of the Mn-procedure if the chan
had been bounded to maximum 5 signals, and the execution was only M0 execut

We conclude:

1. For small systems the estimate is not very good. It is better to take the actual v
for each process and estimate from there by adding the individual estimates.

2. The complexity of the Mn-procedure is estimated to be mostly dependent upon
number of channels into each process and the number of internal signals on e
channel.

3. The non-conformity factor is also very decisive and it is hard to estimate witho
proper empirical data. Changing it from 0.1 to 0.05 in the Real System 1, make
estimate decline by a factor of 10. It is typical that real systems have much sm
non-conformity factor than theoretically interesting examples such as the Altern
Bit Protocol or the Brock-Ackermann example.

4. The numbers of nodes are large, but not necessarily devastating.

Table 10: Mn-procedure complexity estimates

Example p s e c i n f t T

process D 1 3 1 1 2 1.0 0.3 6 14

block ABP 2 3 1 1 2 1.5 0.3 12 49

block Tk 5 1.2 1 1.2 1.2 1.2 0.2 10 15

imaginary system 1 20 10 2 2.5 7 1.2 0.2 25 K 10 M

imaginary system 2 20 20 2 1.5 7 1.2 0.2 15.8 K 1 M

imaginary system 3 20 20 2 3 5 1.2 0.2 42 K 10 M

real system 1 7 5 3 3 8 1.2 0.1 9.2 K 1 M
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5.2.2.2 Complexity of the system under analysis

Having developed the estimation model in Section 5.2.2.1 (p. 193), we can now w
the opposite way. From starting the Mn-procedure analysis we may estimate the 
plexity of the system.

Our basis for complexity estimation is simply the set of initial nodes of M0, called Z0. 
The main categories are just the categories of the evaluation known from Section 2
(p. 57).

1. Confluence. We suspect that a very large majority of the nodes will fall in this ca
gory. If all nodes fall in this category our system is “commutative” and directly 
reducible as discussed in [92].

2. Non-confluence. This is the most critical verdict. Either there is a design error, or
need to apply other techniques to prove that this node is unreachable.

3. Sequence permutation. There is a sequencing problem on an internal channel lead
out of the process under consideration. It is necessary that subsequent process
pensate for the sequencing problem. It is likely that a generation change is nee
establish confluence. The possible exception is when external stuttering can be
as confluence criterion.

4. State different. There is a difference between the two basic states in complete s
pair of the node. Compensation can be achieved by continuing on this generat

Complementing these four main categories there are some subcategories related
fact that a real system is not as simple as the basic systems handled in Section 2.

5. Omitted. We run into default transitions when determining Z0. In general we cons
execution of default transitions harmful and consider that an exception. This is
we consider this situation confluent, but exceptional, and it should be reported
preferably mended.

6. Double-sided error. We assume that the system contains error exceptions. If bot
paths from the potential non-confluence pattern to the elements of the pair in the
of Z0 go through such error exceptions, we consider the node confluent even th
the error exceptions may not be equal. The system is certain to end in an error
the potential non-confluence pattern is reached. If we are able to prove reducib
and the reduction contains no error exits, we can conclude that the double-sided
could not occur.

7. Single-sided error. If only one of the two paths leading to the node under analys
goes through an error transition, we have a single-sided error. This is not as “a
tive” as the double-sided error. Still we consider single-sided errors also conflu
and the reducibility will be conditional (see Section 4.5 (p. 171)). If there is a ne
for a recovery for such single-sided errors, we advice to use save as the recovery. A 
given error transition of course may turn up in a large number of different node

8. Warning. A warning is a situation where either one or both sides of the node re
internal warnings. Still the situation is not considered fatal by the designers, an
monitoring system is not taking over, which means that the internal recovery is
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sidered satisfactory. We shall consider these situations like normal situations, b
do not require that both sides of the node issue the exact same internal warnin
one-sided warning is more worrying than a double-sided warning.

9. Save problems. Save is the only legal way to permute signals in SDL and therefo
practical. But save offer new problems. The save problem is when one path of
complete state pair in the node ends in a save, and the other contains two con
tions and no save. We characterize this as sequence permutation (or possibly 
different). The save problem nodes are considered harmful and changes shou
made if possible.

10.Non-determinism problem. Non-determinism is a source of complexity, but not ne
essarily a source of error. Relative to the Mn-procedure an added difficulty is th
becomes more problematic to distinguish between state different and sequenc
muted situations since each element of the pair is comprised of several comple
states. We characterize such a node by the term “non-determinism problem”.

Each node of Z0 can be characterized by these categories. Some nodes may even
several categories. It is possible to produce a normalized complexity profile, which will 
give an overview of the process and an indication of the workload of Mn-procedu
cover this process wrt. reducibility by using the data of the profile as input to the e
mation model of Section 5.2.2.1 (p. 193).

The estimated total number of nodes could be used as a complexity index, but since the 
estimation model does not distinguish between more than the main categories, it
pay off to create an index which is tuned to the application domain of the system u
analysis. We feel that a linear combination of the categories probably gives a goo
indication.

5.2.2.3 Complexity of the reduced process

Even when the system is reducible, the reduced process may not appear very sim
Here we want to discuss when reduction does not seem to reduce perceived com

Perceived complexity is definitely important when the reduction is intended to be 
for improved understanding as discussed in Section 5.3.6 (p. 209). Perceived comp
may not be very important if the reduced process is only used as a preprocessor fo
methods Section 5.3.8.5 (p. 217).

We have to develop a more precise notion of what we shall understand by “perce
complexity” of a process (CFSM). We could try and evaluate the process accordi
the criteria laid down in [11], but those criteria are not very absolute. We believe a b
strategy is to try and measure how much the process has been reduced. The idea
if the process has not been very much reduced, chances are that the result is no
ceived as less complex.

Since a finite state machine consists mainly of states and transitions, we concent
these aspects. Furthermore we add criteria for non-determinism.

1. Compute the ratio rs between the number of basic states of the reduction and su
the numbers of states of the processes of the original unreduced system.

2. Compute the ratio rt between the number of transitions of the reduction and the s
of the number of transitions of processes of the original system.
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3. Compute the ratio rd between the number of decisions in the reduction and totally
the original system.

The reader may be puzzled about why we apply the sum rather than the product t
bine numbers of the original system. The combined process where no reduction ha
performed would have figures equaling the product of the numbers. Our intention,
ever, is to capture “perceived complexity” or “the complexity which meets the eye”.
feel that it is not until one starts to simulate the execution that the sense of the pr
turns up. What meets the eye is the sum.

Let us in Table 11 (p. 199) see how the reduction manages in our toy examples.

We shall not make too vivid conclusions from the figures in Table 11 (p. 199), but
very successful reductions the ratios may be quite small. We consider the ratios v
small if they are less than 0.5. If the ratios are higher than 1, the reduction is not v
successful in terms of reducing the perceived complexity.

A dissatisfactory perceived complexity may also indicate that the system under an
is not a very good unit. It is possible that reconsidering the boundaries of the block 
result in a more satisfactory reduction.

5.3 Mn Methodology

Traditionally verification is a process which takes place after the designers believe they
have a correct program. They experience, however, that correctness is hard to ac
Verification leads to necessary changes even though the verification techniques a
necessarily targeted to improve the design. Their major aim is to determine the ass
correctness of the specification. Very often formal verification techniques must wor
abstractions rather than the real system because “implementation details” confus
verification issue. There is of course some danger that abstractions do not closely
spond to the real system, or that the removed details are more significant than 
anticipated (see also Section 4.3.3 (p. 157)).

The methodological impact of verification has, however, been recognized for man
years. Early formal verification inspired by Hoare logic [69; 32] led to methodolog
programming guidelines such as “gotoless programming”. Furthermore the exper
from projects involving considerable amounts of formal verification is that much 
improvement is gained by the insight needed by the verification effort [108; 127].

Table 11: Perceived complexity reduction

example rs rt rd

process D 1/3 = 0.33 1/9 = 0.11 0/0 = 1

system ABP 2/6 = 0.33 2/10 = 0.2 0/4 = 0

system T1 2/6 = 0.33 5/10 = 0.5 0/0 = 1

system T2 2/7 = 0.29 4/12 = 0.33 0/0 = 1
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Our Mn-approach is in the tradition of “gotoless programming”. We believe that a 
able design improves the quality of the design as well as the chances of succeedin
the Mn-approach to verification and validation. If we should make a slogan to des
our general approach it must be “confluent design”. A major point is that if the veri
tion fails to decide the quality of the system under analysis, the blame is not put o
verification method or the abstraction, but on the design. The reasons for Mn-proc
failure are analyzed and the designer should have to defend the adequacy his 
specification.

5.3.1 The Mn-approach assumptions: “confluent design”

“Confluent design” is based on some assumptions of how good quality design loo
Our assumptions are based on the descriptions of the nature of real reactive syst
Section 5.1 (p. 178) and the reasons for complexity described in Section 5.2.2 (p

5.3.1.1 Race conditions

Race conditions are usually harmful if they imply non-confluence. Non-confluence
means that the haphazard order of signals is significant for the final result of the sy
We believe this to be harmful because a system should have a purpose. This pur
not haphazard, but definite. Still this does not mean that the signal output from th
tem has to be deterministically inferred from the input signals. We accept that there
be sources of non-determinism, such as alternatives induced by decisions and tim
We do not, however, normally accept that the relative speeds of the processes sh
introduce non-determinance.

This is a methodological standpoint and not entirely inferred from the difficulties of
Mn-procedure. Our attitude is that at least non-determinism should be explicitly s
and thus explicitly wanted. Race conditions represent a form of “hidden non-dete
ism”. Even when we explicitly specify a state as a merge state, it is still not certain that
the in principle possible alternatives are actually possible.

For the expressiveness of our approach it is important that we can also express ra
ditions which are considered appropriate such as in specifying the Brock-Ackerm
example (Section 3.5.4.2 (p. 109)) and the RPC-Memory example (Section 6.3.1
239)).

Accepting race conditions as appropriate should not be common. Acceptable rac
ditions should be expressed explicitly by the merge state mechanism (Section 3.5.4 (p
106)).

5.3.1.2 Reducibility

SDL blocks should normally be reducible. The block concept of SDL may be use
a number of purposes [11 p 208], but they all emphasize that a block is a unit whic
be conceptually understood by itself. This is not sufficient to require that they shou
reducible, but it indicates that reducibility should be probable.

Our standpoint that SDL blocks should be reducible is again a methodological sta
point which will make it simpler to analyze (by the Mn-procedure) SDL systems a
hopefully also to achieve an understanding of the system.
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5.3.1.3 Complexity

It is our assumption that complexities in the establishing of reducibility reflects co
plexities in the system as such. We have not as much discussed the complexities
establishing progress, but we have given some insight into the presumed psycho
behind making non-confluent systems in Section 5.2.2.1 (p. 193).

We believe that our complexity profile presented in Section 5.2.2.2 (p. 197) gives a
approximation to real complexity and that the quality of the software will be impro
if the values on the complexity index is decreased.

5.3.1.4 Data

Data represents a major problem for our technique. It is important that data algor
are structured such that they do not interfere with the Mn-procedure as such. Our
assumption is that it is possible to package data in ways which make it possible to
good use of the Mn-approach.

This is according to how we perceive the nature of data in Section 5.1.2.4 (p. 179
the ways data can be handled as discussed in Section 3.6 (p. 117).

5.3.1.5 Time constraints

Even though real, reactive systems are also usually real time systems, it is not ne
ily such that time constraints play an extremely important role in the design work.

One reason for this is that the worst case scenario is often easily spotted. An impl
tation of this scenario is then tested and if the time constraints are not satisfied, 
optimization alternatives include hardware alterations as well as common softwar
optimization.

A second reason is that practitioners will normally use surveillance timers instead
in addition to intricate reasoning about response times.

We assume in the following that for a large and interesting class of real, reactive sy
we can assume that reasoning with time constraints is not necessary.

5.3.2 How to ensure Progress?

As mentioned several times in this thesis, progress is important for the Mn-appro
but it is not the main theme of this thesis. Therefore our suggestions regarding pro
are tentative and should be supplemented with other techniques.

5.3.2.1 System structure for progress

The system structure is the topology of the system as a whole. How are the compo
connected and what signals pass through the channels? How is the nesting struct
how are the object-oriented features used?

Progress is violated by feedback loops which never terminate. The possible existe
feedback loops is therefore interesting. A system structure where the channels fo
dense web of bidirectional connections is susceptible to many feedback loops. O
other hand a sequence of processes connected by unidirectional channels form a
ture which is virtually without feedback loops. The problem with complicated, web-
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system structures is that the feedback loops may be difficult to isolate and they m
so involved in each other that the total number of feedback possibilities becomes
large.

Therefore the Mn-approach wants simple architectures where feedback loops are
isolated. We realize that for a practitioner’s verification, we shall have to settle for
than formal proofs of termination. This means that it is even more essential that the
back loops are well isolated and simple to perceive.

5.3.2.2 Process behavior for progress

The actual feedback loops can be found by trying to apply the signal ordering crit
presented in Section 2.6.4.1 (p. 80). A by-product of the search for the signal ord
criterion is a directed graph where the cycles indicate possible feedback loops. H
isolated the feedback loops, we need proper means to ensure the termination of th
back loops.

Decisions Very often termination of a loop is dependent upon a decision where a data expre
finally reaches a specific value. Sometimes this is trivial to ensure like for a count
variable running from some very low number to a finite and constant higher boun
Other times it may be very intricate to prove that the data decision is actually goin
be reached. In such situations we suggest to abstract the data from the decision b
ducing a fair decision (see Section 3.5.3.2 (p. 103)) where the exit branch has po
probability.

Timers For a practitioner, it is common to resort to timers in order to ensure progress. In 
implementation there may be two kinds of timers, timers which are integrated in th
tem and described in SDL, and timers which are used only for surveillance and w
resides in a monitoring layer.

The integrated timers (see Section 3.7 (p. 119)) induce non-determinism which co
cates the Mn-procedure and sometimes timers make the specification more diffus
less comprehensible. On the other hand they are part of the SDL specification an
expiration is considered normal rather than exceptional. The important distinction i
the expiration of the integrated timers cause merely internal recovery actions, whi
expiration of monitor timers triggers actions external to the SDL system.

The alternative approach is to have the monitoring layer introduce timers which a
intended exclusively to monitor progress. Whenever the timer expires, this is consi
an exception and the monitoring layer will perform recovery actions which are exte
to the SDL system. The advantage of this kind of ensuring progress is that it doe
affect the SDL system itself. The progress is determined conditionally and so will re
ibility be. Either the system acts according to the reduction or an exception is calle
a monitoring timer.

To choose one of these two timer strategies, it is important to have an idea of ho
mal the timer expiration is. If the designer believes the timer will expire sometimes
integrated strategy should be used. If the designer believes that the timer will nev
expire, the monitoring strategy is applicable if it is available. We refer to Section 5
(p. 206) for more discussion on a layered approach.
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A special kind of monitoring timer could be a timer which monitors the saves. In order 
to ensure strong progress, it would be interesting that the saved signals are not sa
ever. Therefore a monitor timer associated with each save could be practical.

5.3.3 How to ensure Confluence?

Confluence is our business! Confluence is what the Mn-procedure detects, and c
ence is what makes race conditions harmless. We also believe that a confluent sy
more transparent than those which are non-confluent.

5.3.3.1 System structure for confluence

We should make all merge situations explicit. This means that we prefer that cha
go all the way to a process (or block) rather than merging with another channel o
way. When there is a merger of input channels, an implicit merge component mu
inserted for the Mn-procedure. A basic fair merge component results in sequence
mutation such that the actual process receiving signals from such a fair merge 
component should compensate for the sequencing problem.

In general a web-like system structure will have more input channels into each co
nent process than more linear structures. Since we know from Section 5.2.2 (p. 19
the number of input channels is very deciding for the complexity of the Mn-proced
our advice would be that one should look into whether the communication structu
could be simplified such that the number of input channels decreases.

To decrease the number of channels is not necessarily to the benefit of confluence
increasing the number of output channels actually makes it simpler to achieve co
ence (see Section 4.1.1 (p. 143)). For an internal channel, it is both output and in
channel. Therefore it is not obvious whether confluence becomes more difficult or
difficult to determine if an internal channel is removed (or added). As a rule of thum
channel should be used for each individual communication dialog [11].

The structure is also easily analyzed by Mn-procedure if many of the processes are
multi-lane processes or channel-state mapped processes. These Mn-friendly cate
of processes are described in Section 5.3.3.2 (p. 203).

The designer should also be careful with using the same signal types in many dif
places in the system. Especially if the same signal type may appear on several di
channels into one process, this means that the SDL process cannot actively disti
between signals of the two channels. Very often it is desirable to control the seque
of the channels by saving all signals of all but one channel. There are of course sit
where this concern does not apply.

5.3.3.2 Process behavior for confluence

Since the Mn-procedure works quite well in a piecewise manner, it is likely that go
structure within the processes is more important for confluence than the structure
communication lines in the system.

First we define two categories of processes which are confluent by definition.

Multi-lane 

process

A lane is a tuple of the one input and zero or more output channels of a process.
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A process is a multi-lane process if it is possible to find a set of lanes such that:

1. There are no overlap between the channels of different lanes of the process.

2. Each transition of a process defines flow on exactly one lane, meaning that the
is from the lane’s input channel and its output merely onto the lane’s output cha

3. What happens next on a lane L on input I is not affected by any intermediate tr
tions on other lanes than L.

That such multi-lane processes are always confluent, is simple. All initial nodes w
confluent since the independence between the lanes is strong both with respect to 
and states.

