Practitioners’ verifica-
tion of SDL systems

@ystein Haugen

Thesis for the Dr. Scient. degree

University of Oslo
Faculty of Mathematics and Natural Sciences,
Department of Informatics

Practitioners’ Verification of
SDL systems

by
@ystein Haugen

Doctoral Dissertation

Submitted to
the Faculty of Mathematics and Natural Sciences
at the University of Oslo
for the fulfillment of the degree of Dr. Scient. in Informatics

April 1997

Supervisor: Professor Dag Belsnes

Table of Contents

LNtrodUCioN.o 1
1.1 ADSEract. . . .o 1
1.2 EXeCUtive SUMMANYo e e e e 2
1.3 Technical summary. e 7
1.4 The nature of SDL SYyStemMS.o 17
L5 MoOtivation.o 23
1.6 Background. 26
1.7 Readers guidetothethesis 37
1.8 Acknowledgments. 38
2. The Basic Mn-procedure 41
2.1 BaSiC CONCEPLS. . v v vttt e e 42
2.2 Reducibility. 47
2.3 PrOgIESS. . ottt 50
24 Confluence 51
2.5 Reducibility revisited 73
26 BasicpragmatiCsS. 76
2.7 Concluding the Basic Mn-procedurec...... 81
3.General MN-procedure. i e 83
3.1 Infinite external input sequence, 84
3.2 Multiplechannels 87
3.3 Multiple proCesses 90
34 AV, . . 94
3.5 Non-determinisSm 97
36 Data. ... 117
B 7 TIMIS . o 119
3.8 Procedures. 128
3.9 Object orientation: Inheritance and virtuality. 133
B I0SDL SEIVICE . . oottt 139
SALPrIOMHES . .ottt 140
3.12 Concluding Mn-procedure for SDL 141
4.The Mn-approach and formalanalysis. 143
4.1 Compositionality of reducibility. 143
4.2 Verifyingrefinement. 146
4.3 Simplification 156
4.4 The expected behavior of the Mn-procedure 163

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 5

4.5 Conditional reduction. 171
5.The Mn-approach in practical engineering

5.1 The Nature of Real Reactive Systems 178
5.2 The Mn-procedure on Real Systems 192
53Mn Methodology 199

5.4 Experience from an industrial case study. 217
5.5MNI00IS 222
5.6 The Mn-method and the Nature of Real Reactive systems 223
5.7 Concluding Practical Use of the Mn-approach 228

6.The RPC-Memory Specification Problem

6.1 Preliminary definitions.. 229
6.2 The (unreliable) Memory and the Reliable Memory 230
6.3 ReducindMemory to a process description. 239
6.4 TheRPC component 252
6.5 Implementing thlemory byRPC. 254
6.6 Implementing RPC. 266
6.7 CONCIUSIONSottt e 267
7.Conclusions and furtherwork.
7.1 Recapitulation. 269
7.2 The strongholds of the Mn-approach 270
7.3 Points on which the Mn-approach could be improved. 271
7.4 Empirical dataandtools. 273
B References
9.Summary of new SDL CONSIIUCESottt
9.1 Fair Non-deterministic decision. 283
9.2 Merge, spontaneous save and spontaneous consumption. 284
9.3 Signal objects as dataobjects., 285
10.List Of FIQUIeS oo

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

1 Introduction

T.T.T.

Put up in a place

where it's easy to see

the cryptic admonishment
T.T.T.

When you feel how depressingly
slowly you climb,

it's well to remember that
Things Take Time

1. Introduction

Here we give summaries of the thesis and background for the study. We summarize the
thesis in an abstract, an executive summary and a technical summary. Then we give a
short introduction to the language SDL and its use. We elaborate on our motivation for

the work and give some background in other approaches. Finally the introduction ends
up with a guide to the reading of this thesis and acknowledgments.

1.1 Abstract

This thesis aims to give a skeleton of a bridge between theoretical validation of commu-
nicating finite state machines, and the practical quality improvement of designing real
systems in SDL.

Mn- The backbone of the bridge is the Mn-procedure which reduces an SDL-system to an

procedure SDL-process by eliminating internal communication. The Mn-procedure tries to estab-
lish that a progressive SDL system is confluent, and then a simple reduction algorithm
produces the reduction.

We show that the Mn-approach for reduction is fruitful on well known examples: Alter-
nating Bit Protocol, The Brock-Ackerman anomaly and the RPC-Memory specification
problem.

Monolithic The Mn-approach is purely monolithic as it produces SDL descriptions from SDL
descriptions. We argue that the reductions can result in:

1. A more compact functional specification; (This may help when other techniques are
used to analyze the total system.)

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 1

SDL
extensions

Condi-
tional
reduction

Mn-metric

Confluent
design

Introduction
Executive Summary

2. Improved overview and understanding; (This helps for the designers and reviewers of
the system, and it helps achieving reuse.)

3. Simpler analysis on higher levels. (The Mn-procedure is compositional.)
We show how the Mn-approach can be applied to proving refinement.

In order to cope with (extreme) fairness and non-determinism we introduce a few new
features to SDL, fair non-deterministic decision and spontaneous save. We also intro-
duce concepts to harmonize signals and variables to be able to express more general
signal handling.

We define modifications on the Mn-procedure which result in conditional reduction.
Conditional reduction appears when the confluence is dependent upon the system exe-
cuting without run-time errors, which are caught by a monitoring layer. This means that
either the system executes as the reduction, or it turns into a run-time error.

We also note that conditional reduction based upon limited resources such as finite lim-
its on the lengths of the channel queues may be very attractive. This makes confluence
decidable, and a simplified version of the Mn-procedure suffices.

Based on the Mn-procedure we develop a metric to indicate complexity areas of the sys-
tem, and thereby a strategy to decrease the complexity and improve the system quality.

We argue that the Mn-procedure scales well and will work also on selected components
of real systems. Therefore we end up specifying a method which we call “confluent
design” based on aiming for confluence in the design of every constituent part of a
system.

1.2 Executive Summary

In this short section we shall give a brief summary of the background and aims of this
dissertation, and the results which we claim to reach.

The background for our work is the discrepancy between the sophistication of the avail-
able verification methods and the perceived complexity of the systems which are being
analyzed. We feel that the intricacy of the analysis should not exceed the mental capac-
ities of the designer. Still we recognize the powers of computers to perform repeated
tasks and want to exploit the possibilities of automating trivial verification steps.

1.2.1 Major aims

We provide an approach (the Mn-approach) to supplement systems engineering. Its core
part is a technique (the Mn-procedure) for reduction of SDL-like systems. This tech-
nique we show can be used both for theoretical purposes and on real systems. The Mn-
approach also provides a methodology which reaps the benefits of the Mn-procedure for
real systems.

The name “Mn? simply means “Machine n” referring to the use of several machines
(automata) or generations in the Mn-procedure.

1. “Mn” is actually very mnemonic since it is the two first letters of “mnemonic”.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Executive Summary

1.2.2 SDL systems

We have limited ourselves to SDL-like systems, but our approach is generally applica-
ble to the class of systems defined by asynchronously communicating finite state
machines.

An SDL system is a system which has been specified by the specification language SDL
[25; 78; 83]. SDL systems consist of interacting components which in the end are pro-
cesses which are described as finite state machines extended with data variables. The
communication is asynchronous and we have no means to describe accurately the delays
of the channels or the execution times of the individual transitions. SDL is a specifica-
tion language which is being used extensively in the telecom area and some of the
largest software systems in the world are specified in SDL. In a nutshell we claim that
SDL systems are reactive, asynchronous, large and concurrent, which are all aspects
which are known to add to complexity and to highlight the need for improved methods.
On the other hand we claim that most SDL systems are fairly simple wrt. data, or that
the data aspects can be handled isolated from the aspects which make up the core of SDL
(as mentioned above).