It is actually the case that a lane is a specialization of an SDL service. An SDL se
has its own state space and their sets of input signals must be disjunct. Our lane c
has in addition that also the sets of output signals must be disjunct and that the s
must be on different channels as well. Our third criterion corresponds to the servi
having their own state space.

In practice multi-lane processes come in even more specialized classes. Either the
process has only one state, or every lane except one is defined through an asteri
which means that their underlying service state space has only one state.

Having identified a process as a multi-lane process, it is reasonable to consider w
the process should have been divided in several services or subprocesses.

Channel-

State 

mapped

A channel-state mapped process is a process where:

For each state, only inputs from one channel is acceptable. For all other inputs
either define save or internal error.

Conversely this means that for every input channel there are specific states in wh
input from this channel is legal. Input from this channel at other times will result in in
nal errors or saves.

It is obvious that a non-confluence pattern cannot occur in such processes becau
legal input is restricted to only one channel at all points in time.

We need not be so restricted as the channel-state mapped processes, but to use 
internal error to restrict the race conditions is a good idea.

Save The simplest way to control sequencing is to use save. This will normally make it easier 
to establish confluence. Strong progress may be more difficult to prove, but weak
progress is sufficient for using the Mn-procedure to establish confluence.

Internal 

errors

Conceptually to apply a save is a way to describe that the signal may well appear at 
point, but the process is not ready to consume it until later, in a more suitable basic
Sometimes the designer want to express that a certain signal is not welcome at all
state, in fact its appearance should have been impossible. In SDL this cannot be 
expressed. SDL defines default transitions for every transition which has been lef
In practice internal errors are warned through raising an exception in some way an
a recovery is performed. If there is a monitoring layer, it is reasonable that this lay
takes over and resumes operation of the SDL layer at a proper complete state. P
a complete initialization and restart is the only proper action.
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Seen from the SDL layer, an internal error is something that should not have happ
but we are happy to have caught it. Confluence is often made conditional to the exis
of internal errors.

5.3.4 How to simplify Refinement verification?

Practitioners will claim that they perform refinement, but in practice the practitione
concept of refinement does not fully comply with our more formal notion presente
Section 4.2 (p. 146). The reason can be found in the way systems are actually m
described in Section 5.1.3 (p. 180).

5.3.4.1 The distillery and refinement

There are several reasons why refinement is not simple to prove in practice. If the
abstract description is informal and the implementation (normally) formal, there is
much we can do until we have distilled a formal, abstract description as well.

Even a formal abstract description may not correspond to the implementation. Th
son can be found in the subactivities of supplementing and revealing. The abstra
description has been made at a time where the understanding of the problem doma
less complete and where not all features of the product had been settled. When t
description is being made more precise and more detailed, it is also supplemente
new aspects revealed.

Some of this achieved knowledge can be described inside the interface mapping
not necessarily all of it. The final distillery is very much to make the abstract descrip
cover a comparable area as the implementation.

5.3.4.2 Using interface mappings

That the refinement mappings can be made in SDL as pointed out in Section 4.2.
147), makes it possible to perform formal refinement verification even for practition
The main problems with the refinement verification will be concerned with the dat
expressions and decision structures. It is probable that not all mapping and compa
can be done automatically.

We may assume that the abstract descriptions will often have non-deterministic d
sions where the implementation has decisions with data expressions. In general 
expressions will often appear only in the implementation as they are abstracted in
abstract description.

Making the interface mappings may in some cases also reveal new problems and
vide new understanding. Left out situations are highlighted by having to actually sp
the interface mappings.

5.3.4.3 Object orientation and refinement

Inheritance resembles refinement. There is an important difference, however, bec
we do not want the implementation to add more behavior to the abstraction such 
specialization does wrt. the general type. Inheritance can be used to describe an
ditional refinement relation only when the specialization merely specifies redefinit
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With this restriction on specialization, we can see that the compositionality of refin
ment corresponds closely to the default constraints on inheritance in SDL-92 as 
illustrated in Figure 119 (p. 206). SDL has as default virtuality constraint that the r

inition shall be a specialization of the default virtual. Let us assume the invariant t
inheritance is restricted such that it means refinement. In Figure 119 (p. 206) this m
that the redefined B (in C) is a refinement of the virtual B (of A). According to the c
positionality of refinement (Section 4.2.1 (p. 147)) we get that the encloser of the 
refinement, here C, is a refinement of the encloser of the refined, here A. This me
that the invariant is kept at the enclosing level.

We conclude that if all inheritance relations involve only redefinitions, and if redef
tions of virtuals are specializations of the virtual, we have that it is sufficient for th
refinement on the top level that there is refinement on all bottom level redefinition

Examples of this approach can be found several times in Section 6. (p. 229).

5.3.5 The benefits of a layered approach

In [56] there is a thorough discussion of hierarchies in system description and pro
ming. Here we shall only point out what hierarchies we take advantage of in our M
approach. We will discuss virtual machine layers, monitor layers, refinement leve
nesting trees and inheritance structures.

In general we can say that these kinds of hierarchies support more effective analys
more transparent results.

5.3.5.1 Virtual machine layers

A virtual1 machine is a an entity which acts externally as a machine meaning that
offers a set of services to the outside. This model corresponds well with our mod
interface refinement illustrated in Figure 95 (p. 148).

Typically a series of virtual machines are used to describe protocols in the well-kn
ISO OSI model. Each virtual machine is a protocol layer. As shown by the Alterna
Bit Protocol (see Section 3.5.3 (p. 100)), reduction of a protocol can result in a very
ple description. In fact in an OSI model we know that the lower level protocol is 
supposed to be understood as a simple signal on the upper level. If we want to sho
a plain signal on the upper level is made into a protocol on a lower level we use an
tation shown in Figure 120 (p. 207) of the general approach to interface refineme
such a protocol layer setting we have all reason to believe that reducibility of the p

1. Do not confuse the use of “virtual” in connection with “virtual machines” with “virtuality” in object 
orientation.

block type A block type C inherits A

virtual  B redefined B

Figure 119: Refinement and Inheritance
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col should hold as this is the overall purpose of protocols. We may be prepared to
for conditional reductions as pointed out in Section 4.5 (p. 171) as the protocol m
return errors instead of the wanted high level signal.

5.3.5.2 Monitor layers

We have pointed out a number of times in this thesis that our results may be condi
by the normal execution of the processes (e.g. in Section 5.3.3.2 (p. 203)). The id
that either the system fails, or it behaves normally and our verification results hold
verification results which we want to get are usually progress, reducibility and 
refinement.

For practitioners, however, there is a very important distinction which must be ma
here. There is a very big difference between assuming error-free execution and knowing 
that all errors will be caught. If we just assume normal execution, we say absolutel
ing about what happens if the execution for some reason is not normal. Practition
often find that they spend more time on the exceptions than on the normal execu
Stronger than assuming error-free execution is to prove that undesired behavior i
impossible. Practitioners will often consider this only slightly better than assuming
error-freedom since their experience tells them firstly that proving is very difficult, 
secondly that the sources of errors are often beyond the language semantics.

The Mn-approach is a practitioners’ approach, and therefore the catching of error
major importance. Again there is a distinction. Either the system itself may discov
error situation or there is an external monitoring system which detects the fault. Th
approach is based mainly on the system finding the errors itself, such as calling a
exception on impossible transitions. We do not, however, spend much time in this 
on proper recovery. Our assumption is that there is an exception handling system 
performs the proper recovery and brings the system itself back on track. Our only
attempts at recovery is to use save as recovery on impossible transitions. There is of
course full freedom to cover error situations completely within the description of t
system, but this means only that error handling is a part of the application and the
acteristic as an error is not significant outside the system.

[high level signals] [high level signals]

Translation

[(low level signals)] [(low level signals)]

InvTranslate

refinement

Figure 120: Protocol layers

block Protocol

Identity

Identity
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We also suggest certain external monitoring features such as monitoring the spe
transitions to ensure progress. Even though such monitoring is definitely external 
system, it must interact with the system to be able to monitor it. For instance if the
itor tries to control whether a loop takes too long, it must know when it starts, and
if it terminates.

We summarize: in the Mn-approach the verification results concerning progress, r
ibility and refinement may be conditioned by the detection of internal errors. To b
conditioned by internal errors means that either errors are caught or the system w
according to the verification results.

The classification of execution situations is shown in Figure 121 (p. 208). The main

approach is shown by the fat lines as unrecovered, self-detected, monitored exec

The monitor layer may itself be described as an SDL system, but this is irrelevan
this discussion. It only means that we could apply the very same arguments on th
layer.

5.3.5.3 Refinement levels

The identification of refinement levels help the structuring of the system and the 
improving of the relations between the early descriptions and the subsequent des
descriptions. As explained in Section 5.3.4 (p. 205) proper effect of refinement bet
early analysis documents and later design documents is dependent upon sufficie
tilling of the abstract layer. If the early descriptions are too informal or incomplete
refinement relation will be hard to establish.

Also within the design phase, it may be fruitful to establish refinement levels to en
that the development progresses in reliable steps. In the Mn-approach, however, 
not advocate that every development step is characterized by making another de
tion which is a refinement of the former one. As the distillery approach emphasize
(Section 5.1.3 (p. 180)), to get a good grip on the iterations and on the combinatio
different approaches may be of greater value. An important aspect of the Mn-app
is also that we advocate a continuous use of verification techniques to correct the
ing system engineering.

Execution

Assumed error-free Monitored

Self-detected Externally monitored

Recovered Unrecovered

Figure 121: Monitoring of executions

Undesirable behavior 
proved impossible
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5.3.5.4 Nesting trees

An SDL system is normally a very distributed system and its description is as distrib
as the system it describes. This property makes it possible to have a large numbe
ferent designers work in parallel with an SDL description. This again creates challe
concerning the consistency between the elements, and there is often a need for l
activities between different subdevelopments within a project.

That SDL has a nested conceptual structure makes the liaison efforts slightly eas
Liaison efforts can take place on a variety of concepts since the total system is a t
concepts. The Mn-approach supports strongly this distributed property. It is our att
that reducibility and refinement can be proved within any conceptual entity of the 
system.

Compositionality as described in Section 4.1 (p. 143) and Section 4.2.1 (p. 147) en
that results of lower levels of the concept hierarchy can be composed to results on 
levels. This means that analysis work done in one area of the project is not perfo
again when higher level results are sought.

5.3.5.5 Inheritance structures

Inheritance structures using object orientation represent layering of concepts which
be orthogonal to the other layering concepts covered in this section. As we have 
(Section 5.3.4.3 (p. 205)) inheritance may coincide with refinement, but it has valu
itself even when it does not coincide with refinement. As shown in Section 3.9 (p. 
inheritance and the Mn-approach work well together for mutual benefits.

5.3.6 Mn supporting understanding and reuse

Earlier in this section on Mn methodology we have concentrated on how the Mn-
approach can help such that the system descriptions are such that the system has
ber of desirable properties.We have described how the Mn-approach helps the sy
descriptions in making the best future system.

In this subsection we shall have a look at how the Mn-approach can be used to im
the way the descriptions can be used for the best future system development. Future 
development and maintenance are dependent upon the proper understanding of 
tem and the possibility to retrieve the suitable parts to maintain. Normally a well 
structured system which is good for itself has the best chances of being good als
maintenance, but there may be ways to improve it in the direction of understandin
ease of retrieval.

5.3.6.1 Understanding

Let us take understanding first. The scenario is that a new project member should m
himself familiar with a reasonably large part of the system. What would be the prefe
strategy? The common strategy is to give him a few very informal and very high l
descriptions of the whole system, and then – rather abruptly – leave him with the s
code (i.e. SDL description) of the block in which he will be assigned to do maintena
The new project member would like to be able to rely on the top-level information
gets. He wants to consider the description he gets as a correct specification of the 
which is correct. Then he wants to have similar specifications on every level of the
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tem down to the level on which he shall work. The common approach to project me
initialization at the best yields a aha-profile as defined in Section 5.1.4.4 (p. 189), bu
too frequently appears as deceptive- or false aha-profiles. What we want is a steady-pro-
file where the education of the new project member is fairly predictable. To obtain
confidence in the student, there is a need for descriptions on every level which is reliable 
and transparent. How can this be achieved?

The common approach to facilitating understanding of a piece of software is to su
it with either an informal description (comments), or a formal specification. The in
mal description has the major disadvantage that it cannot always be trusted. Furthe
it is not precise enough to give the answer to all those technical questions which m
asked on this level. The formal specification is normally written in another langua
than the system description itself. Often a “formal specification” is declarative while
system description is imperative (prescriptive). This requires that the newcomer m
able to handle also this supplementary language as well as the system descriptio
guage. Furthermore to ensure that the formal specification is reliable it is necessa
prove that there is consistency between the formal specification and the system d
tion. When this requires more than what can be done automatically we experienc
same as with informal comments – that the specification is not reliable.

The general experience as discussed in Section 5.1.3.2 (p. 183) is that there is on
description which is reliable, while all other descriptions are less reliable when the
not automatically derived from the main description. This does not necessarily me
that all descriptions but the main one should be abandoned. Alternative description
important roles during the system development as they form orthogonal views to 
description of the system which should be used formally to correct the main descri
After they have played this important role, their update during continued developm
is unfortunately often neglected and the description becomes unreliable.

Many practitioners will claim that even when the formal specifications are reliable
consistent with the system description, they are often not very transparent. Therefo
formal specification is often also abstracted so much that important system descr
details disappear.

All of this contributes to the confusion of the new project member.

The Mn-approach is that reductions are the best specifications. The advantages 

• The system designer needs only knowledge of one language.

• The specification can be automatically deduced from the full system descriptio

• All relevant details are present, with the possible exception of data abstraction

We illustrate the difference in approach in Figure 122 (p. 211).

5.3.6.2 Reuse

Ease of understanding corresponds well with the needs encountered in a reuse sit
Assume now that the engineer works with a problem and wants to know whether 
are existing types which could help solve the problem. How could he most effecti
retrieve and utilize such a set of components from the rest of the system or a libr

There are three interrelated questions involved here:
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1. How can suitable candidates for reuse be made?

2. How can suitable candidates be found?

3. How can a suitable candidate be used?

Making 

candidates

To reap the most benefit from the Mn-approach a candidate for reuse should be p
reducible and the reduction should be generated. We may also consider reducibi
indicator of quality in itself.

When a component has been proved reducible and the reduction has been produ
what more is needed to make the component suitable for reuse?

In practice it is not sufficient to have a reduction in order to be reusable. Reusable
ponents must be retrievable and transparent as well as having good quality. Here
some of the information that should be made available in the reuse repository.

1. Name of the component

2. Necessary context of the component. What is its encloser?

3. Informal description. Comments to the components.

4. Functional description as SDL process. Reduction of the full component.

5. Confluence robustness. Is it strongly confluent? (see Section 3.9.1 (p. 133))

6. Structure. If the component is a block, the first level block description.

7. Complexity profile as defined in Section 5.2.2.2 (p. 197). Complexity index.

8. Quality assurance figures such as test results and walkthrough minutes.

9. Auxiliary descriptions such as MSCs, test suites, invariants etc.

10.Full description of the component.

11.Pointers to implementation designs.

The name will be used for unique identification. The necessary context must be g
since reusable components are not always self-contained. There may be need fo
types available where it is supposed to reappear. The informal description is used
human recognition and for early screening in a large repository. The functional de

Common approach Mn-approach

an idea

comments system descr. formal spec.

an idea

comments
system descr.

formal spec.

system descr. system descr.

formal spec.? ?

maintenance maintenance
consistent?

reduction

distillerydevelopment

Figure 122: Reliable and transparent specifications
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tion is the formal specification of the component as a process. Confluence robustn
practical because it tells whether we may expect to find non-confluence patterns i
component when it is used in a larger context. The structure is an indication of ho
component is distributed. The complexity profile is a metric of the component and
should tell in a few words how difficult this component should be to maintain and 
build upon. Other quality assurance figures may also be compiled. The auxiliary 
descriptions may have been used for test purposes, or during design. Pointers to
specifications help give a total picture of the component. Naturally there is a need
the full description in SDL of the component, and pointers to implementation desi
are also helpful.

Finding 

candidates

Finding candidates for reuse is in itself a difficult question on which much literature
been and will be produced. It is the general question of finding something in a stru
of potentially similar matters. There are two main strategies, either initiate a searc
look in a structure. From a formal point of view the two strategies are not very diffe
as searching also means to look in a structure. The difference is the use of human

Let us first discuss the search strategy. Firstly we have the problem of describing
search criterion, what am I looking for? Secondly there is the problem of defining w
an item in the component database is close enough to be selected as a candidat
describe behavior in a searchable way is a challenge in itself. Furthermore, when
have specified the behavior that well, there is a chance that the bulk of the work ha
done anyway. In theory following the Mn-approach we have the following:

1. All items in the component base have a process description as its specification
means that all items are comparable in form.

2. The search criterion is specified as a process.

3. The match criterion is that the search criterion is a refinement of the database
ponent. The Mn-approach to establishing refinement presented in Section 4.2.
149) leaves some room to define “closeness” by how much the item lacked for
establishment of refinement. A component which is “close”, but not perfect, co
possibly be extended by specialization to a component which satisfies the 
requirement.

This application of the Mn-approach is very theoretical since we would never app
searching techniques if it were not for the fact that the amount of items in the data
is fairly large. Then performing a refinement for each comparison should be prohib
wrt. time even though it is in principle automatic. A hybrid approach is probably to
preferred. A coarse search is performed using structured comments as found in t
of attributes to a reusable component suggested above. Thereafter a finer filterin
done according to the suggested Mn-approach. We should also be aware that be
functionality seldom is the only valid criterion which is sought by the designer. Ot
relevant criteria are distribution, robustness, testability, access to component des
age, etc.