1.2.3 Progress, Confluence and Reduction

The reduction technique that we have defined in this dissertation eliminates the internal
communication within a subsystem. Thus the result is a process definition of a sub-
system that describes a behavior which, from the outside, is non-distinguishable from
that of the original subsystem. The reduced process can be used in other analyses of
enclosing systems, but it is not meant to replace the original in the system development
towards the final implementation.

Thus the reduction may result in:

1. A more compact functional specification;
2. Improved overview and understanding;
3. Simpler analysis on higher levels.

It is, however, not certain that the reduction algorithm is applicable to a given system.
Our technique examines the systenpiagressandconfluenceA system which is pro-
gressive and confluent is reducible.

Progress is related to termination of programs. A progressive system will not turn into
deadlocks or livelocks. This thesis is not very preoccupied with determination of
progress other than the fact that progress is a prerequisite for determining confluence.

Confluence is that different execution paths lead to the same end result. Said differently,
confluence between an external and an internal channel means that the end results are
insensitive to the order in which signals are handled on the two independent channels.
Our Mn-procedure may determine confluence in cases where we are certain to have a
finite execution tree from every system state (weak progress). Why it is not trivial to
assert the confluence of an asynchronously communicating system is the fact that inter-
nal signals may trigger more internal signals which in turn trigger other internal signals
etc. These internal signals may freely travel across the communicating system and their
interleaving and concurrency cannot be determined in advance.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 3

Introduction
Executive Summary

When reducibility has been established, the reduction algorithm is simply to choose the
simplest strategy for execution (since all eligible strategies lead to the same end result)
and eliminate all other possibilities. The chosen strategy is to execute all internal signals
before the next external one is consumed.

The result of the reduction algorithm, the reduction, can be described as an SDL-like
process.

1.2.4 SDL is areal language

SDL is a language which has been in real use in industry for a number of years. This
means that it contains features and mechanisms which are beyond the simple core of
communicating finite state machines. We show that our Mn-procedure with some exten-
sion and modification, can cover also the extra features of SDL.

We consider:

save — the active withholding of the next signal for consumption;
timers — an imperative way to cope with time;

procedures — structured way to reuse behavior patterns;

pure types — general structures for reuse;

inheritance — the object-oriented way to describe concept hierarchies;

o gk~ wbdpRE

virtuality — the object-oriented way to describe polymorphism.
We have also considered what complications can be introduced by data.

1.2.5 Desired non-determinism

SDL-92[78] introduces non-determinism through spontaneous transitions and anyvalue
expressions. We show how these concepts can be included in our strategy and we show
how we can improve the SDL mechanisms for better specification of fairness.

We also cover the fact that implicit non-determinism may be desirable. Explicit non-
determinism is when there are specific language constructs which clearly express that
“here there is non-determinism” such as spontaneous transitions and anyvalue decisions.
Implicit non-determinism stems from the race condition between signals of different
channels. We suggest a new SDL mechanism (spontaneous save) which makes it possi-
ble to describe reductions also in cases with implicit non-determinism.

1.2.6 The Mn-approach — does it scale?

We have showed that the Mn-procedure adapts easily to most significant features of
SDL, which in practice means most significant features of reactive systems. But it is
important to consider how well the Mn-procedure may work on large systems. Is the
method such that its supposed applicability is prohibited by the need for an enormous
amount of resources of speed and storage?

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Executive Summary

The analysis of concurrent systems are usually badly crippled by the “state explosion”
syndrome. The number of possible states quickly exceeds any number which can be pro-
cessed in available time and space.

Fortunately our Mn-approach scales remarkably well. Very large bulks of the work is
linear wrt. the number of components in the system under analysis. The complexity rises
with the existence of feedback loops, but the complexity rises in a fairly controllable
way.

1.2.7 The Mn-approach as a base for methodology

The Mn-approach can be seen as a technique for verification, a technique for validation,
a technique for documentation, a technique for reuse, a technique for evaluation or the
theoretical background for design guidelines.

While many other verification and validation techniques appear to give verdict “correct”
or “erroneous” to a given program or system, our approach is to bring into play design
guided by analysis results.

Even though correct programs are highly desirable, incorrect programs may have a
higher market potential since they are earlier in the marketplace. We try and focus on
more aspects of systems than the binary distinction between correctness and faults.

1.2.7.1 A technique for verification

Practitioners hate formal verification. They believe it is difficult and time consuming
and error prone. Most often they are right. The Mn-approach makes it possible to exam-
ine the reductions rather than the full system. In a reduction the questionable properties
may be trivial to assert. If the reducibility has been established through automatic
means, formal verification (almost) has been obtained without sweat.

1.2.7.2 A technique for validation

Validation is to assert the value of something. In our case we want to assert the validity
of some software. While a full system may be difficult to overview and to play with, a
reduction is more manageable. Its strong and weak points are more easily spotted and
its undesirable behavior more easily traced. The interesting aspects of the reduction may
then be traced backwards through the Mn-approach to their origin in the full system.

1.2.7.3 A technique for documentation

A reduction does not always appear simpler than the original even though internal com-
munication has been eliminated, but sometimes the reduction does yield something
which is simpler to overview and to explain. Since the reduction is in principle auto-
matic, the reduction is not “yet another description” that needs consistency checking
with the original.

1.2.7.4 A technique for reuse

A prerequisite for reuse is certainty that the candidate fulfills its purpose in the new con-
text. A reduction may be a compact description of a reusable component. By examining
the reductions the potential reuser can be certain that the component is applicable with-
out looking into the full amount of details of the reusable components.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 5

Introduction
Executive Summary

1.2.7.5 A technique for evaluation

We claim that real systems typically have complexities in a few specific parts while
other large portions are fairly straight forward. It may not always be obvious where the
real complexities are. The Mn-approach discloses concurrency complexities, and we
have devised an evaluation scheme which makes it possible to create an “Mn-profile”
of the system which indicates areas of complexity and the priority in which these areas
should be considered.

1.2.7.6 Background for design guidelines

Accepting the Mn-profile as a fruitful measurement of complexity, it is reasonable to
look into ways which make it more probable to avoid unintended complexities. We
present a set of concepts and guidelines which help minimize the problems of the Mn-
approach. Thus if the designer follows these guidelines chances are that the Mn-
approach may be applicable and fruitful reductions obtainable. We call this “confluent
design”.

1.2.8 The Mn-approach integrated with other techniques

The Mn-approach is a very friendly technique. It integrates well with other techniques
both inwards (using other techniques to achieve reducibility) and outwards (using reduc-
tions in analysis of enclosing systems).

1.2.8.1 Using auxiliary techniques inside the Mn-approach

Our Mn-approach relies on deciding that the system under analysis is progressive. For
this purpose we shall often use methods which are not necessarily part of this thesis.
There is a vast literature of proof techniques to assert termination e.g. from rewrite
systems.

Furthermore we may run into situations which appear non-confluent in our Mn-proce-
dure, but which through more thorough analysis can be proven to be unreachable.
Backward execution is a possible way to assert that a given complete state is not
reachable.

Symbolic execution in general is used to cope with data. We do not introduce any special
techniques for this in this dissertation.

1.2.8.2 Using the Mn-reductions in analysis of enclosing systems

The Mn-approach turns a system component like a chameleon into something else more
suited to the environment. Other techniques applied to an enclosing system may prefer-
ably use reductions of the components because then the complexity of the analysis on
this level may become more manageable. Reachability techniques implemented in com-
mercial tools may handle larger systems without meeting the state explosion boundaries.
Techniques which check for specific properties e.g. a temporal logic formulae spend
less time and resources to come up with the answer.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Technical summary

1.2.9 Concluding executive summary

Our Mn-approach is a flexible approach. It integrates well with other techniques. It
focuses on problems of concurrency and leaves algorithmic problems of data alone.

Our approach can be applied to small, interesting and difficult theoretic problems as well
as large, complex and trivial industrial problems. The technique seems to scale well.

We include in the Mn-approach methodology which helps the designers achieve reduc-
ible systems and to utilize reduction for a number of attractive purposes.