Automatic search in large libraries of suitable components is not the common situ
at this point in history. Most libraries are rather small and provided that they are f
well organized the designer himself acts as a search engine. He has not specified
search criterion in any great detail, it appears mainly as an idea in his head. From
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versing the structures in the item database which are supposedly logically establi
the match criterion is that the designer recognizes something that resembles wha
needs.

The question concerning this strategy is how the item base is best structured. Our 
answer is that the object-oriented structures should be well suited as item base tra
structures. As a people’s library is divided according to a taxonomy, object orienta
classifies concept the same way. The advantage of object orientation is that the c
cation scheme is reflected in the actual descriptions and not only in their documen

Using 

candidates

If the candidate is according to our requirements described above, the Mn-approa
use the reduction of the candidate for subsequent analysis according to the compo
ality of reducibility proved in Section 4.1 (p. 143).

We should also be aware that reusing a component in object orientation means t
slightly different things as pointed out in Section 3.9 (p. 133). The simplest way to r
a component is to make an instance of it. Then the external definition given by th
cess specification (the reduction) should be about all what is needed.

The more advanced form of reuse is when the designer creates a new concept w
inherited from the reused component. To ascertain that the candidate is applicab
normally need a closer look at the real component and not only at the reduction. S
the Mn-approach has been applied to all nested levels, we should need only to g
step down at the time and relate to the reduced version on that new level.

5.3.7 Mn-development

How can we achieve systems which are well structured according to the criteria?

We have discussed how the ideal Mn-friendly system specification should look, to
good structure to the system and to pave the ground for maintenance and further
opment. Now we want to sketch how the Mn-approach could be integrated into th
development processes as a core principle.

5.3.7.1 Mn awareness

For each unit of the system consider whether the Mn assumptions “Confluent des
(Section 5.3.1 (p. 200)) are supposed to hold. If they are not meant to hold, the M
approach should not be applied. We repeat the assumptions of confluent design here:

1. Race conditions are considered harmful if they imply non-confluence.

2. SDL blocks should normally be reducible.

3. The complexity of the Mn-procedure applied to a unit reflects the complexity of
unit.

4. Data can be abstracted or they can be packaged in ways which isolate the dat
lems from the problems of concurrency and communication.

5. Time constraints can be abstracted or easily tested.

Even with a general positive attitude to the Mn-approach there may be units whic
not fit with the Mn assumptions.
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An Mn-oriented development strategy will make Mn awareness a part of the projec
and the result of the Mn awareness process part of the project requirements.

5.3.7.2 Top-down Mn

By “top-down” we mean that descriptions on high structure levels are made befor
descriptions on lower structure levels. The Mn-approach is essentially a bottom-up
nique as it is described. Applying it top-down amounts mainly to perform the distil
approach as presented in Section 5.1.3.1 (p. 180) one step and then carefully che
step such that the distilled whole (the abstraction) refines to the precise and detaile
tem description. This careful checking is simply done using the bottom-up techniq

The Mn-approach gives little assistance to the creation of the implementation. Sinc
process definition on purpose has eliminated all signs of internal communication,
virtually impossible to produce a full system from the reduction. What is imaginab
that the total process definition and a structure definition which has come from other
sources together could have enough information to suggest the process definitions
components sketched in the structure definition. Something of this kind has been
for an finite state machine based model consistent with CCS in [111].

5.3.7.3 Bottom-up Mn

By “bottom-up” we mean that we use Mn to analyze blocks which have already b
made. We may also build up a “profile” of the component which tells more about 
component than whether it is reducible or not.

This is the most normal way to apply the Mn-approach, and we shall go through th
strategy, which is basically a bottom-up strategy, in Section 5.3.8 (p. 214).

5.3.8 Mn-strategy

A strategy is more an “algorithm” which should be followed by the developers. The
sequencing of the individual tasks is presented and countermeasures for non-con
ance situations in the system description are described.

5.3.8.1 Progress

We consider progress first. Since termination may be impossible to assert, we may
to settle for less.

1. Build a signal ordering. We assume that the signal ordering criterion (c.f. Section
2.6.4.1 (p. 80)) is almost met. We will find loops and we will find needs to anno
the signals (by channel names).

2. Consider every loop in the signal ordering graph. Termination of the loops should
one of the following (see also Section 2.3 (p. 50)):

- a data decision eventually exits

- a fair decision eventually exits

- a timer expires and the loop terminates

Each of the loops should be documented.
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3. Make sure that there is no data loop inside a process. This may in principle be impo
sible to assert, but then an abstraction with a terminating loop should be applie

4. Consider possible abstractions to simplify the progress establishment. Here typical
abstraction of data is applicable (see also Section 4.3.3 (p. 157)).

5. Strong progress should then be considered. Normally we settle for weak progress
there may be reasons to try and prove strong progress. Often weak progress a
reducibility make it possible to assert strong progress from the reduction (Sect
3.4.4 (p. 96)).

5.3.8.2 Confluence

Establishing confluence is the heart of “confluent design”. By establishing conflue
after having established (weak) progress, we can conclude reducibility. Even with
having established progress, the search for confluence may be of value. Either po
problems may be found, or the reducibility can be made conditional to assuming 
progress.

We also produce complexity metrics as by-products of our confluence search.

1. Categorize the components according to a very rough scheme (see also Sectio
5.3.3.2 (p. 203)):

- One-input-channel process (The process has only one input channel and there
it cannot show any non-confluence.)

- Multi-lane process (The process is actually a collection of “lanes” with one inp
and disjoint output. The clue is that the outputs are never merged.)

- Channel-state mapped process (The process is such that for each basic state t
is only one channel from which it accepts input.)

- Merge process (The process have potential non-confluence patterns which mu
considered more closely.)

The idea here is obviously that it is possible to perform this categorization very sw
and manually. The three first categories are all trivially confluent, while the last cate
is the only one that requires additional analysis.

2. Make a complexity profile of each merge process (see Section 5.2.2.2 (p. 197))

3. Order the merge processes according to a complexity index.

The complexity index gives weights to the different classes of the complexity prof

4. Take the most complex processes first and continue in the order of the comple

5. For each process proceed to analyze and possibly modify the critical points acco
to the following succession:

5.1 Clarify the non-confluent situations

5.2 Continue M0 on the “state different” cases

5.3 Perform generation change on the “sequence permuted” cases

5.4 Try and see if external stuttering (Section 2.4.5.2 (p. 61)) could be used o
generation changed cases which turned into non-confluence
Practitioners’ verification of SDL systems 215 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29



The Mn-approach in practical engineering
Mn Methodology5

ich 

 such 
 from 
h that 
 pro-
s. 
ns 

r of 
, but 
s such 
ls 

means 
 are 
sume 
way, 
stem 

151). 
the 
01 (p. 
er 
 lower 
 the 
r sig-

nly 
in 

-
ly 

t there 
he 
uction 
5.5 Analyze the auxiliary category situations

If confluence cannot be obtained this should be properly documented. A case wh
shows that there is actually an error should be produced.

5.3.8.3 Restructuring

When problems have been encountered, there should be redesign and correcting
that the problems disappear. Most often the problems and complexities originate
trying to do too much at the same time! And the cure is to restrict the behavior suc
only one course of action takes place at any point in time. Said differently, “merge
cesses” should be made into one of the other, more confluence-friendly categorie
Technically this means to apply save or internal errors such that the sequence of actio
are forced into a more restrictive pattern.

The reason for trying to do more than one thing at the time is that forcing an orde
actions will delay the action which came first, but which was unwanted. This is true
chances are that the effect in practice is negligible. Let us assume strong progres
that saving does not imply any chance of semi-stable states (where internal signa
reside in save-queue while there are no other internal signals in the system). This 
that even though the save implies a delay, the signals which are to be consumed
somewhere in the system already, possibly only nanoseconds away. Since we as
this is a real-time system, it has to be configured to cope with this kind of delay any
or else it should have given the signals involved opposite priorities. In a real-time sy
it is usually not much to gain by performing a service sometimes faster.

This kind of restructuring was what we applied to the example in Section 4.2.3 (p. 
The process V tries in Figure 100 (p. 153) to cope with any ordering of signals from 
two bounds checking processes. This was proved to be non-confluent. In Figure 1
154) saves were introduced such that V would check upper bounds checker before low
bounds checker, and keep alternating. This does give a short delay every time the
bounds checker finishes before the upper one, but it is reasonable to believe that
delay is minute. It is even possible to cope with accepting the lower bound checke
nal first, but thereafter wait for the upper bounds signal. This third version of V would 
still involve saves, and the chances of delay would be even less since delay will o
happen if the difference between the bounds checking is longer than a transition V.

We should also note that action ordering through use of save does not transform the con-
current system into a sequential one. Take the example system D of Figure 97 (p. 151). 
Even when all four processes are action ordered, N,ub and lb are one-input-channel pro
cesses, and V is a channel-state-mapped process, all the processes will be basical
active if the external input keep coming.

5.3.8.4 Iteration

When remedies have been applied, typically the block could change so much tha
is a need for a total iteration of the Mn-approach applied to this block. Return to t
progress step. The earlier conclusions on progress may have been upset by introd
of more channels and more saves.
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5.3.8.5 More or less Mn

The Mn-approach works well with all other methods. The Mn-procedure can eithe
serve as a “preprocessor” for other methods like Supertrace[73] or, the other way
other methods as aids for its own success. These outwards and inwards uses of 
techniques can also freely be mixed.

Outwards Use Mn as an aid to reduce larger systems such that common methods like Supe
(or its commercial counterparts[40; 136]) can be used where otherwise they woul
fer from state explosion. One problem is that the Mn-procedure should be used w
abstraction since the reduction should be a precise reduction of the original comp

It is also feasible that reductions could play a constructive role when walkthrough
140; 51; 63] are used as the main source of validation. Using formal reduction as 
of walkthroughs could mean that the work could more easily be divided. One team 
scrutinize the full structure where some reductions replace original subcomponen
Other teams may in parallel walk through the reduced components. Here it is impo
to realize that reducibility means neither that the description is correct nor that ever
nificant aspect of the original component can also be found in the reduction. The 
correctness of a component can only be found in its interplay with other compone
Non-functional characteristics like distribution, timing and implementation specific
details is more easily discovered in a separate effort.

Inwards Inwards use from the Mn-approach means to utilize other techniques to solve the 
sary problems encountered during Mn-procedure execution. These problems are
normally:

1. Progress establishment

2. Reachability (or rather non-reachability) establishment.

The other techniques work to solve the “proof obligations” which the Mn-procedure
left in its conditional reduction (Section 4.5 (p. 171)).

5.4 Experience from an industrial case study

The Mn-approach has as its major aim to constitute a bridge between the practical
of system engineering and the theoretical world of program verification. In this the
we have almost exclusively referred to experiences with the Mn-approach on exam
taken from the world of theoretical computer science. Our references to the world
software engineering are based mainly on the experiences of the author as a syste
neering consultant and as a researcher in engineering methodology.

The reason why strong empirical data cannot be presented in favor of the Mn-app
is due to the ever returning dilemma: the industry does not want to use a method w
good evidence and a proper tool, real empirical data cannot be achieved unless t
method is applied to real problems. Furthermore the Mn-approach has undergon
improvements all along and will find its final shape only through practical applicat
and the emergence of supporting tools.
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5.4.1 The experimental tool

Still we are not entirely without empirical data. We have also programmed a tool.
experimental tool was programmed in C++ [41; 130] in 1995 and helped discover 
of the general behavior of the Mn-procedure. The programming work necessary t
maintain the tool was considered too resource demanding compared with the furt
development of the approach. The tool was not integrated with an existing SDL too
therefore too much extra effort had to be placed in making basic software. See als
tion 5.5 (p. 222) for more on Mn-tool building.

5.4.2 The practical case

Having declined the possibility to be supported by a tool in our practical experimen
had to lower our ambitions wrt. establishing reducibility of a proper system. Our g
became to see if applying the Mn-approach manually within a short period of time c
give valuable feedback to the designers of the system.

We agreed with a department of Siemens AS., a branch of the Siemens corporat
Norway, to look into a part of a large piece of software which they had been prod
recently. To find a system with reasonable chance of giving interesting results, th
author had spoken with some of the designers to find a system where control and
currency was more central than data management.

A system was chosen which was within a domain where the author had worked as
sultant for the company earlier. The author had not looked into the SDL descriptio
this subsystem before. The author does not have any specialist knowledge of the
cation domain other than through the work done for Siemens AS as a consultant on
methodology [59; 61; 60]. This background is of interest to this case study becau
explains that the analysis, which was fragmentary and incomplete, was guided on
general knowledge of SDL systems and of the Mn-approach and not by knowledg
the application domain or the system itself.

The analysis took place on June 13. 1996 at Siemens AS in Oslo, Norway. The an
was performed on paper by the author using pre-made schemes to facilitate the r
ing of the Mn-procedure. The analysis took about 5 hours, followed by 1 hour discu
with the designers of the system to present the tentative results of the study and t
their reactions. Since the system description could not be removed from the prem
no proper reanalysis could be done after the discussion with the designers.

Since the size of the system was considerable relative to a short, manual analysis,
not consider progress at all, but concentrated on finding problematic situations re
ing confluence.

5.4.3 Main findings

The main findings of our experiment analysis were:

1. It was possible by manual analysis within very short time to find non-confluent 
ations which was considered harmful also by the designers themselves.

2. The system structure was fairly complicated, and was considered susceptible 
fluence problems.
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3. The complexity profiles of the processes were extremely biased towards the ca
ries confluent, one-sided error and double-sided error.

4. We found several processes to be multi-lane processes and channel-state mapped 
processes. (See Section 5.3.3.2 (p. 203) for a definition of multi-lane processe
channel-state mapped processes.)

5. Data guards played a significant role, and data abstraction would have simplifie
manual analysis.

6. The found problems were found with extremely shallow execution trees.

Even though we found non-confluent situations, we do not argue strongly that they
stituted errors. Some of the non-confluent situations found were argued by the des
to be non-reachable even though this was not simple to prove. Other non-conflue
uations was argued to be “in practice” non-reachable because they were depende
especially unfavorable timing. At least one situation was theoretically possible and
sidered harmful also by the designers.

The system structure was particularly complex concerning the merging channels, w
implies implicit fair merge components in an Mn-approach. There were very man
loops in the structure. How many of these structural loops that were also behavio
loops, we do not know since progress analysis was not undertaken.

The complexity profiles found were encouraging with respect to the expected app
bility of the Mn-procedure on real systems. Hardly any complicated situations with
sequence permutation and state difference were encountered. A reason for this w
the preferred simple process categories of multi-lane processes and channel-stat
mapped processes were found. In fact this empirical study triggered the definition
these concepts!

We found the problematic situations with extremely shallow execution trees. This m
in practice that already the initial state set Z0 told almost the whole story which indicate
that our complexity profile is very informative.

5.4.4 Some analysis details

The structure of the system analyzed is shown in Figure 123 (p. 220). There was n
cation in the system definition that reducibility should be excluded for any of the 
subcomponents. Neither was there any indication that reducibility was desirable. A
be seen easily from Figure 123 (p. 220), the feedback possibilities are almost end
since there are two-way channels almost everywhere. The two-way channels are m
used for protocols where the acknowledgment of the reception is used. This shoul
cate that even though the structure opens for very intricate loop structures, the 
behavioral structures are considerably simpler.

We found that very few procedures had states. Such procedures could then eithe
abstracted (i.e. eliminated for the sake of the Mn-analysis) or considered as expa
parts of a transition. The procedures were used mainly for rather trivial data 
initialization.
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We found that very many transitions were omitted in the SDL description. The desig
told us that the underlying run-time system (corresponds to our monitoring layer) w
consider them internal errors.

We found genuine multi-lane processes, but their multi-lane nature was not made
explicit by comments or structuring as SDL services.

There was a distinction between internal errors captured by the underlying suppo
tem and errors found and recovered within the system. Several transitions issued
“SysWarning”. The distinction between the two were not obvious, but a reasonab
guess was that the omitted transitions were considered absolutely impossible wh
SysWarning transitions were considered possible, somewhat harmful, but recover
This distinction is reflected in our complexity profile categories presented in Secti
5.2.2.2 (p. 197). 

We found that the non-determinism introduced by the data decisions was conside
We had no time to consider whether the use of data could be decreased, or wheth
was attractive to do. Neither did we consider data abstraction before we started th
ysis. It is certain that data abstraction would have simplified the manual analysis, b
do not know how simple it would be to find a proper abstraction.

Our analysis was almost entirely on M0 level only. And on the M0 execution we very 
seldom tried more than finding initial state set Z0, which means establishing the com-
plexity profile. The state different situations we found turned out to be non-confluen
stabilization such that there was no reason to continue on M0. We tried an M1 exe
once and the incomplete execution seemed to indicate that confluence would be 
During this execution we found that actual confluence would be dependent upon a
number of variants all being pairwise equal. The variants were due to arithmetic e
sions which were not trivial to compare.

Figure 123: Structure of the system of the case
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From the confluence search in the Mn-procedure we were able to detect similarit
inside the processes which were not explicitly indicated through e.g. calling a com
procedure. The similarities were needed for the benefit of confluence, but it was no
robust since the description was not structured to ensure the similarity.

5.4.5 The advice we offered

From our five hours analysis, we felt that we could offer some advice to the desig
They listened to the advice and accepted the arguments without feeling compelle
rush to change the already finished system which was tested to be all right.

We summarize the advice we gave to the designers:

1. Consider the system structure with the aim to eliminate channel merger.

This is just a technicality which can be done almost automatically, but which shou
followed by some consideration of the communication patterns. This is according t
position in Section 5.3.3.1 (p. 203) where we argued that merge situations should a
be explicit.

2. Review the system structure to see if the large numbers of channels could be 
decreased without really changing the goals of the communication.

Our worries were mainly concerned with some of the processes which received s
from very many channels. This is a source of complexity in our estimation model 
tion 5.2.2.1 (p. 193)) and correspondingly it is our standpoint that it is also a sour
complexity to the system. It would be a good exercise to assert whether this comp
is reflected in the complexity of the problem itself, or is added by accident.

3. Eliminate the found sources of non-confluence.

This of course is at the core of the “confluent design” presented in Section 5.3.8 (p.
There was especially one case where there was a possibility of problems with a r
mission in case of missing acknowledgment. Whether this was a real problem wou
dependent upon the assumptions made about the lossy transmission and about t
constraints of the system. The implicit assumption of the existing description was
repeated retransmissions would not be interrupted by late acknowledgments.

4. Make explicit the nature of multi-lane processes and channel-state mapped pro

This piece of advice was not expressed in these terms to the designers as the exp
from the case study helped define these categories (see Section 5.3.3.2 (p. 203))
experience showed that Mn-awareness of such “trivial” processes would help bot
the design and the subsequent validation of the processes. We found processes 
could have been divided into services, but this possibility was turned down due to
expected tool problems.

5. Make more explicit the difference between omitted (erroneous) transitions and 
ing transitions.
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The distinction between an erroneous transition and a warning transition is the di
tion between a situation where the monitoring layer should take over and a situat
where the internal recovery is normally considered sufficient. The Mn-approach a
ciates a layered approach to execution surveillance as described in Section 5.3.5
206).

5.5 Mn tools

As indicated by the complexity estimates in Table 10 (p. 196), it is hard to cover e
moderately sized system without an automatic tool. The examples of this thesis a
extremely small (but not uninteresting).

The main problem is that there are so many cases and each case may have a rea
large number of branches. The size of the endeavor and not the intricacy limits th
tems which can be handled manually.

This is not to say that manual analysis according to the Mn-approach is without v
In situations which are small, like our examples in this thesis, or in cases where o
mary goal is to find problematic spots in the system, like in our case study presen
Section 5.4 (p. 217), manual analysis can perfectly well do the job.

Still automatic assistance will always be a welcomed improvement. The more assis
the tool can give, the better, and we shall discuss what we may expect of an Mn-

It is reasonable to take an existing SDL tool as base. It has the ability to simulate
SDL system provided proper input. Validators execute the system exhaustively o
domly to detect undesirable situations. There are also tools where the user may d
the starting situation, and this is in fact what we need for an Mn-tool.

If we for one moment assume that there is no data and no non-determinism in the
tem, to simulate a system transition is identical to performing a step of the Mn-
procedure. An initializing module will set up all potential non-confluence patterns 
start executing. The two branches of the Mn-node resembles exhaustive simulatio
it needs not be absolutely exhaustive since our basic assumption about confluen
trees makes it possible to choose the most suitable execution order of the interna
signals. Following every new Mn-node produced there is the evaluation which mu
programmed, but this is trivial. This constitutes the most basic Mn-tool.

When we add non-determinism, there is a need to include the more complex data
tures into the tool. Since these structures are well specified (Figure 55 (p. 99)), it s
be a fairly simple step.

The most important additional tool module should now be the symbolic execution
data. The challenges of this module are plentiful. While the simplest version could 
or less just substitute the expression for the variable in an assignment and keep d
this without any simplification, more advanced tools would also try and perform s
simplification. Simplifying arithmetic is a full research area in itself and not a part 
this thesis. Even with a very rudimentary symbolic execution and the simplification
to the designer, the tool would get valuable added power.
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When we add symbolic execution the necessary size of each node increases and
pression techniques become more attractive. Smart data structures are not a part
thesis, but there is definitely some speed gain in keeping Mn-nodes in a database 
the Mn-procedure. If there is not enough room to keep it all in memory, virtual mem
or a caching strategy should also give considerable effect. Random traversal or b
hashing like for Supertrace, find no use in the plain Mn-procedure.

It is also possible to add heuristics which could optimize the execution of the Mn-
cedure. Since we may choose which internal signals to execute first, and which pot
non-confluence patterns to try first, there should be room for some quick evaluati
guide the choices. We may also use heuristics to judge when a generation change
take place and when external stuttering could do the job.

Finally the Mn-tool should as a by-product produce the complexity profile for each
component.

We conclude that an Mn-tool should be built on top of an existing SDL tool. Symb
execution must be added as a special module. Heuristics and other “smartmanship
be applied at will.

5.6 The Mn-method and the Nature of Real Reactive systems

Based on our conjectures of real, reactive systems in Section 5.1 (p. 178), how do
Mn method presented in Section 5.3 (p. 199) (possibly with the help of tools as su
gested in Section 5.5 (p. 222)) correspond to the nature of real, reactive systems an
development and conceivability?

5.6.1 Mn-method applied to typical real, reactive systems?

We present here our opinions about how the Mn-method match the characteristic
real, reactive systems. We consider how the Mn-method might change the outloo
systems, and whether the Mn-approach could be successfully applied as validatio
nique to existing real, reactive systems.

5.6.1.1 Size

The Mn-method will probably have marginal effect on size. We do make advice to
if the communication structure could be made simpler in Section 5.3.3.1 (p. 203).
main problem is probably to decrease the number of possible loop situations as p
out in Section 5.3.2.1 (p. 201). Sometimes multi-lane processes (see Section 5.3.
203)) could be split into separate processes with their own communication structu
This would increase the number of processes, but still simplify the communication
structure.
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5.6.1.2 Independent components

Independence among the components of the system has two contrasting effects r
to the Mn-procedure. When components are very independent, confluence is eas
established, but on the other hand, the perceived complexity of the reduction as d
in Section 5.2.2.3 (p. 198) is very poor. Dependent components imply greater prob
in establishing reducibility, but the potential benefits from the reduction is better.

Therefore the Mn-method does not favor any extreme. The point is rather that ind
dent behavior should be described in independent entities. There is not much to g
collapsing independent behavior into fewer processes.

5.6.1.3 Nesting

Nesting is definitely encouraged by the Mn-method (see Section 5.3.5.4 (p. 209)) 
the compositionality of reducibility (c.f. Section 4.1 (p. 143)) makes it possible to a
lyze a nested entity in steps. The inner ones are analyzed first, and then the encl
ones based on the reductions of the earlier analysis.

Confluent design emphasizes that each entity (block type) should preferably be c
ent, and this is most easily achieved if each block type corresponds to a clear cut c
in the problem domain.

5.6.1.4 Data

Real reactive systems do have data! The question is whether the data can be org
in a way which is manageable by the Mn-method.

The Mn-method does not have much to offer in the realm of data variables. The a
is simply symbolic execution and the subject is not covered much in this thesis. T
important thing is to evaluate whether the data of the system can be handled by sym
execution.

For our purposes we concentrate on systems where:

1. Data is often non-decisive or passive. The complexities of data is rarely encoun

2. There are few complicated algorithms. These may be handled manually.

3. The data algorithms may be isolated in specific operators such that other aspec
as flow control and concurrency may be analyzed without the interference of d
variable complexities.

In short, we concentrate on systems where symbolic execution of data does not p
unsurmountable obstacles.

If the system is not according to the above criteria, the developer is urged to cons
restructuring of the module in order to separate the data-intensive parts out into o
tors or subsystems.

5.6.1.5 Heterogeneous

Real reactive systems are typically heterogeneous as pointed out in Section 5.1.2
180). The Mn-method is a method mainly for the parts where the control structure
the communication is focused.
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 224



The Mn-approach in practical engineering
The Mn-method and the Nature of Real Reactive systems 5

y well 
e used 

mit 
nsid-

 with 
 how 

f the 
trat-
 the 
m.

 Sec-

n Sec-
 can 

ore 
 C++ 
 in 

ch sub-
ies 
places 
fy the 
If the purpose of an analysis is more directed towards data or algorithms it may ver
come in handy that the control parts are reducible such that their reductions can b
in the data-intensive analysis.

5.6.1.6 Real Time

The Mn-method does not offer much concerning real time. On the contrary we ad
that confluence becomes a more complicated subject when duration has to be co
ered, too. The subject of timed confluence is for future research.

Please confer Section 3.7 (p. 119) for the discussion of timers.

5.6.2 The Mn-method in making real, reactive systems

Having discussed in Section 5.6.1 (p. 223) how real reactive systems correspond
systems made by or validated by the Mn-method, we shall in this section discuss
the Mn-method corresponds to how systems are actually made.

5.6.2.1 System analysis – the use of different descriptions

The Mn-method is not primarily a method for the early phases. The significance o
Mn-method is related to the formal (SDL) descriptions. Relating to the “distillery” s
egy sketched in Section 5.1.3.1 (p. 180), the Mn-method is mainly concerned with
refinement relation between the precise whole and the precise and detailed syste

The refinement could be checked through our refinement technique pointed out in
tion 5.3.5.3 (p. 208).

5.6.2.2 System design – the dynamics of system development

The Mn-method supports the dynamics of system development as it is described i
tion 5.1.3.2 (p. 183) well, as the main feature with the Mn-method is that a system
be piecewise analyzed through reductions.

The Main 

Description

Many real, reactive systems use SDL and MSC in the design phase. More and m
companies apply automatic code generation from SDL and the intermediate C or
code is not even kept. SDL appears as the main description and this is very much
accordance with the Mn-method.

Continuous 

develop-

ment

With continuous development it is important that validation efforts can be:

1. done separately for different parts of the system,

2. can be reused when only minor changes have been made.

The Mn-method assists to achieve this. Since the Mn-method encourages that ea
part also should be reducible, this helps to set conceptual and technical boundar
which constitute natural areas for separate analysis. As we have argued in many 
in this thesis, looking at the reduction of a component helps understand and clari
component even without comparing it with explicit specifications.
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The Mn-procedure is more robust towards reachability than the common reachab
techniques. In principle it is possible to isolate the effect of a minor change to ana
which is centered around the changes. This is also the principle behind determinin
“ripple effect” of a change as described in [139].

Even though the Mn-procedure is such that less than a process component in the
needs to be re-analyzed, a practical limitation is to reanalyze the whole process c
nent when there are changes to it. This also means that all parts of Mn-procedures
have involved this process in some generation must be re-analyzed. This may st
less than the full analysis.

Concurrent 

develop-

ment

The Mn-procedure is very distributed, and if the development of different parts of
system can be distributed, the analysis for reducibility can be distributed, too. Encl
blocks may be analyzed once their components have been finished (and preferab
reduced).

This makes it easier to apply validation techniques during the system development and
not only afterwards.

Plans and 

reality

The Mn-method does not assure that the project plan is kept, but it makes a contri
to the effective fragmentation of the system in a way which supports fragmented 
validation.

This should increase the flexibility of the development of the total system and incr
the reliability of progress reports.

5.6.2.3 Systems validation – how to believe they work

The Mn-method is not a way to skip testing or the scrutiny of walkthroughs, but the
method reductions offer a way to experience the system with “new eyes”.

The Mn-method increases the awareness of the purpose of each individual comp
Furthermore the reduction may reveal complexities and effects that are thoroughl
den in the original system. The positive effect of walkthroughs are often due to the
that experienced engineers can “smell” trouble. There may not be any explicit spe
cation to compare with. Reductions can be used as supporters of such “monolithic
Section 1.6.1.2 (p. 27)) walkthroughs.

Walkthroughs may also be used inside the Mn-procedure as informal means to a
progress, or unreachability of a non-confluence pattern. The confluence and reduc
will then be conditioned by these walkthroughs.

The Mn-approach has strong resemblance to systematic testing as what we are a
doing in the Mn-procedure is to test all potential non-confluence patterns. The com
ity profile (c.f. Section 5.2.2.2 (p. 197)) can also be interpreted as a way to indica
where testing should be applied, and as such it constitutes a systematic approac
testing.

The Mn-approach aims at facilitating formal proofs through the use of reductions in
other techniques.
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5.6.3 The Mn-approach to support description and understanding

If the Mn-method has been applied, can we assume that systems will be described
ways, and that they are understood differently and possibly more effectively?

5.6.3.1 The language dimension

We have presented the Mn-approach as an approach for SDL, but the main ideas 
be applicable also for other languages where asynchronous communication is the
issue. Still we should list some of the features of SDL which fit well with the Mn-
method:

1. SDL is graphical, and the reductions can also be made graphical. This increases the
structural overview of the behavior.

2. With a top-down application of the Mn-method as sketched in Section 5.3.7.2 (
214), we may say that sketches of the total behavior is compared with final design
which is reduced. The comparison of the early sketches and the later reduced d
should be done informally as there is little chance that the correspondence is 1

3. The Mn-approach is a validation techniques which works locally. This corresponds 
well with SDL where the reasoning is done locally as well.

4. The Mn-approach fits reasonably well with the MAGIC relations of SDL. The meta-
relation is not present. The aggregate relation is represented by nesting which
have covered in Section 5.6.1.3 (p. 224). The generation relation representing 
dynamic process creation is not particularly well suited for the Mn-approach sin
reductions may be difficult to define. The identity relation is well taken care of by
handling of object orientation (Section 3.9 (p. 133)) which also covers the conc
relation.

5. More than most validation techniques the Mn-approach offers an imperative style 
(SDL) also for what may be called specifications (namely the reductions).

5.6.3.2 The user dimension

In Section 5.1.4.2 (p. 188) we defined the user dimension categorizing users in fou
egories: programmer, specifier, team and observer. The Mn-method puts focus o
programmer as the important user. The Mn-method aims at making the programme
eager validator, too. The team is also well supported by the Mn-method since distinc
interfaces and well defined entities are emphasized. The observer may also find comfort 
in systems made through the Mn-method as the entities have reductions which c
studied in place of the original.

The specifier may not have much gain from the Mn-method, but on the other hand
probably does not lose much either. There will still be a need for alternative descrip
(i.e. specifications) which should be tested for consistency with the main model.

5.6.3.3 The problem dimension

The Mn-method is not sensitive to which class of problems it handles. In Section 5.
(p. 189) we classified the problem in three classes: technical, explorative and vagu
Mn-method as such works on fairly formal descriptions, but the approach emphas
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the aspect of understanding. The tension between high level sketches and low le
implementation-like design can be informally resolved through reductions of the l
level entities. This does require a certain degree of completeness of the low level

A monolithic approach like the Mn-approach may serve better than others on exp
ative problems since part of the game is to fumble around for improved understan
and not to compare formal descriptions. On the other hand when understanding i
orthogonal approaches may cover the problem area better than only one monolit
approach.

5.6.3.4 Comprehension profiles

The Mn-method aims at contributing to a more smooth system development wher
idation is naturally integrated with the ongoing development. Concept awareness
constant surveillance of complexity are clues to place the Mn-method in the conte
comprehension profiles as presented in Section 5.1.4.4 (p. 189).

The focus on concept awareness and the smooth application of validation techniq
should prevent occurrence of the deceptive profile. The risk of deception lies in the 
designer concluding reducibility on false grounds. It is necessary to apply Mn tool
certain determination of confluence.

Since reductions may reveal hidden properties of the original system, this may ap
as aha-experiences and lead to a (positive) aha-profile. The aha-experience should
be planned for, but it is definitely a positive experience when it happens.

The smooth application of validation techniques ranges from informal studies of 
progress and race conditions, through complexity profiles, to reducibility determine
Mn-tools. All together this should make it possible to assess the system compone
such that the 90% syndrome profile should be avoided.

All in all we believe that the Mn-method should contribute to a steady profile in the sys-
tem development. The idea is that no big surprises should happen or should be p
to happen. The understanding should grow with the system.

5.7 Concluding Practical Use of the Mn-approach

We have in this chapter discussed the match between the Mn-approach and real, r
systems. We have found that the Mn-approach should fit well to support the impr
ment of quality in reactive systems.

We developed a reference model for real, reactive systems and compared this w
imaginary development using the Mn-method based upon the Mn-approach. The
method “confluent design” was synthesized from experience and from the finding
the rudimentary industrial case study. We emphasized that the Mn-method had to
supported by an Mn-tool.

We presented simple estimates of complexity of the execution of the Mn-procedure
argued that this complexity correlates with the complexity of the system itself.
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6. The RPC-Memory Specification Problem

The RPC-Memory Specification Problem was posed by Manfred Broy and Leslie 
port in 1994 and a conference was held in Dagstuhl, Germany in September 1994
saw a number of different solutions to the specification problem.The problem spec
tion and a number of solutions can be found in [125].

The problem appears to be a good test-bench for a validation technique. The spe
tion problem reveals certain shortcomings of our SDL notation and triggers the 
suggestion for a few extensions to SDL in order to let the language handle a clas
interesting cases which it did not quite handle before.

Our aim is mainly to use this problem as a test case for our Mn-approach. We pre
here also the development history towards the final description and not only the la
sions of the descriptions.

6.1 Preliminary definitions

Components interact with one another using a procedure-calling interface. Actually
shall in this document use a signal interface. The call of an interaction procedure is mod
eled by the sending of a signal (with parameters), and the return of the procedure as 
another asynchronous signal. To represent the raise of an exception we simply use dif-
ferent types of return signals. That a procedure call paradigm is assumed means
caller is inactive after issuing a call until receiving the corresponding return. This in
ant cannot be enforced in the SDL specification, but it is used once in the analysi

A component may contain multiple processes that can concurrently issue procedure 
calls. The return will contain the identity of the process which sent the correspond
procedure call.
Practitioners’ verification of SDL systems  229 Ø. Haugen Dr. Scient Thesis - Modified: 1997-03-29



The RPC-Memory Specification Problem
The (unreliable) Memory and the Reliable Memory6

ibes a 
turns 
eiv-

t to 

ves 
ory. 
 or 
 own” 
turns 
r 

e 
e 125 

 to 

 

In Figure 124 (p. 230) we can see a simple sketch of an SDL concept which descr
component of the RPC-Memory example. This component reacts to calls, and re
either normally or exceptionally. Components which are initiators (rather than rec
ers) of calls have a similar, but symmetrical interface.