We suggest added value to some SDL language features to facilitate describing systems
in a way which is compatible with the Mn-approach.

1.3 Technical summary

Take an ambitious urge and a simple approach, and study how far the simple approach
can be carried and extended to meet the ambition. This is what this thesis is about.

We had the ambition to use SDL as the specification language of larger SDL systems.
This was motivated by the idea that a practitioner would like to express his design in as
few languages as possible. In order to use SDL as its own specification language, it was
necessary to reduce the large SDL descriptions to simpler ones which eliminated the
internal aspects of the SDL system.

We also had the ambition to use this monolithic SDL approach as the fundament for a
bridge between theoretical verification and practical validation of SDL systems. This
thesis gives a skeleton for such a bridge.

1.3.1 The bridge

The theorist studies small, but intricate problems. He believes some day he will find a
way to scale the method to larger and more realistic situations. The practitioner engi-
neers large, but mainly trivial problems. He believes that solving big problems is a
matter of working habits and notation rather than formal theory. He believes that some
day formal techniques may be applicable to his field of work, but he does not really
believe he will live to see it.

This thesis takes the simple idea of structural reduction and shows that it can be used on
a couple of the small, but intricate problems of the theorists. It takes the same simple
idea and shows that it is possible to device a method with guidelines for making realistic
systems with improved quality. We define metrics to measure real systems based on the
same simple idea.

The simple idea can be summarized in the following conjectures:
1. Good quality systems are such that each structural concept is reducible to a process.

2. The effort needed to establish that a unit is reducible is a good measure of how com-
plex the unit is.

3. The most important resource for making good quality systems is the designer him-
self, and our approach is a way to support him validating in parallel with designing.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 7

Introduction
Technical summary

The bridge from theorists to practitioners by our Mn-strategy consists of the following
building blocks:

1. The Basic Mn-procedure

The General Mn-procedure

The Mn-approach to validation

The Mn-metrics, complexity profiles

a s DN

The Mn-method “Confluent Design”

1.3.2 The Basic Mn-procedure

Our simple approach to determine reducibility is to study all poteatal conditions

A race condition is when signals from more than one input channel “race” to be con-
sumed first, and it is significant for the final result which one “wins” the race. We
present a simple reduction algorithm which applies if the original system is confluent.
Confluence means that all possible executions from a given complete state give the same
final result. We show that confluence can be determined by examining all the potential
race conditions. This idea is not new to practitioners, but this thesis shows how you can
apply this idea systematically, and be certain that the system is confluent.

Assumptions

1. A system of one process only, with one external input and one internal input|chan-
nel and one external output channel.

2. The system is progressive which means that it terminates for any finite external
input.

3. The following features of SDL are not used: save, non-determinism, data, timers,
procedures, object orientation, services, priority signals.

Results

1. Whenever the Mn-procedure returns with success, the system is confluent,| mean-
ing that all race conditions are insignificant wrt. the final result.

2. If the system is progressive and confluent, it is reducible. The reduction is easily
reached by executing the system systematically giving absolute priority to inter-
nal signals.

Problems

1. The Mn-procedure may return with failure even though the system is confluent.

2. The Mn-procedure may not terminate. This can be remedied by simple
pragmatics.

Figure 1: Basic Mn-procedure

The algorithm of the basic Mn-procedure as summarized in Figure 1 (p. 8) is based on
examining all possible race conditions. We show that it is sufficient to check all possible
minimal non-confluence patterns, which are based on start situations consisting of one

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Technical summary

basic state, one external input signal and a sequence of internal input signals. We con-
struct a transition system MO which has as initial nodes pairs of complete states. The pair
has one element which is the start situation where the external signal is executed first
and then the first internal signal. The other element of the pair is the start situation where
the first internal signal is executed first and then the external signal. From these initial
nodes transitions correspond to execution of an internal signal. If the nodes have equal
elements in the pair, the branch can be pruned. If all branches are pruned, the procedure
concludes that the system is confluent.

It is not always sufficient to study only the transition system MO. Since we are only
interested in differences which can be observed externally, we accept that the two com-
plete states of the Mn-node have differences in the internal channels. Such internal
sequence permutation leads to the construction of transition systems on higher genera-
tions M1, M2 etc. Higher generation transition systems represent consumption of
internal signals produced on lower generations.

The Mn-procedure examines all potential non-confluence patterns, not necessarily only
the reachable non-confluence patterns. This is the reason why the Mn-procedure is not
a decision procedure which determines exactly when the system is confluent. We show
that by using other ad hoc methods to prove that the non-confluence patterns are not
reachable, the Mn-procedure can be supplemented to conclude reducibility in a larger
class of processes.

We also show that Mn-reductions are reductions in terms of Kwong as summarized in
Figure 2 (p. 9).
Assumptions

1. X is reducible because it is progressive and the Mn-procedure has succeeded in
finding it confluent.

2. X-red is X reduced by our reduction algorithm.
Results
1. X-red is a Kwong-reduction o

2. From Kwong-reducibility it follows that such properties as deadlock freedom and
homing are preserved.

Figure 2: Mn-reduction is Kwong reduction

1.3.3 The General Mn-procedure

The Basic Mn-procedure is a theoretical framework which is too restricted to be of much
use other than with rather uninteresting systems, even though we prove reducible a sys-
tem which is not so simple to see is reducible and where a proper invariant to prove
reducibility is not so obvious, either.

We show, however, that the Mn-procedure with minor modification can be extended to
work for much more general systems. We find that full SDL systems can in principle be
processed provided that the data expressions can be handled by symbolic execution as
indicated by our summary in Figure 3 (p. 10).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 9

10

Introduction
Technical summary

To cope with non-determinism we suggest two new features to SDL, fair non-determin-
istic decisions and spontaneous decisions. We show that this greatly enhances the
expressiveness of SDL in connection with reductions.

Assumptions
1. The system is progressive.
Results

1. Multiple processes and multiple channéMe show that systems with more prg
cesses and channels still can be seen as one process. The Mn-procedure is
basically linear wrt. number of components because the general Mn-procedure to
a large extent can be executed piecewise component by component.

2. Save By introducing semi-stable states containing saved internal signals, we find
that save is very practical for ensuring confluence.

3. Non-determinismrlhe nodes of the transition systems Mn are expanded to tuples.
We introduce fair non-deterministic decisions to help establish progress and|spon-
taneous save to describe acceptable race conditions.

4. Timers Timers can be handled as a special case of non-determinism. We acknowl-
edge the lack of means to reason about durations and time constraints.

5. ProceduresBYy applying a simple transformation scheme procedures are easily
managed in the general framework.

6. Object orientationWhen types are reused (e.g. by inheritance), the Mn-procedure
analysis of the type can be reused in the analysis of the entity in which the type is
being reused.

Figure 3: General Mn-procedure

During our discussion of the general Mn-procedure we apply the Mn-procedure to a
couple of well known examples from the literature, the Alternating Bit Protocol and the
Brock-Ackerman anomaly.

The reader may be surprised to find as a result in Figure 4 (p. 11) that reducibility does
not mean error-free. Our approach argues that reductions make it easier to see that the
system contains problematic areas, and we find during the analysis of the Alternating
Bit Protocol that certain assumptions has to be made for the timer, otherwise the reduc-
tion contains an internal error. This highlights that our approach is a monolithic
approach which means that we concentrate on the SDL description alone and do not
focus on dual descriptions which should be proven consistent with the SDL description.

The Brock-Ackerman anomaly summarized in Figure 5 (p. 11) was used to show that
our reduction strategy seems to capture the essence of SDL systems.

1.3.4 The Mn-approach to validation

The Mn-procedure is a procedure which determines reducibility. The Mn-approach is to
apply the Mn-procedure and derived reductions in validation of systems.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Technical summary

Purpose

Communication over lossy channels with only one control bit.
Included features in our version

1. fair non-deterministic decision

2. timer

3. save

Results

1. The system is automatically proven reducible when progress is established
manually.

2. The reduction shows that the function of the system is exactly what it should be
namely to relay the input message.

3. The reduction shows also that the system is strongly progressive meaning that no
internal signals will remain saved indefinitely.

4. Reducibility is not the same as error-free.

Figure 4: Alternating Bit Protocol by Mn-procedure

Purpose

To show that history relations could not quite capture the essence of asynchropously
communicating finite state machines.

Included features in our version

1. Explicit fair merge modeled by spontaneous save
2. Object orientation with inheritance and virtuality
Results

1. The reductions made through the Mn-procedure can be used compositionally in
the analysis of enclosing systems. The difference which disappears when
expressed in history relations is preserved in our extended SDL reductions,

—

2. The example exhibits how reducibility can be used in connection with objec
orientation.

Figure 5: Brock-Ackerman anomaly by Mn-procedure

The Mn-approach is basically monolithic which means that we concentrate mainly on
one description. This description consists normally of a structure where each component
may be eligible for our Mn-approach. Compositionality of our analysis approach
becomes important as summarized in Figure 6 (p. 12).

Even in a monolithic approach the single description may come in several versions and
it is interesting to determine whether the newer version is a refinement (implementation)
of the former. We device atechnique to utilize the Mn-reductions to establish refinement
summarized in Figure 7 (p. 12).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 11

1

12

Introduction
Technical summary

Assumptions

1. SystemA contains blociB.

2. B is reducible and the reductionBsred.

3. A-subst is the system that takésand substituteB by B-red.
Results

1. A-subst is reducibleff A is reducible.

2. The reduction oA can be found by reducingsubst.

Figure 6: Compositionality of the Mn-approach

Assumptions

1. Versions VO and V1 are both reducible

2. Eventual interface mappings can be described in SDL
Results

1. Refinement (possibly interface refinement) relation between VO and V1 can be
determined through a state by state, transition by transition comparison of the
reductions.

2. The refinement establishment is simple to perceive and accept by practitioners.

Figure 7: Refinement by the Mn-approach

The Mn-approach can be made more pragmatic by combining it with other methods. In
this respect the Mn-approach is very “friendly”, it seems that it cooperates well with a
number of other quite different approaches. We summarize this in Figure 8 (p. 13).

1.3.5 Complexity profile and complexity estimates

As a way to estimate the complexity of the system itself we device a metric based on the
MO execution of the Mn-procedure summarized in Figure 9 (p. 14). The MO execution
is the first level execution of the Mn-procedure.

We also developed an estimation model for how many Mn-nodes the Mn-procedure
would have to produce for a given system. This is summarized in Figure 10 (p. 15).

1.3.6 The Mn-method, “Confluent Design”

We present a framework for understanding real, reactive systems and place the Mn-
approach in this setting. The result is an Mn-method which is basically a set of guide-
lines which we call “Confluent design”. We summarize in Figure 11 (p. 13) the
framework for quality development which we have nameddfisvare distillery In

Figure 12 (p. 14) we summarize a classification of development comprehension profiles.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Technical summary

Purpose
1. To utilize other methods to support the Mn-approach
2. To use the Mn-approach to support other methods
Results
1. Use run-time checks to obtain a conditional reduction
1.1 define exceptions onto monitoring layers for impossible transitions

1.2 define exceptions when limits to resources are exceeded. If we define
bounded channels, it suffices to apply MO (the first level of Mn-procedurg) to
establish confluence. In principle exhaustive simulation could decide
confluence.

2. Use ad hoc invariants to eliminate unreachable non-confluence patterns and other
situations which cannot occur.

3. Use backwards execution to eliminate unreachable non-confluence patterns.

4. Use Mn-reduced components to make enclosing systems more manageable by
common reachability techniques such as Supertrace.

Figure 8: Pragmatic Mn-approach

A abstraction

level
| . |
@Tion /
] distill preve rgfinement
details details
OO — 10 100 O
precision
time>

Precision = formalize, make more narrow, supplement

Details = decompose, break down, reveal

Figure 11: Software distillery

We provide a strategy (“algorithm”) for system development which should increase the
chance of producing systems which are comprehensible and reusable. The idea is sum-
marized in Figure 13 (p. 15). We apply the distillery approach to tie the descriptions into
the SDL description. Reductions are used for a more compact but faithful “specifica-
tion” of the component. Following maintenance of the SDL description, the
establishment of reducibility leads to a new specification by reducing the description
again. Much of the work related to establishing reducibility can be carried over from
previous work.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 13

1 Introduction

Technical summary

Purpose
To estimate complexity of system.
Technique
1. Calculate the Z0, i.e. the set of initial nodes of MO of the system.
2. Classify the nodes according to the following categories:
2.1 Confluence
2.2 Non-confluence
2.3 Sequence permutation
2.4 State different
2.5 Omitted
2.6 Double sided error
2.7 Single sided error
2.8 Warning
2.9 Save-problem
2.10 Non-determinism problem
3. Normalize the numbers

4. Apply some proprietary weights on each category and calculate a complex|ty
index.

Figure 9: Complexity profile based on Mn-procedure

proper understanding
full kn+&dge
/ﬁ)erceived understanding
— -

time

L

misunderstanding

Legend 90%-syndrome profile

N Y et

Mﬁle Aha-profile Steady profile

Figure 12: Comprehension profiles

We summarize the guidelines for how to make individual processes confluent in Figure
14 (p. 16).

We claim that adhering to “confluent design” increases the chances of experiencing that
the development follows a steady profile as described in Figure 12 (p. 14).

14 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Technical summary

Assumptions

. The number of processesis

. The number of basic states per process is on the awrage

. The number of external signals per process is on the awerage

. The number of internal input channels per process is on the average c.
. The number of internal signals per channel is on the average

o O B~ W N P

. Non-determinance factor iis The non-determinance factor is how many more
nodes there are on the next level of execution due to non-determinism. E.g. if every
transition contains a non-deterministic decision which branches in two possibili-
ties, the factor is 2.

7. The non-conformity factor is The non-conformity factor measure the number of
nodes which need another level of Mn-procedure compared with the total number
of nodes on this level.

Results
1. The number of potential non-confluence patterts(s's*(e*c*i + i*i*c*(c-1)/2))

2. The number of nodes needing another execution let/] and the result of
another execution level from these nodes will resu(itffin*i*c) new nodes. The
level factor is thug=f*n*i*c.

3. If we accept 5 levels as the maximum we get the following total number:
T=t*(1+a+a’+a3+a?).

4. If the parameters,e,c,i vary considerably between the processslpuld be cal-
culated as a sum over the actual processes.

Figure 10: The estimated complexity of the Mn-procedure

Common approach Mn-approach
an idea an idea
nt mﬁ/dm er
bm\ confMents *w\fo#nal spec.
comments system descr. formal spec. — system desCig—
consistent

maintenance maintgnance

system descr. system descr.

? ? formal spec.
Figure 13: Mn-method for improved quality systems

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 15

1

16

Introduction
Technical summary

1. Categorizethe components according to this rough scheme:
d

-

1.1 One-input-channgbrocess (The process has only one input channel a
therefore it cannot show any non-confluence.)

1.2 Multi-lane proces¢The process is actually a collection of “lanes” with one
input and disjoint output. The clue is that the outputs are never merged.)

1.3 Channel-state mappeguatocess (The process is such that for each basic state
there is only one channel from which it accepts input.)

1.4 Mergeprocess (The process has potential non-confluence patterns which
must be considered more closely.)

Make acomplexity profileof each merge process
Order the merge processes accordingdonaplexity index
Take the most complex processes first and continue in the order of the complexity.

a M DN

For each process proceed to analyze and possibly modify the critical point
according to the following succession:

Uy

5.1 Clarify the non-confluent situations
5.2 Continue M on the “state different” cases
5.3 Perform generation change on the “sequence permuted” cases

5.4 Try and see if external stuttering could be used on the generation changed
cases which turned into non-confluence

5.5 Analyze the auxiliary category situations

If confluence cannot be obtained this should be properly documented. A case which
shows that there is actually an error should be produced.