For our purpose the component may also be seen as a process type when we wan
give it a direct behavioral description.

6.2 The (unreliable) Memory and the Reliable Memory

The first problem is to specify a memory component. A memory component recei
read or write requests which observe or update the individual entities of the mem
In its basic version the memory is not totally reliable meaning that whether a write
read operation is successful cannot be guaranteed. The write operation tries “on its
an indeterministic number of times to write on the memory before it gives up and re
a MemFailure. These tries are independent and subject to interleaving with simila
attempts onto the same memory location from other processes.

6.2.1 Problem 1a)

The problem is to specify the (unreliable) memory and the reliable memory.

6.2.1.1 Memory (unreliable)

We first define the structure of the (unreliable) Memory component in Figure 125 (p. 
231). For readers unfamiliar with SDL, we note that the dashed arrow from MemCom-
mHandler to wa denotes dynamic process creation. The dashed arrows outside th
frame designates existing gates which were defined in Figure 124 (p. 230). In Figur
(p. 231) the gates get additional signaltypes.

The memory structure as shown in Figure 125 (p. 231) is derived due to the need
model the repeated tries to write onto the memory locations. There is one WriteAgent 
for each Write call and the WriteAgent then takes care of the repeated calls to Mem 
which is the real owner of the memory. The WriteAgent decides when to give up. The

Figure 124: Component
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 230



The RPC-Memory Specification Problem
The (unreliable) Memory and the Reliable Memory 6

as 
lti-
ed 

e 
 by the 
er 
MemCommHandler handles all calls and returns. It determines whether the call h
bad arguments and then raises BadArg exceptions. Remember that there may be mu
ple calls active in the Memory concurrently. Therefore the internal signals have add
a parameter which is a pointer to the originator of the call. This is used by the Mem-
CommHandler when it conveys return signals.

Having shown the memory structure we want to define the behavior of Memory by 
defining the processes. In Figure 126 (p. 232) we start by the MemCommHandler.

The MemCommHandler adds to the signal the extra Pid found as the SENDER which 
is predefined function in SDL, and sends it onto the interior of the Memory block. For 
read there is no problem as the request is merely transferred to the Mem, the owner of 
the memory array. With write we choose to have a special agent to keep track of th
repeated attempts to alter the memory location. This agent is created for each call
create symbol wa. The write request is then transferred to this agent. When the oth

Figure 125: Memory structure
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interior parts of the Memory have finished their work, the result is returned through t
MemCommHandler. By the PId parameter of the returning signal, MemCommHan-
dler knows where to relay the return signal.

Notice that bad arguments can be detected already by this process by the Boolea
expressions AR(loc) and AW(loc,val) and the proper exception signal is sent immed
ately back to the caller, while for memory fail (MemFail) and for success we shall hav
to wait for the internal communication of Memory.

In Figure 127 (p. 233) we show the WriteAgent.

When the WriteAgent is created it will wait in state First. There it will receive the 
Mwrite signal which it relays onto Mem and then it waits in state Repeat. In state 
Repeat another Mwrite signal should be absolutely impossible, but the other return
should be handled. MwriteOK is simply relayed to the MemCommHandler.

Figure 126: MemCommHandler
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The interesting feature is the handling of the memory failures. Whenever a MMemFail 
returns from the Mem, there is an indeterministic decision whether the unfortunate
result should be relayed on to the MemCommHandler or whether another try should 
be attempted. The choice is indeterministic, but we define that the probability shou
positive that the loop will terminate by issuing the MMemFail further to MemComm-
Handler. We designate this positive probability by a “(+)” on the branch. If we kno
nothing about the probability, i.e. the probability may also be 0, we may designate
by “(0)” like we have done on the branch that sends the Mwrite request back to Mem. 
If no indication is given on the answer branch, the default is “(0)”. The reader sho
appreciate that this is an extension to the anyvalue decisions in SDL presented fi
Figure 59 (p. 103).

The (Repeat,MMemFail)-transition is specified as virtual  because we want to redefine
the transition in specializations of WriteAgent (see Figure 130 (p. 235) and Figure 13
(p. 237)).

The branches which end in ierror are considered impossible or representing an inter
error which we do not want to specify further. Our upcoming reductions will be co
tioned by internal errors, meaning that either the system behaves as the reduction
internal error will occur. The internal errors can be considered transitions which a
actually not present in the transition system. It is sometimes possible to supply pr
that these transitions will not execute. In WriteAgent we could also have used save for 
the supposedly impossible transitions.

Finally in Figure 128 (p. 234) we present the owner of the memory itself, the Mem 
process.

Figure 127: WriteAgent
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We see in Figure 128 (p. 234) that a memory return directly answers to a request, b
memory may not be successful. While reading is a one attempt effort, writing may
involve looping between the WriteAgent and Mem and the memory will continue to try
and complete the writing onto the location indicated. Notice that the memory may
may not have changed the memory when it returns a MemFail. Notice also that we have
specified that the transition returning a success has a positive probability. This im
by itself that a loop of memory fails will eventually terminate by a positive MwriteOK 
if it does not terminate by a MemFail to MemCommHandler from the WriteAgent.

The reader should not necessarily pay any attention to the virtual  specifiers only study-
ing the Memory specification. These will be used in the sequel to specify the 
ReliableMemory in a compact manner.

6.2.1.2 Reliable Memory

The ReliableMemory is specified to do the same as (unreliable) Memory, but no Mem-
Fail exceptions will be raised. To get the most out of it, we still keep the possibility 
the ReliableMemory has to try multiple times before it returns from writing with a su
cess. Therefore it is reasonable to keep the structure of the Memory, but make some 
modifications in the form of specializations and redefinitions.

We express in Figure 129 (p. 235) that the structures of ReliableMemory and Memory 
are identical, but the used process types have been redefined.

The WriteAgent will always give the Mem another try when Mem has raised an inter-
nal MemFail.

Figure 128: Mem 
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We see in Figure 130 (p. 235) that there is only a very minor modification of 
WriteAgent. Whenever the Mem has to report a MemFail, the WriteAgent just tries 
again.

The redefined Mem shown in Figure 131 (p. 236), the owner of the real memory, is a
almost identical to the one in Memory, with the exception that reading cannot give an
MemFail.

6.2.2 Problem 1b)

The problem is whether ReliableMemory is a valid implementation of Memory. By R 
implementing M, we will understand the same as R being a refinement of M as defined 
in Section 4.2 (p. 146).

We have in our description used object-oriented inheritance relations as suggeste
Section 5.3.4.3 (p. 205) such that it is simple to see the difference between the Memory 
and the ReliableMemory. We shall go through the modifications in ReliableMemory 
to see that all behaviors of ReliableMemory is also possible in Memory.

Figure 129 (p. 235) shows that there is no structural difference between the (unrel
Memory and the ReliableMemory.

Figure 129: ReliableMemory has the same structure as Memory

Figure 130: WriteAgent of the ReliableMemory
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We start by comparing versions of Mem. Figure 131 (p. 236) shows that the only dif-
ference is the ReliableMemory cannot return MemFail as a response to Read. Thus all 
behaviors of Mem in ReliableMemory can also happen in Mem of Memory provided 
the same external stimuli. From the rules of refinement stated in Section 4.2.2 (p.
we get that Mem in ReliableMemory is a refinement of Mem of Memory (Figure 128 
(p. 234)).

Figure 130 (p. 235) shows that the WriteAgent cannot escape by issuing a MemFail in 
ReliableMemory like it can in Memory (Figure 127 (p. 233)). Again behavior which 
is possible in Memory is simply removed in ReliableMemory and thus all transitions 
of WriteAgent in ReliableMemory are also present in the corresponding WriteAgent 
in Memory. Is then refinement established between WriteAgent of ReliableMemory 
and WriteAgent of Memory according to rules of Section 4.2.2 (p. 149)? No, not qu
since WriteAgent of Memory has a branch with positive probability which is not 
present in WriteAgent of ReliableMemory, we cannot conclude refinement without
some more reasoning.

Since for every behavioral branch, Memory has at least the same alternatives as Reli-
ableMemory, we may conclude that for any finite behavior of ReliableMemory, the 
same behavior may happen in Memory.

Is it possible that there is an infinite behavior in ReliableMemory which cannot take 
place in Memory? We have in ReliableMemory removed the alternative which has 
positive probability in Memory, namely to return MemFail from WriteAgent to Mem-
CommHandler. We must consider the behavior which infinitely visits this decision
it possible that in ReliableMemory there is an infinite loop where the WriteAgent tries 
again and again to get something different from MemFail, but Mem keeps returning 
MemFail? This cannot happen in Memory because there is the escape that the 
WriteAgent raises a MemFail and this possibility has positive probability meaning that 
the looping cannot continue infinitely. Now the situation is that not even the Reliable-
Memory can loop infinitely because in Mem there is a positive probability for a 
successful return.

We summarize:

Figure 131: Mem of the ReliableMemory
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1. Mem of ReliableMemory is a refinement of Mem of Memory following directly 
from our rules for comparing transitions in Section 4.2.2 (p. 149).

2. WriteAgent of ReliableMemory is a refinement of WriteAgent of Memory due to 
the rules of comparing transitions in Section 4.2.2 (p. 149) and supplementary
soning about infinite behavior given above.

3. ReliableMemory is a refinement of Memory according to rules for refinement and
inheritance presented in Section 5.3.4.3 (p. 205).

6.2.3 Problem 1c)

The problem is whether a process which only raises MemFailure exceptions can also 
be considered an implementation of Memory.

We define this kind of memory called FailMemory in a similar way to ReliableMem-
ory. The structure is shown in Figure 132 (p. 237).

For the behavior we also follow the strategy used for ReliableMemory as shown in Fig-
ure 133 (p. 237).

Figure 132: Structure of FailMemory

Figure 133: Behavior of FailMemory
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Since the alternatives which return MemFailure are no different technically from those
alternatives returning otherwise, the same argument as given in Section 6.2.2 (p.
can be applied to the continuously failing component, FailMemory.

However, our conclusion regarding FailMemory is not the same as with 
ReliableMemory.

Our specification of FailMemory as depicted in Figure 132 (p. 237) and Figure 133 
237) is not quite the same as “does nothing but raise MemFailure” because the Mem-
CommHandler which has not been redefined will in fact return BadArg if the 
arguments are out of range. This means that if the arguments are out of range, ouMem-
ory specification (and inherited FailMemory) will allow no other returns than BadArg. 
Refer to Figure 134 (p. 239) for an even simpler specification of a FailMemory process. 
It is clear that this simpler specification of FailMemory is not an implementation of 
Memory since it does not return BadArg when the arguments are out of range.

If we exclude BadArg, there is no doubt that whatever finite behavior FailMemory can 
show, Memory can also show. Still we cannot help thinking that there is not much h
in FailMemory if you want an implementation of Memory. We also specified in Mem-
ory that there is a positive probability for success when the WriteAgent wants to write 
on Mem. This is enough to define that an implementation of Memory must have the 
ability to return a successful write (and a successful read)! The reason is that an in
stream of write signals can in FailMemory return an infinite stream of MemFail, but in 
Memory there has to be a successful write.

The way this is described is hardly very transparent and not very explicit. If this pos
probability alternative had been a part of an internal loop, it may have had other e
and the effect had not been the same.

SDL-92 can define that some behavior is necessary by the virtuality /finalized con-
structs combined with virtuality constraints. The problem is that there is no way to
address the different alternatives of a non-deterministic decision. If such a notation f
virtual non-deterministic alternatives within a transition existed, we could describe
alternative which returns a successful write as non-virtual (finalized) while other alter-
natives may be virtual . This would ensure that the successful writing had to be par
any specialization of Memory. Then it would not be possible to describe FailMemory 
as a specialization of Memory. As a practitioner this is more the kind of Memory con-
cept which is practical when expressed as a requirement. We are not interested i
implementations which perform any random subset of the desired behavior. Ther
normally some core behavior which all implementations should have the possibili
perform.

We conclude:

1. The straight forward FailMemory defined in Figure 132 (p. 237) is not a refineme
of Memory since there is infinite behavior which can occur in FailMemory which 
cannot occur in Memory.

2. This infinite behavior of Memory is not very transparently described. Improved no
tion would be encouraged.
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3. The super simple FailMemory defined in Figure 134 (p. 239) cannot be an imple
mentation of Memory if we include BadArg in the way it is done in 
MemCommHandler since bad arguments would produce MemFail in FailMemory, 
but BadArg in Memory.

6.3 Reducing Memory to a process description

We have now specified Memory, ReliableMemory and FailMemory. They are all 
described as SDL block types. We were able to prove implementation relations be
the types through inference rules based on syntactic similarity.

But how should we have decided whether FailMemory was an implementation of 
Memory if FailMemory was specified by an SDL process type as in Figure 134 (p
239)?

Following the strategy for determining refinement presented in Section 4.2 (p. 146
need to reduce Memory to a process description before we compare FailMemory and 
Memory transition by transition.

6.3.1 Why Memory is not reducible as it is specified

We recall that reducibility consists of two aspects. Firstly the system must be pro
sive, and secondly the system must be confluent. Memory is not confluent because 
Mem is not confluent wrt. different MWrite and MRead signals on the same location
which may arrive concurrently. This is actually a fair merge component similar to w
we described in the Brock-Ackerman example in Section 3.5.4.2 (p. 109). In orde
obtain confluence we must use the merge-mechanism defined in Section 3.5.4.1 (p. 
106).

It is actually a matter of explicitly defining the non-deterministic effect of the fair me
obtained at the input port of the Mem process.

Figure 134: FailMemory as SDL process
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The semantics of a merge is that whenever an Mwrite or Mread is received, there is a 
non-deterministic choice between consuming the signal or saving it. The probabil
consuming it is positive at every scheduling point implying that a signal cannot in
nitely be spontaneously saved. In effect the spontaneous save is a way to describ
possible permutations of signals and thus describe a fair merge situation by a finite 
notation.

6.3.2 Progress of Memory

The first requirement for reducibility is progress. Progress means that for all finite i
streams the system will produce a finite output stream and subsequently execute 
ther transitions.

The simplest criterion for progress is that every transition produces less than it co
sumes. By ordering the signals partially such that every transition produces signa
less value than it consumes we know that the system will reach a waiting state for
external input as long as there are no spontaneous transitions. This is signal order
terion which was first mentioned in Section 2.6.4.1 (p. 80).

For our Memory system we have (almost) the following partial order:

1. read -> Mread -> (Mretread) -> (retread)

2. write -> Mwrite to WriteAgent -> Mwrite to Mem -> (Mretwrite) to WriteAgent -
> (Mretwrite) to MemCommHandler -> (retwrite)

There are transitions, however, that do not produce less than they consume. Ther
alternative in the WriteAgent which consumes MMemFail and produces Mwrite back 
to Mem. This violates the given partial order. This loop, however, cannot continue
ever because there is positive probability on the alternative which returns succes
(MwriteOK) when consuming the Mwrite. Furthermore there is positive probability in
WriteAgent to return MemFail.

All together we may conclude that Memory is progressive since the only loop is term
nated by positive probability of exiting transition (fairness).

The strategy to determine progress used here was laid down in Section 5.3.8.1 (p

Figure 135: Extracts of Mem with merge state
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That ReliableMemory is also progressive follows along exactly the same lines as w
Memory. Here we should note, however, that ReliableMemory contrary to Memory 
has the need for extreme fairness (see Section 3.5.3.3 (p. 104)). Mem is involved 
number of different WriteAgents and none of them should “starve”. This means that 
an infinite subsequence of Mem-decisions relating to one particular WriteAgent, the 
helpful directions will occur infinitely many times. In Memory it sufficed to have sim-
ple fairness in each non-deterministic decision in WriteAgent.

6.3.3 Confluence of Memory

We shall go through all the components of Memory and explain why they cannot con
tain a non-confluence pattern. It is quite obvious that confluence of Memory can be 
determined automatically. Furthermore the reasoning is valid also for ReliableMemory 
since no parts of the reasoning is upset by the difference between the two definit

6.3.3.1 Mem

All potential non-confluence patterns of Mem are resolved by the merge-mechanism
which was introduced in Figure 135 (p. 240).

6.3.3.2 WriteAgent

WriteAgent is a channel/state-mapped process (defined in Section 5.3.3.2 (p. 203)) 
meaning that the channels divide the state space such that in a given state only s
of one channel are legally consumed. Other signals are considered internal error

Internal errors can be interpreted in three ways:

1. The internal errors are separately shown to be impossible.

2. The internal errors are interpreted as saves which means that confluence is sim
the enclosing system is reducible, and the saves do represent impossible transition
strong progress will follow from the reduction as shown in Section 3.4.4 (p. 96)

3. The internal errors are considered outside the scope of the proof. This means t
proof is partial. If a system is reducible, it means that we have proved that eithe
system acts like the reduced process or it performs an internal error.

In the case with the WriteAgent it is possible to prove that the internal error transitio
cannot occur.

1. WriteAgent does not contain any transition with nextstate First. Therefore the only 
possibility to reach state First is when WriteAgent is created.

2. From analyzing MemCommHandler we find that the only place where WriteAgent 
is created is when Mwrite is sent to it just afterwards. In no other place is Mwrite sent 
to WriteAgent.

3. From analyzing Mem, we see that (Mretwrite) is only sent to WriteAgent in transi-
tions triggered by Mwrite received from WriteAgent. WriteAgent sends Mwrite 
when entering state Repeat. Therefore in state First WriteAgent cannot receive any-
thing else than Mwrite. We have shown that the internal error of First is impossible 
to reach.
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4. Mwrite is sent to WriteAgent only from MemCommHandler just after the creation. 
Since no other signals can be received before it (from what we found above), t
the signal that will be consumed first. WriteAgent will then move to state Repeat. 
Since there are no other places that Mwrite is sent to WriteAgent, we must conclude 
that Mwrite cannot be consumed in Repeat and thus the internal error of Repeat has 
been shown to be impossible.

If we choose to interpret the internal errors as saves, the reasoning would be eve
pler. Since the saves will still make the WriteAgent a channel/state-mapped process
confluence is established. This is all we need for now. The reduction will later sho
whether the saves are impossible. If the saves are possible, there will be semi-st
states in the reduction.

If we want to make an argument for strong progress independent of the reduction
following should hold:

1. Invariant for WriteAgent’First: There is an Mwrite signal on channel W.

2. The invariant is true after the creation of WriteAgent since it is followed immediately 
by the sending of Mwrite.

3. Since WriteAgent never returns to First, we need only consider this single case.

4. Invariant for WriteAgent’Repeat: There will eventually be a (Mretwrite) signal on 
channel V.

5. There are two transitions leading to Repeat. One comes from consuming Mwrite in
First, and the second comes from consuming MMemFail from Mem.

6. Both these transitions ensure that Mwrite is relayed to Mem.

7. Eventually Mem will consume Mwrite and produce an (Mretwrite) signal on channel 
V.

8. WriteAgent will not leave Repeat without receiving an (Mretwrite) signal.

9. Thus we have shown the WriteAgent’Repeat invariant.

The reader should appreciate that there is no doubt that the simplest approach is
content with the saves, and wait for the reduction. After all it is reducibility we are a
anyway.

6.3.3.3 MemCommHandler

MemCommHandler is basically a multi-lane process (defined in Section 5.3.3.2 (p. 
203)). A lane is a set of input and output channels such that there are no overlap be
the channels of different lanes of the process. A process is a multi-lane process i
transitions can be placed in a lane meaning that its input is from the lane’s input ch
and its output merely onto the lane’s output channels. Multi-lane processes are a
confluent.

We consider every PId (process identifier) as an individual channel.

In MemCommHandler one set of lanes go along input on C and output on W, and the 
other set of lanes go along input on W and output on E. There is also a set of lanes (co
cerning BadArg exceptions) which has channels along C as input and channels along E 
as output. If we consider the PId of the external processes which sends a write or a read 
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as one channel each on C and E, we have that there is a unique PId for every 
WriteAgent. Thus there is a functional correspondence between singular bidirecti
channels of W and PIds of C and E.

For this scheme to hold it is necessary to assume that one process in the environm
at most one pending call to the Memory at any point in time. This is to ensure that al
PIds are actually distinct. If this assumption is violated it is a possibility that answe
different requests overtake each other with chaotic results in the external process
feel that it is a reasonable interpretation of a procedure call scheme that an enviro
process has at most one pending call to one other component.

Since MemCommHandler can be interpreted as a multi-lane process, we may conc
that there cannot be any non-confluence patterns in MemCommHandler.

6.3.4 Reducing Memory

We have now shown that Memory (and ReliableMemory) is progressive and conflu-
ent. Therefore we may conclude that Memory (and ReliableMemory) is reducible. We 
shall perform the reduction through our reduction algorithm defined in Section 2.2.
48).

6.3.4.1 Legend

We shall perform execution from a set of complete states. The execution tree from
complete state will have the syntax shown in Table 12 (p. 243).

Table 12: Execution table example

#a

a. State number. Every complete state in an execution has a unique number.

Executorb

b. The executor is the name of the process which executes the transition

Guardc

c. The guard is an expression which is an assumption for the transition. Special guards are (+
and (0) which represent alternatives in fair decisions. The guards are transformed back to 
decisions when the reduction is made into an SDL process.

State(s)d

d. The state is the complete state which is given in the syntax mostly used in this thesis.

1e

e. This first line is the complete state from which this table represents the execution tree

(termf;Write<w>(l,v)g; ; )h

f. term is here the name of the basic state. In this case it means “termination”. In general the 
name of the basic state is a tuple of basic state names of the component processes.

g. Write<w>(l,v) is an external signal. <w> designates the PId of its sender which is considere
the name of a separate channel in this case. (l,v) are the symbolic parameters.

h. The general syntax of a complete state is: (basic state name; external signals; internal sign
and variables; external signals).

1.1i MemCom. AW (term; ; ;w:BadArgj)

1.2 MemCom ¬ AW (First<a>k; ;W,al:MWrite(l,v,w); )

1.2bm WriteAgent ¬ AW (Repeat<a>; ;V:MWrite<a>(l,v,w); )

1.2c Mem ¬ AW (Repeat<a>; ;V:saven MWrite<a>(l,v,w); )
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6.3.4.2 Executing Write

We start by the stable state reached from the initial transitions. To denote the basi
we shall use only the basic state of the appropriate WriteAgent since the other processe
have only one state each. A WriteAgent which is not created or is terminated has the
basic state term. A PId may also serve as a channel name. 

The complete state 1.1 is stable. The state 1.2c is semi-stable. Therefore we hav
ished the execution of Write.

The basic state Repeat<a> means that the WriteAgent denoted by a is in state Repeat.
This WriteAgent is not involved in other communication. If another Write is input 
externally when the Memory is in Repeat<a> it will act exactly as shown in Table 13
(p. 244), and there will be another WriteAgent in Repeat-state. We have that the pro
cess set of WriteAgents are independent (of each other) and we can use practition
induction as described in Section 4.3.6.1 (p. 160) and perform a simple reduction
one WriteAgent as representative for the others. The state-vector is just present in
execution and does not enter the description as such.

We continue in Table 14 (p. 244) with executing the spontaneous consumption of
spontaneously saved MWrite signal shown in 1.2c. 

i. When there are alternatives they are numbered by appending “.x” where the x is a natural nu
ber

j. w:BadArg means that BadArg is transmitted onto conceptual channel w (which is actually a 
PId)

k. The <a> is a PId of a process in a process set.
l.  We also want to say both that the channel (set) has the name W and the desired process to be 

reached has PId a. This is denoted by both names preceding the colon (i.e. “W,a:”) before the
signal sequence.

m. If there are no alternative branches, the sequential execution states are numbered by appe
ing letters starting with b.

n. save is described by a prefix to the signal

Table 13: Executing Write from initial state

# Executor Guard State(s)

1 (term;Write<w>(l,v); ; )

1.1 MemCom. AW (term; ; ;w:BadArg)

1.2 MemCom ¬ AW (First<a>; ;W,a:MWrite(l,v,w); )

1.2b WriteAgent ¬ AW (Repeat<a>; ;V:MWrite<a>(l,v,w); )

1.2c Mem ¬ AW (Repeat<a>; ;V:save MWrite<a>(l,v,w); )

Table 14: Spontaneous consumption of MWrite

# Executor Guard State(s)

2 ¬ AW (Repeat<a>; ;V:save MWrite<a>(l,v,w); )

2.1 Mem ¬ AW, (+) (Repeat<a>; ;V,a:MWriteOK(w), M(l)=v; )
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We have no stable states and continue execution of each alternative state. We st
executing 2.1 in Table 15 (p. 245).

State 2.1c is stable. We continue with 2.2 in Table 16 (p. 245).

Here we have that 2.2.2 is equal to 1.2b and the result can be taken from Table 1
244) state 1.2c. We continue executing 2.2.1 in Table 17 (p. 245).

State 2.2.1b is stable. State 2.3 is exactly similar to 2.2 but the memory has been

2.2 Mem ¬ AW, (0)1 (Repeat<a>; ;V,a:MMemFail(w); )

2.3 Mem ¬ AW, (0)2 (Repeat<a>; ;V,a:MMemFail(w), M(l)=v; )

Table 15: Execution State 2.1

# Executor Guard State(s)

2.1 ¬ AW, (+) (Repeat<a>; ;V,a:MWriteOK(w), M(l)=v; )

2.1b WriteAgent ¬ AW, (+) (term<a>; ;W:MWriteOK(w),M(l)=v; )

2.1c MemCom. ¬ AW, (+) (term<a>; ; M(l)=v; w:WriteOK)

Table 16: Execution State 2.2

# Executor Guard State(s)

2.2 ¬ AW, (0)1 (Repeat<a>; ;V,a:MMemFail(w); )

2.2.1 WriteAgent ¬ AW,(0)1, (+) (term<a>; ;W:MMemFail(w); )

2.2.2 WriteAgent ¬ AW,(0)1, (0) (Repeat<a>; ;V:MWrite<a>(l,v,w); )

Table 17: Execution State 2.2.1

# Executor Guard State(s)

2.2.1 ¬ AW,(0)1, 
(+)

(term<a>; ;W:MMemFail(w); )

2.2.1b MemCom. ¬ AW,(0)1, 
(+)

(term<a>; ; ; w:MemFail)

Table 14: Spontaneous consumption of MWrite

# Executor Guard State(s)
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Thus we have finished the execution of Write and the derived spontaneous save sign
in all stable and semi-stable states. We summarize our execution in Table 18 (p. 
where only the stable states are shown. 

It is quite simple now to bring the results of Table 18 (p. 245) back to an SDL pro
diagram page shown in Figure 136 (p. 247). We recall that the full reduction also
includes a state vector with one entry for each WriteAgent according to Section 4.3.6.2
(p. 162). Since spontaneous consumption is impossible in (S,term) and write is impos-
sible in (S,Repeat), it is possible to combine the two states into one and also elimin
the need for the WriteAgent state-vector.

We see in Figure 136 (p. 247) spontaneous save and spontaneous consumption. H
spontaneous save is used with signals internal to the process which means that th
ally are signals used for processes which are components of the block which has
reduced. This means that a spontaneous save not necessarily is the only constru
transition. We see in Figure 136 (p. 247) that there is a transition where also a ta
included before the spontaneous save.

Spontaneous consumption means that spontaneously saved signals are consume
such actions are lifted to a more global level, they appear as spontaneous while th
a more local level appear just as any other consumption of a signal.

6.3.4.3 Executing Read

Read does not have the same problems as Write since there is no “ReadAgent” which 
keeps trying to alter the memory over and over again. Still we have to remember
spontaneous save.

Table 18: Executing Write (summary)

# Guard State(s)

1 (term;Write<w>(l,v); ; )

1.1 AW (term; ; ;w:BadArg)

1.2c ¬ AW (Repeat<a>; ;V:save MWrite<a>(l,v,w); )

2 ¬ AW (Repeat<a>; ;V:save MWrite<a>(l,v,w); )

2.1c ¬ AW, (+) (term<a>; ; M(l)=v; w:WriteOK)

2.2.1b ¬ AW,(0)1, (+) (term<a>; ; ; w:MemFail)

2.2.2b ¬ AW,(0)1, (0) (Repeat<a>; ;V:save MWrite<a>(l,v,w); )

2.3.1b ¬ AW,(0)2, (+) (term<a>; ; M(l)=v; w:MemFail)

2.3.2b ¬ AW,(0)2, (0) (Repeat<a>; ;V:save MWrite<a>(l,v,w), M(l)=v; )

Table 19: Executing Read from initial state

# Executor Guard State(s)

3 (S; Read<r>(l); ; )
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State 3.1 is stable, but shall have to continue the execution of 3.2 in Table 20 (p. 

3.1 MemCom. AR (S; ; ; r:BadArg)

3.2 MemCom. ¬ AR (S; ; R:Mread(l,r); )

Table 20: Executing from 3.2

# Executor Guard State(s)

3.2 ¬ AR (S; ; R:Mread(l,r); )

3.2b Mem ¬ AR (S; ; save R:Mread(l,r); )

Table 19: Executing Read from initial state

# Executor Guard State(s)

Figure 136: Memory (write) as process type
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State 3.2b is semi-stable. Now we continue to show the consumption of the spon
ously saved signal in 3.2b in Table 21 (p. 248).

Neither state 4.1 nor state 4.2 are stable, and we continued one step for each. W
marize our reduction in Table 22 (p. 248).

The results are then brought back into an SDL process diagram page in Figure 1
249).

6.3.5 Reducing ReliableMemory

The reduction of ReliableMemory will of course result in a corresponding process 
which does not have the alternatives to return MemFail exceptions. We show in Figure
138 (p. 250) the resulting write part of ReliableMemory.

Similar to Memory the ReliableMemory reduction includes also a state-vector for 
WriteAgents. We may also combine the states as indicated in Section 6.3.4 (p. 24

Table 21: Executing Read from initial state

# Executor Guard State(s)

4 ¬ AR (S; ; save R:Mread(l,r); )

4.1 Mem ¬ AR, (0)1 (S; ; R:MreadOK(M(l),r) ; )

4.1b MemCom. ¬ AR, (0)1 (S; ; ; r:ReadOK(M(l)) )

4.2 Mem ¬ AR, (0)2 (S; ; R:MMemFail(r); )

4.2b MemCom. ¬ AR, (0)2 (S; ; ;r:MemFail )

Table 22: Reduction of Read in Memory

# Guard State(s)

3 (S; Read<r>(l); ; )

3.1 AR (S; ; ; r:BadArg)

3.2b ¬ AR (S; ; save R:Mread(l,r); )

4 ¬ AR (S; ; save R:Mread(l,r); )

4.1b ¬ AR, (0)1 (S; ; ; r:ReadOK(M(l)) )

4.2b ¬ AR, (0)2 (S; ; ;r:MemFail )
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6.3.6 Comparing FailMemory with Memory

When we now have reached a process description of Memory in Figure 136 (p. 247) and
Figure 137 (p. 249),and we can more easily compare with the direct process descr
of FailMemory in Figure 134 (p. 239). We must distinguish between cases relative
the values of conditions AW and AR.

Assume AW true. This means that the write signal has bad arguments and Memory will 
always return BadArg. FailMemory will return MemFail. Thus we have a behavior of
FailMemory which cannot occur in Memory. The same holds for AR true.

We must conclude that FailMemory as depicted in Figure 134 (p. 239) is not a valid 
implementation of Memory.

6.3.7 What have we gained by reducing Memory (ReliableMemory)?

Our strategy was to describe Memory first in a way which was optimal wrt. transpar-
ency for the reader and simplicity for the designer. The design was selected by u
standard engineering techniques. There were three major concerns in the proble

1. Concurrency problem. The memory itself could be addressed by a number of con
rent processes. These requests should be merged fairly.

2. Repetition problem. The writing of a location in memory could result in an indefini
(but not infinite) number of tries.

3. Bad arguments. Requesting processes may simply provide requests with illegal 
arguments.

Figure 137: Memory (read) as process type
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Through our division of the Memory specification in three processes, each of which
took care of each of the above mentioned problems, we achieved separation of concern. 
The Mem process took care of concurrency, the WriteAgents took care of repetition 
and MemCommHandler took care of checking for bad arguments.

From this transparent, but slightly voluminous description, we wanted a more com
and “canonical” version where the Memory block was described as an SDL process. W
had to introduce a few non-SDL extensions to be able to describe the Memory as one 
process which externally is faithful to the block Memory. Let us summarize our tricks

1. Merge state and Spontaneous save. By using a spontaneous save construction we
could make Mem describe non-deterministic (fair) merge of signals in a way wh
could be interpreted as confluent which was a prerequisite for reducibility. Spon
ous saves of internal signals could appear inside transitions which also contain
other SDL constructs like tasks.

Figure 138: ReliableMemory (write) as process
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2. Alternatives of non-deterministic decisions with positive probability. Fairness was 
assured by specifying some alternatives of decisions to have positive probabili
which means that in the long run (of a loop) these alternatives will occur and b
an infinite loop.

3. Spontaneous consumption. As a counterpart to spontaneous save, we had to introd
spontaneous consumption which meant that seen from the outside, transitions (
consume internal signals) would start spontaneously. Locally these transitions a
as normal transitions of those signals which had been saved.

4. Practitioners’ induction. To reduce the variability introduced by multiple instance
of block (and process) sets where the instances are mutually independent, we u
“practitioners’ induction” which boils down to taking only one representative for 
set and also including a state-vector. We also showed that for Memory and Reliable-
Memory we could ad hoc eliminate the need for the state-vector as well.

After having shown progress and confluence, the reduction resulted in a descript
which in itself was fairly readable. Especially the resulting description of the Reliable-
Memory was very compact and readable. This description will be used in the seq
when ReliableMemory is to be connected to other components.

We managed to achieve a compact notation which could easily be used to show 
ReliableMemory was an implementation of Memory while FailMemory was not.

As a curiosity we also note that the reduction shows that WriteAgent (defined in Figure 
127 (p. 233)) is strongly progressive if the presumably impossible transitions were
preted as saves (see Section 6.3.3.2 (p. 241)) since no signs of normal saves are
in the reduction.

6.3.8 Modifying Memory to make FailMemory an implementation

How should Memory be changed in order to make FailMemory an implementation? 
Also for the continuation of this exercise we may want to have a specification of Mem-
ory which contains FailMemory.

Our specification of Memory was motivated by a layered error-detecting strategy. B
arguments would be detected first, and then storage failure resulting in MemFail.

It seems, however, that the designers of the problem have been using MemFail as a gen-
eral “there is an error in my system” type of error while BadArg gives more specific 
information. Along these lines we can easily modify Memory by letting MemComm-
Handler have the non-deterministic option to return MemFail instantly after consuming
write or read.

Figure 139 (p. 252) would then be the reduced Memory specification when loops and 
redundancies are removed. That FailMemory is a refinement of Memory follows 
directly from the rules for transition comparison in Section 4.2.2 (p. 149) since it is o
ous that Memory can execute the transition(s) of FailMemory.
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6.4 The RPC component

We are now going to specify a component which in general relays remote proced
calls from a sender to a receiver. SDL is not well suited to specify processes of this
of abstraction, but by allowing more extensions related to signals, we get a fairly 
pact description.