Figure 14: Confluent Design

1.3.7 Future research

Even though we have conducted a rudimentary industrial case study, we realize that the
Mn-approach to system validation and the Mn-method for synthesizing systems need
further pilot studies. The empirical base for stating that the Mn-approach is applicable

to real systems should be made more solid. We have realized that it is necessary to sup-
port the Mn-approach with an Mn-tool which most effectively should be built on

existing SDL tools.

There are some areas which this thesis has chosen to neglect regarding the Mn-approach.
More practical ways to determine progress should be included in the method. There
should be much to gain by systematically combining the Mn-approach with traditional
proof approaches taking advantage of proven invariants in the elimination of unreach-
able, but problematic race situations. There is a need to look into the theory and practice
of handling data symbolically.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

The nature of SDL system

Since we concentrate on real, reactive systems, the improved handling of real time con-
straints is interesting. Can the focusing on confluence and reduction be combined with
real time constraints?

1.4 The nature of SDL systems

Here we give an introduction to SDL — the language and conceptual framework of this
thesis.

1.4.1 SDL - the language

SDL (Specification and Description Language) was developed assaverto ques-
tionsin ITU (International Telecommunication Union) in their consultative committee
(CCITT) on languages. The first version was standardized in 1976 and included not
much more than a few graphical symbols in the domain of telecommunication.

New versions of the recommendation Z.100 were presented in 1980 and 1984. The 1984
version was very much a full fledged language, and tools emerged to support it. In 1988
a major revision was undertaken and the language got a more formal semantics defini-
tion and a precise data concept (ACT ONE) [25].

In 1992 another important revision took place as object orientation was smoothly intro-
duced. It was also made possible to express non-determinism [78]. In 1996 only minor
corrections and supplements were put in an addendum to the 1992 recommendation
[83].

The semantics of SDL is defined in the recommendation Z.100 through informal
English. There is also a formal semantics [79], which is based on MetalV which is a
variant of VDM [87]. The formal semantics has played an important role in two ways:

1. The tool vendors consult the formal semantics when they are uncertain about the
interpretation of a construct.

2. The making of the formal definition revealed a number of inconsistencies in the infor-
mal semantics.

Contrary to what one could expect the formal semantics has not been used much in ver-
ifying SDL systems.

1.4.2 SDL - the use and the users

SDL was brought forth in the area of telecommunication and it still has most of its sup-
porters in that domain. Telecommunication was one of the first areas to make practical
use of concurrent processing and the need for a precise attitude towards the perils of con-
currency was critical for the success of some of the largest pieces of software ever
created. In recent years other areas of computing have also approached concurrency and
real time and therefore SDL and SDL-like approaches are becoming more popular.

In Norway there has been a very active SDL user group for a number of years. SDL
methodology was developed in Norway for the production of MAREIK, the world’s
first system to provide fully automatic telephone and telex services to ships through sat-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 17

Introduction
The nature of SDL systems

ellites in the INMARSAT system [11] already in 1979-1981. From that time, SDL has
been popular in the advanced telecommunication projects in Norway, and throughout
the national Norwegian technology transfer program SISU [62] SDL methodology was
central. New versions of the SDL methodology was developed in the SISU project
resulting in a textbook [11] and an interactive CD-rom [12]. Norway also played a very
active role in the development of the language itself especially during the introduction
of object orientation in the study period 1989-1992.

The SDL users have a biannual conference which shows that the use of SDL spreads
also to other areas than telecommunication and that the use of SDL is taken up also by
universities and engineering schools [45; 46; 47; 120].

SDL is a language and it does not secure that its use by necessity leads to perfect results.
The need for guidance and methodology became evident at an early stage and textbooks
have appeared [5; 11; 106; 42]. Furthermore ITU has laid down certain guidelines for
methodology in [26; 80; 84].

1.4.3 SDL - the supporting tools

The forces behind SDL, the telecommunication administration, were traditionally very
affluent and could support large technology endeavors. Some of the largest software
projects evolved in the telecommunication area. In this situation it was reasonable that
tools were developed to support the use of SDL. The early tools were mainly graphic
editors which supported drawing boxes with attached lines. In due turn these tools devel-
oped according to the development of the language itself into more language-oriented
tools as they performed syntactic analysis and also static semantic checks. As the tools
became more advanced, fewer tools were left in the marketplace. The large telecom
actors like AT&T and Siemens made their own SDL tools which they kept in-house
while they were trying to convince competitors how wonderful they were.

When SDL was formalized in 1988 code generation directly from SDL became the next
field to cover. With it came also the possibility to simulate the SDL system execution
on a “host computer” with more resources than the final target system. The simulation
became a substantial contributor to the improvement of the development process and
code generation helped to lift the focus from implementation to design.

The recent most advanced tools also include validators which perform reachability anal-
ysis of the SDL system. This again promises to improve the reliability of SDL systems.
Along the same lines we find the tool development of integrated design and test tools
for SDL.

As mentioned above, the development towards more advanced tools has left fewer com-
mercial tools in the marketplace. Full fledged tools for SDL-92 include Geode from
Verilog, France and SDT from Telelogic, Sweden. The general trend seems to be that
these commercial tools make the in-house tools too expensive for even the big compa-
nies to maintain and improve.

In order to avoid a monopoly situation on the tools market, ITU has defined a Common
Interface Format [85] which makes it possible to transfer SDL diagrams from one tool
to another. This format makes it possible to have projects where both large tools are

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1
The nature of SDL system

used. It also makes it possible for small tool vendors to specialize in one area such as
graphic editor, code generation or test generation, and attach to the more complete tools.
It should also be possible to build up a complete tool from such specialized small tools.

1.4.4 SDL — main concepts

SDL is a real language made by a committee over many years. From this it is obvious
that SDL is not a small, beautiful language on which the most perfect theories can be
made. On the other hand, the theories which can be made with SDL have the chance of
having practical impact since many very interesting systems are specified with SDL.

In this section we shall go through the most central mechanisms of SDL. We will not go
into great detail and we do not spell out all the options and variants.

1.4.4.1 SDL system

An SDL systems the highest aggregation level which SDL covers. The SDL system
communicates with itsnvironmenby asynchronousignals A system consists of a set
of communicatindplocks(or block instances The blocks communicate vihanneldy
means of asynchronous signals.

1.4.4.2 SDL channels

The SDL channels deliver the signal from 8ender to theReceiver without loss. The
channel may be eithéelayingor non-delaying. A delaying channel delays the signal
some unknown duration of time from the sending to the reception. A non-delaying chan-
nel delivers the signal to the receiver in the same moment in time as it was sent. There
is no guarantee, however, that Receiver will consume the signal immediately.

Signals cannot overtake each other on the same channel.

The channel may be either unidirectional or bidirectional. The bidirectional channel is
just the combination of two unidirectional channels. A channel hash&(which may

be omitted) and for each direction there is associasgghal listwhich specifies what
signal types may pass over the channel.

1.4.4.3 SDL blocks, block types and block instances

An SDL block is defined by a block definition and it is a singular object. To define pat-
terns for several similar block instances, we use block types. Block instances are
specified statically, i.e. there is no way SDL can create block instances during execution.

A block (block instance) may either contain a set of blocks and channels (such as a sys-
tem), or it may contain a set pfocessegprocess instanc¢sndsignalroutes

A signalroute is identical to a non-delaying channel and in this thesis we shall refer to
them also as “channels” to avoid unnecessary confusion.

The processes communicate asynchronously in the same manner as the blocks. In fact a
block does not have its own behavior. It has the combined behavior of its constituents.

The processes are by definition concurrent.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 19

1 Introduction

The nature of SDL systems

A block type hagatesto specify the communication interface between the instances of
the block type and their surroundings. A gate has a name and specifies the input and out-
put signals permitted to pass through the gate. The gate may also have a gate endpoint
constraint which specifies what the gate may connect to.