6.4.1 The SDL extensions

Our SDL extensions are related to the need to handle signals as data. We want to 
to handle signal objects fully as data objects meaning that they shall be possible to
in variables.

Figure 139: Memory (write) modified to accommodate immediate MemFail
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1. Signal data type. We define a new predefined data type which is the set of all sign
It is designated SIGNAL, such that a declaration of a signal variable will look like
“dcl my_sig SIGNAL;”. The signal data type may then also appear as paramete
another signal. It is also possible to define variables of specific signal types by 
extended the syntax: “dcl my_sig SIGNAL mysignaltype;”

2. Output. It is possible to output a stored signal by outputting the variable: “output 
my_sig;” The SENDER attribute of the signal is modified to SELF of this process1.

3. Dash signal. We define a predefined function (called DASHSIGNAL) which returns 
a SIGNAL value which is equal to the most recently consumed signal of the pro

4. Check signal type. We define a Boolean function which can be used to check the
nal type of a signal variable: “my_sig is return;”. A similar construct can then be 
used to interpret parameters: “my_sig qua exceptreturn(param);”.

5. Atleast input. We may consume signals of different signal types in one transition
specifying a supertype of the signal types by “input atleast return;”. Combination 
with DASHSIGNAL and signal type check makes it possible to use this effectiv
In general we can use “atleast signaltype” also in signallists to indicate that any sig
nal type which is inherited from signal type is allowed.

The notations for checking signal type, interpreting parameters and the atleast inp
inspired by features of Simula [7].

6.4.2 Problem 2. The RPC component environment

The problem is to specify an RPC component. RPC is a component which “translates”
a procedure call which arrives as a parameter of a higher order procedure call fro
sender (RemoteCall) into a basic procedure call to the receiver. In our terms the pr
dure calls and their returns are modeled as asynchronous signals.

Procedure calls as parameters to a higher order procedure call will in our setting 
signals as parameters to other signals using the extended SDL notation of Section
(p. 252).

In Figure 140 (p. 254) we have shown the environment of the RPC component. We shall 
in the sequel describe RPC as a process type. The RPC process can be understood a
the only instance in the RPC block type.

6.4.3 The RPC process

We describe the RPC process in Figure 141 (p. 254).

We have checked for a bad call by the Boolean expression AC. This check takes place
before any other handling of the RemoteCall. Improper syntax of the RemoteCall will 
always raise a BadCall exception.

We have assumed that there is one basic RPC for each remote call communication. 
Concurrent remote calls must then be handled by several basic RPCs.

1. There may also be a need to keep the original SENDER of the signal. This can always be done manually
parameter to the signal, but we could also make a construct to circumvent the modification of SENDER.
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6.5 Implementing the Memory by RPC

We will now specify an implementation of Memory by using RPC in connection with 
a ReliableMemory.

Figure 140: The RPC environment

Figure 141: The RPC process
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6.5.1 Problem 3. Implementing Memory by RPC

The problem is to specify an implementation of Memory by combining the RPC com-
ponent with ReliableMemory, and to prove that the resulting implementation actua
is an implementation of Memory.

The structure of the implementation is given by Figure 142 (p. 255).

We notice that we use object-oriented inheritance on several levels to achieve ver
pact and transparent descriptions. We should again note, however, that the RPC type is 
defined as a block type, but here it is used as a process directly. This level misma
really no problem since the RPC process can be seen as the only entity of the block t
RPC. Strictly speaking we should then had blocks in MemFrontEnd, but this extra 
level serves really no purpose.

To prove that MemImpl is an implementation (refinement) of Memory, we apply our 
general strategy which means to show that MemImpl is reducible and then compare th
process version of MemImpl with that of Memory.

When we analyze MemImpl we shall first show that MemFrontEnd is reducible and 
perform the reduction. In the analysis of MemImpl itself we shall use the reductions o
ReliableMemory and of MemFrontEnd. We recall from Section 6.3.5 (p. 248) that th
reduction of ReliableMemory is composed of a simple reduction and a state-vector. 
define that the multi-gates of ReliableMemory is connected to mf(n):MemFrontEnd 
by one MemFrontEnd to each individual gate since the different MemFrontEnd 
instances represent different communication initiatives on multi-gate C of MemImpl.

Figure 142: The Memory implementation structure
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6.5.2 The Clerk

The Clerk is an interface between the RPC and its Memory environment, defined by 
Figure 143 (p. 256).

In one direction, towards the RPC component, the basic Read and Write signals are 
translated and relayed by the RemoteCall. In the other direction, towards the environ
ment, the return from the RPC is either just relayed, or if RPCFailure is received a 
nondeterministic decision is made to return MemFail or to try again. Sooner or later a
MemFail will serve as a helpful direction and exit from the retransmit loop.

6.5.3 Progress of MemImpl

We start by trying to find a partial order of signal types such that every transition 
duces only signals of lower value.

In Figure 144 (p. 257) we have shown parts of the partial order which can be deri
from the transitions of MemImpl. We see that the only possible cycles concern the 
uation when RPC returns RPCFailure and the Clerk returns the original call.

The progress through this RPCFailure cycle is simply assured by the positive probab
ity of the alternative which returns MemFail from Clerk shown in Figure 143 (p. 256)

We conclude that MemImpl is at least weakly progressive. Strong progress may foll
from the reduction if MemImpl is shown to be reducible.

6.5.4 Confluence of MemImpl

We continue to show that MemImpl is confluent by showing that none of the compo
nents can provide a non-confluence pattern.

Figure 143: Process Clerk
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6.5.4.1 MemFrontEnd

The block type MemFrontEnd defined in Figure 142 (p. 255) is reducible on its own 
we shall see that both components are channel/state-mapped.

RPC RPC (Figure 141 (p. 254)) is a channel/state-mapped process where the state sp
divided by the channels. In Idle, RPC accepts only input from gate C (i.e. from the 
Clerk). In WaitRet, RPC accepts only input from H (i.e. from ReliableMemory). All 
other possibilities are ruled illegal.

Accepting the partial reducibility where reduction is modulo internal errors, RPC is 
obviously confluent.

It should be possible also to prove that the signals which are internal errors in RPC are 
actually impossible, but we can also interpret them as saves.

Clerk Clerk (Figure 143 (p. 256)) is also a channel/state-mapped process. In state Idle only 
input from C is allowed (i.e. Read and Write), while in WaitRet, preferred signals are
the return signals from the ReliableMemory and RPCFailure all coming from H.

The reduced MemFrontEnd process type is given in Figure 145 (p. 258) and Figure 1
(p. 259).

The reduction is easily achieved in the same way as shown in Section 6.3.4 (p. 243
reduction can also be seen as concatenating all the transitions involved in the exe
of an external input. Internal output is not shown, and neither are states with intern
nals and the consumption of internal signals.

Figure 144: Parts of the partial order of signals in MemImpl
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6.5.4.2 ReliableMemory

Taking the definition of ReliableMemory as given in Figure 138 (p. 250) we can easi
see that the spontaneous saves take good care of any potential collisions of Read and 
Write signals from various sources. The spontaneous save has the effect that all 
tations of colliding signals are equally possible.

6.5.5 Reduction of MemImpl

We shall now execute the reduction of MemImpl by executing all external signals in al
stable states. In Table 23 (p. 259) we start with the most interesting case, Write. From 
the same kind of argument as we had for the multiple WriteAgents in Section 6.3.4.2 
(p. 244) we can conclude that also in MemImpl we can apply “practitioners’ induction”
and use only one representative of the block set.

Figure 145: MemFrontEnd reduced 1(2)
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6.5.5.1 Reducing MemImpl wrt. Write from Initial state

We start from the initial state (Idle,Idle,S) with a Write signal.

While states 1.2 and 1.3 are stable, we continue the execution of 1.1 in Table 24 (p

Table 23: Executing Write from initial state

# Executor Guard State(s)

1 (Idle,Idle,S;Write(l,v); ; )

1.1 MemFront. ¬AC,(0)1. (WaitRet,WaitRet,S; ;Y:Write(l,v), 
inp=’Write(l,v)’; )

1.2 MemFront ¬AC,(0)2. (Idle,Idle,S; ; inp=’Write(l,v)’; MemFail)

1.3 MemFront AC (Idle,Idle,S; ; inp=’Write(l,v)’; BadCall)

Table 24: Executing 1.1

# Executor Guard State(s)

1.1 ¬AC,(0)1. (WaitRet,WaitRet,S; ;Y:Write(l,v), 
inp=’Write(l,v)’; )

Figure 146: MemFrontEnd reduced 2(2)
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State 1.1.2 is semi-stable. We continue to execute 1.1.1 in Table 25 (p. 260). We 

some points in this execution:

1. State 1.1.1.1 refers to normal return of the BadArg signal

2. We know that we have ¬AC from the guard, such that we know the outcome of
execution of the decision on the second branch of the decision 1.1.1.2.

3. On the branch of 1.1.1.2 which must be chosen, there is another decision betw
MemFail and retrying inp. We consider the MemFail option the same as state 
1.1.1.2.1.

4. State 1.1.1.2.2 is the same as 1.1. This branch is therefore pruned since there is
ful direction in 1.1.1.2.1.

We may now summarize execution of Write from Idle, Idle, S. in Table 26 (p. 260).

1.1.1 ReliableM. ¬AC,(0)1, 
AW

(WaitRet,WaitRet,S; ; Z:BadArg, 
inp=’Write(l,v)’; )

1.1.2 ReliableM. ¬AC,(0)1, 
¬AW

(WaitRet,WaitRet,S; ; save MWrite(l,v,ma), 
inp=’Write(l,v)’; )

a. m designates the MemFrontEnd which issued the Write-call

Table 25: Executing 1.1.1

# Executor Guard State(s)

1.1.1 ¬AC,(0)1, 
AW

(WaitRet,WaitRet,S; ; Z:BadArg, 
inp=’Write(l,v)’; )

1.1.1.1 MemFr. ¬AC,(0)1, 
AW,(0)1.

(Idle,Idle,S; ;inp=’Write(l,v)’; BadArg)

1.1.1.2.1 MemFr. ¬AC,(0)1, 
AW,(0)2,(+)

(Idle,Idle,S; ;inp=’Write(l,v)’; MemFail)

1.1.1.2.2 MemFr. ¬AC,(0)1, 
AW,(0)2,(0)

(WaitRet,WaitRet,S; ; Y:Write(l,v), 
inp=’Write(l,v)’; )

Table 26: Executing Write from initial state (Summary)

# Guard State(s)

1 (Idle,Idle,S;Write(l,v); ; )

1.1.1.1 ¬AC,(0)1, 
AW,(0)1.

(Idle,Idle,S; ;inp=’Write(l,v)’; BadArg)

Table 24: Executing 1.1

# Executor Guard State(s)
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If we bring this back to part of an SDL process, this is shown in Figure 147 (p. 26

1.1.1.2.1 ¬AC,(0)1, 
AW,(0)2,(+)

(Idle,Idle,S; ;inp=’Write(l,v)’; MemFail)

1.1.2 ¬AC,(0)1, 
¬AW

(WaitRet,WaitRet,S; ; save MWrite(l,v,ma), 
inp=’Write(l,v)’; )

1.2 ¬AC,(0)2. (Idle,Idle,S; ; inp=’Write(l,v)’; MemFail)

1.3 AC (Idle,Idle,S; ; inp=’Write(l,v)’; BadCall)
a. m designates the MemFrontEnd which issued the Write-call. The MemFrontEnd 

is one-one-related to the external PId of the SENDER relative to a MemImpl 
process.

Table 26: Executing Write from initial state (Summary)

# Guard State(s)

Figure 147: Process type MemImpl (reduced) Write, first part
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6.5.5.2 Reducing MemImpl wrt. spontaneous consumption

We continue with the semi-stable state (WaitRet, WaitRet, S) and the consumption of
the spontaneous saved MWrite in Table 27 (p. 262).

We see that 2.2 and 2.3 are semi-stable and very similar to state 2. The only sign
difference is that 2.3 has managed to assign the memory location. The reader sho
think that we should prune 2.2. (and possibly 2.3). The case is simply that the pro
performs a loop back to a (semi-)stable state which is quite normal in the life of an
process. This is different from when the reduction execution returns back to an instable 
state in the same execution. Such loops are pruned.

We continue with the instable state 2.1 in Table 28 (p. 262).

Table 27: Executing spontaneous consumption

# Executor Guard State(s)

2 ¬AC, ¬AWa

a. We notice that guard which shows what condition the spontaneous save occurred.

(WaitRet,WaitRet,S; ; save MWrite(l,v,mb), 
inp=’Write(l,v)’; )

b. m designates the MemFrontEnd which issued the Write-call. The MemFrontEnd is one-one
related to the external PId of the SENDER relative to a MemImpl process.

2.1 ReliableM. ¬AC, ¬AW, 
(+)

(WaitRet,WaitRet,S; ; inp=’Write(l,v)’, Z: 
writeOK, M(l)=v; )

2.2 ReliableM. ¬AC, ¬AW, 
(0)1.

(WaitRet,WaitRet,S; ; save MWrite(l,v,m), 
inp=’Write(l,v)’; )

2.3 ReliableM. ¬AC, ¬AW, 
(0)2.

(WaitRet,WaitRet,S; ; save MWrite(l,v,m), 
inp=’Write(l,v)’, M(l)=v; )

Table 28: Executing 2.1

# Executor Guard State(s)

2.1 ¬AC, ¬AW, 
(+)

(WaitRet,WaitRet,S; ; inp=’Write(l,v)’, Z: 
writeOK, M(l)=v; )

2.1.1 MemFr. ¬AC, ¬AW, 
(+), (0)1.

(Idle,Idle,S; ;inp=’Write(l,v)’, M(l)=v; 
WriteOK)

2.1.2.1 MemFr. ¬AC, ¬AW, 
(+), (0)2,(+)

(Idle,Idle,S; ;inp=’Write(l,v)’, M(l)=v; 
MemFail)

2.1.2.2 MemFr. ¬AC, ¬AW, 
(+), (0)2,(0)

(WaitRet,WaitRet,S; ;Y:Write(l,v), 
inp=’Write(l,v)’, M(l)=v; )
Practitioners’ verification of SDL systems  Ø. Haugen Dr. Scient Thesis Modified: 1997-03-29 262



The RPC-Memory Specification Problem
Implementing the Memory by RPC 6

annot 
which 
ble 29 

).

-

This execution is very similar to the one in Table 25 (p. 260), but the state 2.1.2.2 c
be pruned right away since there are no instable state in the execution of state 2 
equals it. We execute 2.1.2.2, and consider the guards, and get the execution of Ta
(p. 263).

We have now reached stable states on all execution branches in Table 30 (p. 263

Graphically we can see this program segment in Figure 148 (p. 264).

6.5.6 Comparing MemImpl and Memory

Our task is to prove that MemImpl is a valid implementation of Memory meaning that 
any behavior of MemImpl is a behavior of Memory. We follow the principles of Sec-
tion 4.2.2 (p. 149).

Table 29: Executing 2.1.2.2

# Executor Guard State(s)

2.1.2.2 ¬AC, ¬AW, 
(+), (0)2,(0)

(WaitRet,WaitRet,S; ;Y:Write(l,v), 
inp=’Write(l,v)’, M(l)=v; )

2.1.2.2.b ReliableM. ¬AC, ¬AW, 
(+), (0)2,(0)

(WaitRet,WaitRet,S; ; save 
MWrite(l,v,m), inp=’Write(l,v)’, 
M(l)=v; )

Table 30: Executing spontaneous consumption (Summary)

# Guard State(s)

2 ¬AC, ¬AWa

a. We notice that guard which shows under what condition the spontaneous save occurred.

(WaitRet,WaitRet,S; ; save MWrite(l,v,mb), 
inp=’Write(l,v)’; )

b. m designates the MemFrontEnd which issued the Write-call. The MemFrontEnd is one-one
related to the external PId of the SENDER relative to a MemImpl process.

2.1.1 ¬AC, ¬AW, 
(+), (0)1.

(Idle,Idle,S; ;inp=’Write(l,v)’, M(l)=v; WriteOK)

2.1.2.1 ¬AC, ¬AW, 
(+), (0)2,(+)

(Idle,Idle,S; ;inp=’Write(l,v)’, M(l)=v; MemFail)

2.1.2.2.b ¬AC, ¬AW, 
(+), (0)2,(0)

(WaitRet,WaitRet,S; ; save MWrite(l,v,m), 
inp=’Write(l,v)’, M(l)=v; )

2.2 ¬AC, ¬AW, 
(0)1.

(WaitRet,WaitRet,S; ; save MWrite(l,v,m), 
inp=’Write(l,v)’; )

2.3 ¬AC, ¬AW, 
(0)2.

(WaitRet,WaitRet,S; ; save MWrite(l,v,m), 
inp=’Write(l,v)’, M(l)=v; )
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We have the reduced Memory (the write part) in Figure 139 (p. 252) and the corre-
sponding write part of MemImpl in Figure 147 (p. 261) and Figure 148 (p. 264). The
look similar, but not absolutely identical.

1. MemImpl checks for AC, the syntax of the signal as such. This means that it che
whether the signal can be interpreted as a write or read. Memory has no such outer-
most syntax check.

2. When the decision on AW is reached and AW is true, MemImpl may output MemFail 
while Memory always outputs BadArg.

These discrepancies indicate that MemImpl may not be a valid implementation of 
Memory. The first point may not be serious since Memory takes for granted that only
write or read signals are admitted anyway. The second discrepancy is not importa
since MemImpl may return MemFail already before the test on AW. Testing AW to true 
does not really add any new external behavior since MemFail may be returned when 
AW is true or false already by the first non-deterministic decision.