1.4.4.4 SDL processes, process types and process instances

An SDL process is defined by a process definition and can be seen as a singular object.
To define patterns for several similar processes, we use process types. Process instances

are objects from a process typRrocesses are defined bgracess graplor as a set of
communicatingservices In this thesis we shall concentrate on the process graph
version.

A process type hagatesto define the communication interface in the same manner as
block types.

1.4.4.5 SDL process concept

An SDL process is defined by a finite sebasic statesin SDL they are called plainly
“states”, but we use “basic state” to distinguish them from “complete states” which also
take other aspects into account.

The SDL process hasvalid input setwhich consists of all the signal types of the sig-
nals which may be received by the process.

The basic state and the received signal (which must be a member of the valid input set)
together determine whidhansitionthe process will execute. A transition brings the
process from one state to the next (which may or may not be the same state).

A transition starts bgonsuminghe first signal of thenput port The input port is the

gueue of all signals received by the process. If the process has more than one incoming
channel, the signals will be merged into the input port in a FIFO way at reception. There
is theoretically no limit to the size of the input port.

A transition mayoutputnew signals to other processes (via gates and channels).

Furthermore a transition may change the intedlatd variableof the process. An SDL
process is actually axtended finite state machirhe set of basic states is finite, but

the complete state of the process is not finite because most data variables have an infinite
value space (and the size of the input port is unbounded). In this thesis we shall refer to
the data variables of the process as “data”. The data capabilities of SDL is not a major
point in this thesis.

1.4.4.6 SDL data

SDL data variables are objects of data types. Data types are defined through the lan-
guage ACT ONE or through a special recommendation Z.105 in ASN.1[81; 135]. Data
variables look in SDL very much like in any other programming language such as
C++[130] or Simula[7].

1. or for historical reasons also from process definition but this will not be covered here

20 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

The nature of SDL system

1.4.4.7 SDL timers

SDL timersare signals which theoretically come from the process itself at certain pre-
specified times. A timer may Isetto a specific timeresetif there is no use for it any
more,set againf the time information changes, or it maypire (time out). When the
timer expires a signal with the name of the timer is received just as an ordinary signal
by the process.

1.4.4.8 SDL procedures

SDL processes may also contpnoceduresProcedures contain a process graph and
defines a sub-behavior of the process. A procedure meslledinside a transition and
when it returns it wilreturn to where it was called. This is very similar to functions in
C or procedures in Simula.

The difference compared with common programming languages is that an SDL proce-
dure may contain states. This means that the process may halt and wait in the middle of
the execution of a procedure.

1.4.4.9 SDL services

A serviceis a constituent part of a procedure which is divided into communicating, alter-
nating services. The services of a process alternate, which means that only one of them
will execute at any one pointin time. The valid input sets of the services must be disjunct
and thus the signal received by the process determines which service will execute it.

1.4.4.10 SDL save

A signal may besavednstead of consumed in a state. To be saved means that the signal
will not be handled as long as the process is in this state. When the state changes, the
saved signals will be the first to be consumed.

This is (almost) the only way SDL can permute the order in which the signals are con-
sumed. There is also a priority input mechanism, but this will not be used here.

1.4.4.11 SDL non-determinism

Non-determinism in SDL comes in two flavosgontaneous transitionandany-value
expression

The spontaneous transition is a transition with the signal name noneis not a real

signal name, but a keyword. It means that this transiiayoccur, but it is not certain

that it does occur, when the process is in the state where the transition is specified. The
spontaneous transition needs not consume a signal in order to trigger.

The any-value expression is a construct which returns any value of the data type speci-
fied. SDL does not require that the any-value expression is implemented by a stochastic
distribution such that the implementation may just as well choose one constant value
every time the any-value expression occurs. Any-value expressions occur dien in
sionsto specify randomized variants of the transition.

A decision is a construct which branches according to the value of the data expression
in it. Its branches are labelled with different ranges of the type of the expression.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 21

22

Introduction
The nature of SDL systems

1.4.4.12 SDL object orientation

SDL introduced object orientation in 1992, and object orientation with inheritance and
virtuality can be applied to almost all types of SDL.

Inheriting a block type means to add more blocks (processes) and channels. The new
entities may be connected to the old ones.

Inheriting a process type means to specialize the behavior by introducing new transi-
tions because new states or signals are introduced. SDL is one of the very few languages
which specifies the inheritance of behavior in a useful way.

Virtuality means to redefine in specializations patterns of the type which is inherited.
This is very practical to make small modifications to the type inherited in the new
specialization.

The SDL approach to object orientation is typically in the European tradition such as
Simula and Beta[97].
1.4.4.13 More?

There are more features to SDL, but the reader is referred to other sources to perfect him-
self in SDL.

For a general tutorial to SDL and how it should be used, the reader should consult the
special issue of the journal CN&ISDN [57]. This gives a brief introduction, and com-
plementary education should be sought in the textbooks [5; 11; 106; 42].

For a full definition of SDL there is only one place to look and that is in the Recommen-
dation itself [78; 83].

1.4.5 SDL — pragmatics

The language which is used to prescribe a system, restricts the way the system will
behave. On the other hand certain domains have the need for certain features and will
look for languages which include these features.

Traditionally SDL systems are:
reactive,

concurrent,

asynchronous,

large,

a s w N e

often simple wrt. data.

None of these characteristics are absolute. It is possible to find SDL systems which vio-
late one or more of these properties. Still they represent experience from many years and
many systems. We go in greater detail into this in Section 5.1.2 (p. 178).

That a system is reactive, concurrent and asynchronous can be said to be due to the lan-
guage SDL since this is the way SDL sees the world. On the other hand, the relative
success of SDL in the area of telecommunication indicates that such systems favorably
may be seen as reactive, concurrent and asynchronous.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Motivation

That some of the largest systems in the world (telephone switches) with millions of code
lines have been specified in SDL, indicates that SDL is a language which “scales”. Sim-
ilar to the distribution of the system itself, an SDL description is well distributed and a
number of developers can work in parallel towards a common cooperating system.

That data is often simple, is the most dubious statement. We can find SDL systems with
considerable data and where data variables are absolutely necessary for the functioning
of the system. Still there are not many SDL systems where SDL is used to define com-
plicated algorithms, or SDL systems which specify administrative database solutions.
The point of using SDL is to handle the concurrency and the flow of control, not the
complexity of data. SDL has the power to simulate a Turing machine even without the
data variables [13] analith the data variables it is even more trivial to specify very com-
plex data problems.

However, this thesis does not intend to solve data complexities.

1.5 Motivation

In this section we try to give some motivation for why we believe that the Mn-approach
is fruitful in practical software development.

Having worked with concurrent systems specified in SDL for many years, having cre-
ated SDL tools [55] and having been involved in creating SDL methodology [11; 12],

we have reached some assumptions about real reactive systems and their development
As a student of more formal computer science and attempting to convey such ideas to
practitioners we have reached other assumptions about developers.

1. There is a need for formal verification and pure testing just cannot do the job properly.

2. What the designers claim to perceive, should be manageable through formal analysis
on a modern computer.

3. Designers and programmers like to reason in imperative terms.

4. A variety of notations is not a goal in itself. The amount of inter-notational conflicts
in concept and understanding increases with the number of notations that must be
used.

5. Reuse requires compact, but verifiable, correct specifications.

6. For formal verification and validation to become commonplace, the results must be
believable to the practitioner and automated by tools. Furthermore it must be conceiv-
able that real size systems can be handled.

7. For any type of analysis, it is important that earlier results can be reused in the anal-
ysis of new ones or modifications of the old. We need compositionality of the
analysis.

8. Large systems are largely trivial, but may contain intricate parts.

9. The designer (programmer) is the most important resource in creating correct pro-
grams. It is not difficult to make systems which are virtually impossible to analyze.
Methodology for the creation of verifiable systems integrated with formal evaluation
of the system is cost effective.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 23

Need

Capacity of
designer

Imperative
languages

Few
notations

Reuse

24

Introduction
Motivation

These statements are definitely not provable, but we shall go through them one by one
and give some explanation for our attitude.

The need for formal validation has been demonstrated by a number of scholars [34] and
more frequently now than before successes of formal methods in producing better qual-
ity are reported [10].

When a computer system is finished, it is the belief of the designers that the system is
correct. They believe that they have been able to perceive the effects of their design.
Very often this is not the case, and it is proven through testing and verification that the
designers were not quite able to manage the task. Still there is a big discrepancy between
the complexity the designers see in their design and the complexity sometimes demon-
strated by formal verifiers! Validators applying reachability techniques suffer from

severe state space explosion problems, and proof assistants produce a massive number
of proof obligations which must be manually proven. This does not correspond well

with the feelings of the designers.

Our stand is that when the automatic validators must cover a multitude of cases, this is
probably a sign of unmanageable complexity of the analyzed system. There is a fair
chance that the designer should look into the design again.

Even though there are scholars who advocate the adverse, our experience is that pro-
grammers and designers prefer to express their thoughts in sequences of actions or
imperatives. Sometimes combining such action sequences with more declarative state-
ments is reasonable, but the notions of sequencing and of cause/effect seem to guide the
thought more effectively. Even programmers of such declarative languages as PROLOG
and Z acquire a programming style which shows that they think imperatively when they
program.

SDL is a language which is imperative with a dash of declarativeness. The action
sequences of the transitions are balanced by the declarations of basic states in the pro-
cesses which actually represent invariants. Often the basic states can be interpreted to
describe the whole history of actions leading to it. Thus only the knowledge of the basic
state is sufficient for the future execution.

It has been used as an argument in favor of object orientation that the designer does not
need to change paradigm during the software development. The more different notations
needed in a system description, the bigger the chance that either the designer misunder-
stands a notation or that there are inter-notation discrepancies. More than one notation
may be needed to express different aspects of the system, but preferably not more than
one notation should be used to express the exact same aspect.

In SDL systems, we consider it an advantage if SDL can be used to specify the system
by process behavior. Orthogonally MSC could be used to express inter-process interac-
tion and the two descriptions can be compared for consistency. MSC is a language for

message sequence charts standardized by ITU [86].

Reuse has become a buzzword in computer science and it comprises a number of differ-
ent aspects. Here we only want to make a point regarding the possibility to judge
whether a given candidate for reuse is appropriate.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Credibility

Composi-
tionality

Variation in
systems

Introduction 1

Motivation

If we assume that the candidate for reuse is an SDL block of reasonable size, the
designer may not want to look in full detail into the SDL details. The task of finding out
what the SDL block actually does, may be quite time consuming and unreliable if the
designer himself should be forced to look into the full SDL description. On the other
hand relying solely on the informal comments to the block, may prove to be too impre-
cise. Other notations such as MSCs can also be used to supplement the original
description, but they are often as incomplete as the informal description.

A reduction, however, which is made automatically from the original, and which is
insensitive to the potential usage, presented in the very same language SDL, seems more
attractive.

It is not sufficient taclaim that formal verification has taken place. The users of the sys-
tem musbelievethat the verification has been performed. It is not obvious how this is
achieved [107]. The practitioners of SDL will have serious doubts when a theorist
claims that he has proved an SDL program correct. Often the practitioner will be right
in his doubt since it turns out that what the theorist has proved correct was not the SDL
program itself, but a simplified model (an abstraction). Is the proof still valid for the full
SDL program?

A practitioner will be even more suspicious if he is presented a manual proof of the SDL
program. This will normally include notation which is unfamiliar to him supplemented
with informal statements that he can understand, but which he does not know whether
he believes. If we add that the theorist probably is unfamiliar with SDL as a notation,
the practitioner is uncertain whether the theorist has really understood the subtleties of
the problem.

A practitioner is more susceptible to accepting a machine-generated proof since he is
accustomed to accepting automatic means such as compilers and code generators. Still
he will prefer that the intermediate results are given in a form that he can relate to, which
means in forms close to SDL or MSC.

The optimal situation from the viewpoint of the practitioner is if he could understand the
verification steps and read the verification results in the same language as he has made
his description (i.e. SDL and MSC).

Since systems are never finished, but are being maintained almost before they are
released, it is important that the efforts of validation is not lost once a single change is
introduced into the system. For some of the available methods this is in principle the
case. It is important that pieces of the system can be analyzed (partly) in isolation such
that the results of the analysis can be applied directly in analyzing larger parts as long as
the isolated piece has not been changed. This is what we call compositionality.

A real system usually contains parts which are trivial as well as parts which are intricate.
Assuming that this reflects the complexity of the problem itself and not the competence
of the designers, this indicates that the same method for validation may not be applicable
to all parts in the same way.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 25

Methodol-
ogy

The
ambition

Introduction
Background

For a project leader it would be desirable to be able to assign the complicated, but small
parts to a group of experts in that field. Other parts which were more like “digging a
ditch” could be assigned to the more average software engineer. The experts could use
whatever methods suitable for their isolated problem, while the software engineers used
the default validation techniques.

The important issue would be that the methods of validation could be combined in flex-
ible ways corresponding to the challenges of the problem and the software.

It is a well known fact that the earlier in the development process an error or deficiency
is discovered, the less expensive it is to correct the problem. This contrasts the fact that
validation normally takes place closer to the end of the development. It would be easier
if the designer created software which was easily validated, and that he actually per-
formed certain validation efforts along with his designing.

Our ambition is to contribute to the narrowing of the gap between theorists in the field
of validating concurrent systems, and practitioners in the field of engineering reactive
systems.

We want to make a method which has a low threshold for the practitioners such that he
can experience positive effects of his validation efforts without having to put in a lot of
time and resources.

On the other hand we want a method which is advanced enough to produce strong anal-
ysis results which can be reused later, and possibly also within other validation methods.

We also want to make the validation results available in SDL itself.

We acknowledge the fact that our method may not always succeed, but want that even
when it does not succeed totally, we shall still reap valuable experience from the effort.

1.6 Background

26

In this section we want to give some insight into the work which has influenced our Mn-
approach without going into detail about every theoretical approach which has played a
role in forming the Mn-approach. We shall characterize the Mn-approach by its similar-
ities and differences with other approaches.

1.6.1 The Mn-approach is validation-oriented

The distinction between “verification” and “validation” is used by some and rejected by
others. Following Boehm [8; 11] “verification” is to establish the truth of correspon-
dence between a software product and its specification, while “validation” is to establish
the fitness or worth of a software product for its operational mission. “Verification”
originates from “veritas” which is Latin for “truth”. “Validation” originates from Latin
“valere” which means “value” or “worth”.

Opponents of applying the distinction argue that in order to assess value, one must
describe the evaluation criteria, and therefore we are back to a specification, and valida-
tion reduces to verification anyway.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Background

1.6.1.1 Dual descriptions

In most verification approaches there are a specification and a system description. The
latter is normally prescriptive like a software program. The specification is normally
declarative and often in the form of predicates. One may call this a “dual” description of
the system and verification means to determine whether the two descriptions are consis-
tent. Normally we try to find whether the specificatiosasisfiedby the system model

(the program).

The earliest approaches in program verification [69; 32; 70] had predicate logic specifi-
cations interleaved in the program text. The interpretation should be that the predicates
should hold at these places they were put inside the program. A logical system (Hoare-
logic) defined the logical relations between specification predicates and program state-
ments. The predicate specifications were also very often called “invariants” as they
described properties which were invariant whenever the program control passed this
point in the program.

This tradition made its way into methods for software development through VDM [87]
and into concurrent programming through the advent of CSP [70; 71], CCS [103] and
LOTOS [9; 77]. For more on this tradition in the verification of parallel programs, we
refer to Barringer’s survey [2].