The comparison wrt. the spontaneous consumption of the MWrite signal shows some 
differences. We see that the decision structures are different, but the set of branc
together seems comparable. We do not want to make up a set of transformation ru
(fair) non-deterministic decisions, and therefore we divide the analysis here in two
sidering only finite behavior and then infinite behavior.

Figure 148: Process type MemImpl (reduced) Write, second part
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6.5.6.1 Finite behavior

During the analysis of finite behavior we flatten the decisions. By flattening the alte
tives, we mean that we oversee the fact that some alternatives may have a speci
positive probability. This simplifies the decision structure of the non-deterministic 
decisions.

Spontaneous consumption has the option to return merely MemFail in Memory, but this 
option is absent in MemImpl. This discrepancy refers to the slightly different positio
the spontaneous save has in the two architectures. Since MemImpl does have the option
to return MemFail directly when consuming the original Write signal, we consider this 
discrepancy insignificant.

We conclude that for finite behavior, MemImpl has the same alternatives as Memory.

6.5.6.2 Infinite behavior

Finally we should consider infinite behavior. In decisions with alternatives with posi
probability we know that all those alternatives must appear when the decision occ
infinitely.

Consider the following scenario in MemImpl. If we assume an infinite input stream o
write signals where AC and AW are false we may still have a return stream where 
“M(loc):=val; output  MemFail ” happens every time. This is because there is a no
deterministic decision inside the positive probability alternative. With pure non-de
ministic decisions any single alternative may occur every time. This is not possibl
Memory where whenever an infinite input stream of write signals where AC and AW 
are false occurs, the return stream must contain at least one WriteOK.

We must conclude that MemImpl is not an implementation of Memory.

6.5.6.3 Modifying Memory such that MemImpl is an implementation

In order to modify our original Memory such that MemImpl is a valid implementation 
of it, we must look into the positive probability of returning WriteOK from Mem. In 
Section 6.3.2 (p. 240) we argued that this ensures that any implementation of Mem must 
have some chance of success i.e. that WriteOK should have some positive probability
to be returned. Our MemImpl may be implemented such that the memory is actuall
changed, but MemFail is raised anyway. It seems contrary to the general purpose o
Memory that we should have an implementation which always exhibits only half w
success.

If we modify Mem such that there is no positive probability for success, Memory is still 
progressive since there is a positive probability of relaying MemFail in WriteAgent. In 
ReliableMemory we must still have the positive probability to return success in Mem 
since WriteAgent cannot relay the MemFail.

These changes will result in the reduced Memory shown in Figure 149 (p. 266).

We can now find no infinite behavior which is possible in Memory, but not in 
MemImpl.

We conclude that MemImpl is a valid implementations of Memory.
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6.6 Implementing RPC

The last part of the RPC-Memory specification problem is about the implementatio
RPC via using a lossy RPC component which sometimes just does not return, but
it returns it does so within a given duration limit.

We have already recognized that SDL is not suitable to specify time and duration
straints as pointed out in Section 1.6.3 (p. 35), and our thesis has not made any s
attempt to improve these aspects of SDL.

Therefore we have found no reason to give the solution to the last part of the RPC-
ory specification problem in this thesis.

Figure 149: Final specification of Memory (write)
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6.7 Conclusions

The RPC-Memory specification problem has shown more facets of specification a
verification than one would expect at first glance. The problem itself is fairly simple
complexities are hidden in the fairness requirements and the implementations.

The example problem has shown that SDL is fairly well suited for such a problem o
time engineering, but that there are specific aspects which need notation extensio
more elaborated verification techniques.

SDL has problems when it comes to:

1. Describing fairness.

2. Generalizing wrt. signal types. Signals cannot be considered data in standard 

With our extensions, these areas were also possible to handle.

In our solution to the problems we have shown that a one-way top-down approach
the most general specification to the implementations is not adequate. We show th
engineering approach turns out to conclude that the proposed implementations a
actual refinements. When we decide to make them refinements, the original gene
specifications had to be iterated and changed. By doing so we had to go through
ments for the desirability of the design chosen.

We also found that the exercise was very illustrative for using our practitioners’ ve
cation approach on a practical/theoretical problem. We feel that our descriptions 
transformations had two very desirable properties: 

1. The descriptions were readable.

2. The transformations were transparent and/or automatic. The proofs could prob
have been done by any engineer.
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7. Conclusions and further work

We have in this thesis presented an approach to systems engineering based on a
validation strategy. What are the strongholds of the Mn-approach and what are its
comings? How should further research and development improve the approach?

7.1 Recapitulation

The Mn-approach is based on a procedure (the Mn-procedure) for determining co
ence of a concurrent system of communicating extended finite state machines. F
very simple idea and a very simple basic strategy – to check all possible race cond
– we were able to prove interesting features of interesting, theoretical systems.

We let the Mn-approach inspire a method – confluent design – which should be po
to use favorably on real systems. We reported from a rudimentary industrial case 
We provided arguments for the applicability of the Mn-approach from our own ex
ence as a long time engineer of reactive systems.

The Mn-approach does not cover everything. There is no simple way to determin
exactly in which situations the Mn-approach adds valuable insight. In Figure 150 
270) we have given an overview of the domains of the Mn-approach.
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7.2 The strongholds of the Mn-approach

The strong points of the Mn-approach seem to be its smooth transition from the pra
engineering to the theoretical world of automata, and its friendliness towards othe
approaches. It is also reasonable to believe that proofs by the Mn-approach are m
readable and comprehensible than formal proofs, at least for practitioners.

7.2.1 A bridge from theory to practice

On one side of the spectrum there is the practitioner who has great skepticism to
theory. On the other end there is the theorist who could not care less about the pr
application of his ideas, but he wants a well founded way to visualize certain aspe
a concurrent system. The Mn-approach may have something for both these two 
extremes and also for persons in between these extremes. We have tried to illustr
different aspects of the Mn-approach on such a spectrum in Figure 151 (p. 270). Th

orist may want to use the Mn-procedure to make a reduction of a system to explo
external properties. We have also seen that reductions can be used in connection
refinement verification.

all cases

existing 
reactive 
systems

good future 
systems

real, reactive systems

toy 
exam-
ples

The Mn-
approach

complexity 
metric

Siemens case 
study

Alternating Bit P.
Brock-Ackerman
RPC-Memory

Confluent 
Design

Figure 150: The Scope of the Mn-approach

The theorist The engineer

Reduction for validation and refinement Complexity profile

Confluent design

Detecting undesired race conditions

Reduction together with other techniques

Figure 151: The Mn-bridge between theorists and engineers
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Slightly less ambitious is to select certain parts of the system which are specially s
for reduction and reduce these. These reductions are then used together with othe
ods like reachability algorithms.

Even less ambitious is to use the Mn-procedure just to indicate where there are ra
ditions which may be problematic. We may not even go all the way to ascertain th
there is a real problem before we present the indication to the engineer. He may th
an “aha-experience” and admit that there may be a problem.

To keep to the confluent design guidelines is reasonable even if the Mn-approach
not be used formally to validate the system. And finally to apply the complexity pro
based on the Mn-approach may indicate problematic areas without any direct infr
ment on the system development as such.

7.2.2 The Mn-approach is the friendly approach

Since the Mn-approach is a monolithic approach to validation which only reduces
complexity of a subsystem by eliminating the internal communication, it can be ea
combined with other methods. After having applied the reduction, the resulting sy
is still a system of communicating finite state machines, and theoretically eligible t
same approaches as the original. This means that any technique which could hav
used on the original, can also be used when a part has been reduced via the Mn
procedure.

The question is what the analysis wants to conclude. It is obvious that the aim of 
analysis must be expressible in terms of the transformed system. That the analys
is expressible in terms of the transformed system must also mean that all examp
counterexamples of the aim must be expressible in terms of the transformed syst
this holds for some property, we claim that the property holds also for the original
system.

7.2.3 The Mn-proofs are transparent

Each step of the Mn-procedure is an execution which is fairly straight forward, an
may often be performed automatically as a symbolic simulation. The reduction al
rithm is a series of symbolic executions, too. The result of the reduction is a proce
graph which is in (slightly extended) SDL.

There is no notation which is not known to the engineer and there are no inference
(verification steps) which are not executions.

The Mn-approach to validation is an imperative approach using the concepts and
ations which are already known by the engineers.

7.3 Points on which the Mn-approach could be improved

The Mn-approach is not the answer to everything. There are areas where the Mn
approach is not well suited, and there are areas where more research should impr
technique.
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The major issue where the Mn-approach has little to offer is in handling data. We
also decided not to spend effort on proving progress.

Furthermore the Mn-approach is, similar to SDL itself, not perfectly suited to reas
about real time. We also believe that some people will argue that our approach to
ness is not fully adequate.

Finally we have in the thesis used other techniques to support the Mn-approach, s
backwards execution. There should be advantageous to look into a more systema
of other techniques in connection with the Mn-approach.

7.3.1 Where the Mn-approach has little to offer

There are two important subjects which we have treated only ad hoc in this thesis. 
subjects are data and progress.

7.3.1.1 Data

Concerning data we have said that our major aim is to eliminate internal communic
and data is not so important then. This is of course only partly true. If the aim is to m
complete reduction which can be used as integral part in other methods, the data
be included.

We have done little or nothing to evaluate whether the data used in real systems a
ally suitable for symbolic execution. We know theoretically that data may exhibit al
complexity of the world, but our conjecture has been that reactive systems seldom
tain unmanageable data complexity. From experience we are convinced that cert
parts of systems have very simple data, while others are complicated.

7.3.1.2 Progress

Progress is a prerequisite for the Mn-procedure, but we have treated this subject in
ad hoc manner. Still we believe that in reactive systems, progress is often not the
thing to establish. On the other hand in a real system the structure of feedback loop
retransmissions and acknowledgments etc. may be quite difficult to follow manua
This is definitely an area for further study both empirically and theoretically.

7.3.2 Where the Mn-approach may not be perfectly suited

We have reason to believe that theorists are not perfectly happy with our treatme
real time and fairness.

7.3.2.1 Real Time

We can handle timers with the Mn-procedure. We are aware that confluence is a 
more intricate concept when time and duration have to be taken into account and
only the order of events.

It is definitely a subject for further research to determine how and whether the redu
technique of the Mn-approach can be extended to cope with time and duration in a
general way than we have shown in this thesis.
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7.3.2.2 Fairness

We have included in the Mn-approach a notation for fairness in connection with d
sions. Our notion of fairness is described as extreme fairness or a variant of probab
fairness. This notion seems to fit well in an imperative setting where each languag
struct is considered to execute independent of all other imperatives. Thus when a
deterministic decision executes, it has no “knowledge” of earlier or later execution
this or other decisions. With our extreme fairness, we assume that certain outcom
the decision (helpful directions) have positive probability to appear. The positive p
ability is present every time the decision is executed.

There are many other notions of fairness which have proved to be practical. We d
eliminate the possibility that other fairness concepts than our extreme fairness m
suitable to include in communicating finite state machines, and in the language S
This is a matter of future research.

7.3.3 Where the Mn-approach could be helped by other techniques

The main risk when applying the Mn-procedure is that unreachable non-confluenc
terns are found and absolute confluence cannot be proven. We have used simple
backwards execution as an ad hoc way to prove that a given state is not reachab

We are certain that improved coverage of the Mn-approach could be obtained if w
applied in a systematic way supporting techniques to eliminate non-confluence pa
which are unreachable. Typically proven state invariants could serve as a filter to d
a subset of the full set of complete states.

This is a matter for future research.

7.4 Empirical data and tools

Our rudimentary industrial case study can hardly be considered a thorough empir
study of the applicability of the Mn-approach. It would have been feasible to perfo
more studies along the same line, but it became evident that automatic support o
Mn-procedure is almost a prerequisite.

Our prototype tool could not do the job as merely to make the system available to
tool would take many hours and be fairly error prone. Furthermore the prototype 
could not handle all the features needed.

The rise in effort from indicating problematic race conditions to proving reducibility
substantial, and we decided to spend our available time on smaller toy examples 
we could reveal theoretical problems of the approach.

More empirical studies are needed to support the conjecture that the Mn-approac
actually applicable in the real life on real systems. In order to perform such studie
reliable way tools are needed. It should be fairly simple to modify the SDL tools a
able to accommodate the Mn-approach, and we hope that the tool vendors will fin
Mn-approach interesting and consider investing some resources into making an M
module to their tools.
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Pilot studies where aspects of the “confluent design” approach is used should su
ment studying the effect of using Mn-approach as validation approach to already 
existing systems.

The reader should remember that the engineer is the most valuable resource of v
tion. He has the power to make things simple and verifiable, or – to make them com
and impossible to verify.
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9. Summary of new SDL constructs

We have found the need to introduce a few new SDL constructs to support the M
approach and to be able to describe the systems which we find interesting in this co
Here we summarize these constructs.

There are four new constructs and they serve different purposes.

1. Fair Non-deterministic Decisions serve to facilitate specification of systems such th
progress can be determined.

2. Merge, spontaneous save and spontaneous consumption are mechanisms which make
it possible for the Mn-approach to express the non-determinism introduced by 
merge of signals from different channels.

3. Signals as variables help to generalize certain behavior patterns such that they 
become independent of exactly which signal arrives. This is used in the RPC-M
ory example.

9.1 Fair Non-deterministic decision

Standard SDL-92 has anyvalue expressions which can be applied in decisions. Th
decisions represent a non-deterministic choice where we have no knowledge wh
ever about the chances of one alternative against the others. This is not practical
fairness is the issue. By introducing a simple notation (+) on a branch from a non-
ministic decision, we describe that this branch has a positive probability.
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This means that if this decision is executed an infinite number of times, the “posit
alternative will be chosen an infinite number of times. We define that for every infi
subsequence of decision answers, any (+) alternative should appear infinitely ma
times. This represents extreme fairness.

The suggested extended notation for extreme fairness in SDL is shown in Figure 1
284). An imperative definition of our fairness construct is given in Figure 153 (p. 2

To obtain extreme fairness the any-expression must be random such that all Nat
numbers have the possibility to be chosen.

9.2 Merge, spontaneous save and spontaneous consumption

In our Mn-approach it is very important that any non-determinism is described ex
itly. In systems where non-determinism based on race conditions between signal
acceptable we need a way to describe the race condition explicitly. Our approach
imperative “spontaneous save”.

There are three elements to this feature: the merge state, the spontaneous save 
spontaneous consumption.

Merge state The merge state is the user’s way to express that there is an explicit race condition w
is considered acceptable. Normally either no basic states or all basic states of a p
are merge states.

Spontane-

ous save

The spontaneous save is the clue to the mechanism. The spontaneous save is n
by specifiers, but comes as a result of reduction and in the Mn-procedure. The id
that when a signal is about to be consumed in a merge state, it is instead spontan
saved. The complete state will normally become semi-stable. When the process 

Figure 152: Fair Decision

dcl z1 Integer:= any(Natural);

dcl z2 Natural:= any(Natural);
...
z2:= any(Natural);
decision (z1<=z2)
  (true):  S1; z1:= any(Natural);
  (false): S2: z1:=z1-1;
enddecision;

Figure 153: Imperative definition of fairness
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merge state, all normal signals will be spontaneously saved. In reductions the spo
ous saves may occur also inside transitions since they are often operations on in
processes.

Spontane-

ous 

consump-

tion

The spontaneously saved signals are then spontaneously consumed. At any poin
time, when the process is in a merge state, the first spontaneously saved signals
channel may or may not be consumed. The spontaneous consumption is consider
bally triggered and in reductions they appear as external signals. Only the first sig
may be spontaneously consumed. This means that the order of the signals within a
nel is not changed, but the signals on different channels are merged.

All in all these constructs serve to describe in a finite way the infinite set of signal m
ers. The graphical notation is shown in Figure 154 (p. 285).

9.3 Signal objects as data objects

As any SDL implementation has discovered, there is definitely some gain in harm
ing signals and variables. We have done this by the following scheme:

1. Signal data type. We define a new predefined data type which is the set of all sign
It is designated SIGNAL, such that a declaration of a signal variable will look like
“dcl my_sig SIGNAL;”. The signal data type may then also appear as paramete
another signal. It is also possible to define variables of specific signal types by 
extending the syntax: “dcl my_sig SIGNAL mysignaltype;”

2. Output. It is possible to output a stored signal by outputting the variable: “output 

my_sig;” The SENDER attribute of the signal is modified to SELF of this process1.

3. Dash signal. We define a predefined function (called DASHSIGNAL) which returns 
a SIGNAL value which is equal to the most recently consumed signal of the pro

4. Check signal type. We define a Boolean function which can be used to check the
nal type of a signal variable: “my_sig is return;”. A similar construct can then be 
used to interpret parameters: “my_sig qua exceptreturn(param);”.

5. Atleast input. We may consume signals of different signal types in one transition
specifying a supertype of the signal types by “input atleast return;”. Combination 
with DASHSIGNAL and signal type check makes it possible to use this effectiv
In general we can use “atleast signaltype” also in signallists to indicate that any sig
nal type which is inherited from signal type is allowed.

Figure 154: Merge state, spontaneous save and spontaneous consumption

1. There may also be a need to keep the original SENDER of the signal. This can always be done manually
parameter to the signal, but we could also make a construct to circumvent the modification of SENDER.
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e wrt. 
All together these features make it possible to generalize SDL communication mor
signals. We have given an example in Figure 155 (p. 286).

Figure 155: Example of signal as data

declaring signal variable

predefined 
function for last 
signal

Signal as 
parameter to 
another signal

Output of sig-
nal variable

atleast signal 
specification
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