Dual descriptions can also appear as two separate descriptions which are compared. This

is often the case in developing SDL systems where M@€criptions and SDL descrip-
tions appear side by side and their consistency is checked [40]. More about this in
Section 1.6.2.1 (p. 30).

1.6.1.2 Monolithic descriptions

Even though we argue that the Mn-approach can be helpful for verification purposes our
approach is more “monolithic” than “dual”. Our goal is more to explore the possibilities
of the one description than comparing one description with another.

To explore the single description we apply transformation of the description. This is
similar to program transformation. Program transformation may have different aims, but
traditionally there has been two purposes of program transformation:

1. to make the program more efficient,

2. to transform a description in a wide set of concepts to a description in a more narrow
set of concepts.

The first purpose was used in compilers to optimize the object code, in “peephole” opti-
mization. The peephole is a segment of the program which then is massaged into a more
effective sequence of instructions.

The first purpose is also the motivation of Darlington and Burstall [33; 22] when they
argue that simple and comprehensible programs can be transformed automatically to
more efficient executable programs. The idea is that what is comprehensible is not effec-
tively executable. Modern systems still suffer from inefficiency and need optimization,
but their incorrectness and general lack of reliability are more worrying than their speed.

1. MSC = Message Sequence Charts, standardized in [86].

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 27

1 Introduction

Background

Therefore the goals of the Mn-approach are rather opposite of the Darlington-Burstall
aims as we want to make systamsrecomprehensible through system transformation.
Efficiency is not the main issue as our transformed systems are not executed on the tar-
get configuration.

The second purpose of program transformation, where descriptions of rich conceptual
frameworks are transformed into descriptions of restricted languages, are often used to
make proofs and statements valid for restricted conceptual frameworks valid also for
greater domains. The definition of SDL-92 [78] contains a comprehensive transforma-
tion section on how to transform all mechanisms which are not “basic SDL” into “basic
SDL”. Then “basic SDL” is given a formal semantics in [79]. The formal semantics then
applies to the whole SDL-92. For the Mn-approach we use this technique to explain how
SDL procedures can be considered a small system of SDL processes and as such be cov-
ered by our general results (see Section 3.8 (p. 128)).

Monolithic approaches in the tradition of axiomatic specification include the specifica-
tion languages Z [64] and Focus [15; 20]. Their approach in this context can be
characterized by a belief that small steps in the development of specifications will min-
imize (or almost eliminate) the risks of describing undesirable features. Formal
refinement of the specification in small steps should lead to a specification which is real-
izable on a computer system.

This attitude is similar to ours since one of our main postulates is that a multitude of dif-
ferent languages and paradigms does not help the designer in his effort to create a good
system. He wants rather one powerful language which is associated with powerful tools
and techniques to aid his understanding of the subject matter.

1.6.1.3 Reduction

The Mn-approach to system transformation is thaedéiction Reduction means that
some parts of the original is removed, but the essence remains. What the “essence” is
may change from situation to situation, but the idea is that the reduction should be able
to play the role of the original in the discussion.

Our Mn-approach is in the tradition of Kwong [94] where the essence to be preserved is

properties like deadlock freedom and honimdpich are generally desirable properties

of systems. The idea is that proving e.g. deadlock freedom of the reduction implies dead-
lock freedom in the original. Supposedly to prove the property is easier in the reduction
than in the original.

We show in Section 2.5.3 (p. 75) that our Mn-reduction is a Kwong reduction and there-
fore our reductions also preserve these general properties.

In our Mn-approach we define that the “essence” of a systemis its behavior as a machine
which handles input and produces output. The internal distribution and communication
are considered less important. We may say that the “functional” aspects of the system
are focused.

What is the essence of the system may also be user specified. Specifying the essence of
a system may get the form ofikker. The system description is filtered through this
specified filter and a reduction is filtered out which preserves certain properties of the
original depending on the filter. Seltveit has given a thorough survey of such specified

1. Homing means that there is a set of complete states which can be reached from any other complete state.

28 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Background

filters to reduce complexity in administrative systems [121]. Her approach is more struc-
ture-oriented than functionally oriented, but her goals are very similar to ours as the
perceived simplicity of the reduction is considered important.

Reduction of complexity is also extremely important in automatic verification tools in
the SDL domain. Since state explosion is the major obstacle to verifying real systems
the reduction of the state space needed to be explored is decisive for the success. The
most advanced reachability tool SPIN uses a partial order reduction method which
reduces the state space relative to the temporal logic formula which is checked [75].

Other reduction techniques which are used include compression of data held by the algo-
rithm and smarter ways to store the necessary information such as with binary decision
trees and binary decision diagrams (BDDs) [28].We have not studied how such imple-
mentation oriented reduction techniques could improve the efficiency of the Mn-
approach as the Mn-procedure has not seriously been implemented, yet. The techniques
could probably be applied with the Mn-procedure as well.

1.6.1.4 Testing

Testing is the most common way to assess the value of an SDL system, or rather the
implementation of an SDL system. Testing in the form of simulation is an increasingly
popular way to assess the worth of the SDL system before it is implemented. Testing is
different from verification as it relies on observing the results of executions. The speci-
fication can be used to define the test cases and the desirable result.

Testing in SDL environments is well covered in [52; 105; 24]. In general, testing has
been closely connected to reachability analysis [141; 76; 123; 138; 124; 44].

The connection between testing and the Mn-approach is only indirectly and concerning
the general philosophy of the approach. Testing, as well as the Mn-approach, examine
cases which should not occur. The Mn-approach considers all potential problematic pat-
terns regardless of their reachability. Testing may also run non-reachable situations for
the same reason: it is in general impossible to know that a given complete state is reach-
able, and for robustness, such cases should be tested.

1.6.1.5 Evaluation of systems

The Mn-approach is different from the dual and other monolithic approaches by its
explicit focus on evaluation. While the verification-oriented approaches concentrate
exclusively on finding a proof that the program satisfies the specification and give a
binary “yes” or “no”, we also make an effort to evaluate the program along a more infor-
mative scale. Verification-oriented approaches fail to appreciate the development of the
program as such, but recognize the fact that failure to find proofs often results in
improvements of the program when eliminating the counterexample.

We advocate to use the Mn-approach metrics to govern the analysis and to give an indi-
cation about the overall complexity of the system (part).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 29

30

Introduction
Background

1.6.2 The Mn-approach is automata-based

Different approaches to system validation may have different semantic bases. The
approaches based on proof theory are based either on process algebra, mathematical
relations, or basic logical elements often defined syntactically. The approaches based on
model checking are most often based on automata. The Mn-approach is in the latter tra-
dition even though it borrows techniques also from rewrite systems.

1.6.2.1 Model checking

The term “model checking” was coined by Clarke et al. in the early 80’s [27]. The term
refers to the technique to define both a model (by a program) and a specification (by a
specification language) and to check in the model that the specification is satisfied. The
common semantic base of the model and the specification is the automaton. The model
and the specification are transformed into special kinds of automata (Buchi-automata)
and the combined automaton is analyzed.

The model is normally a finite state automaton, which makes the model checking prob-
lem decidable. The specification is turned into a Buchi-automaton which is a finite
automaton which takes infinite input. The model checking problem can be expressed as
nonemptiness of the language accepted by the combined automaton.

We shall go in some more detail without being too formal, but for those who want a
more thorough introduction to these matters we refer to [133].

An automaton has an inpalphabetcomprised ofymbols The automaton is in one of

a finite set oftates The automaton starts from a state inrdgtnal set of statesA word

is a sequence of symbols. The input to the automaton is a word. The automaton will con-
sume the first unconsumed symbol and depending on its current state it will perform a
transition to a next state. Thus there is a set-valued function from the set of states and
the alphabet to the powerset of states. Thisisnadeterministi@automaton. In deter-
ministicautomaton the transition function yields only one state. A subset of the states is
defined to beccepting states

An automatoracceptsa finite word if the automaton is in an accepting state when the
last symbol of the input word has been consumed. A Bilchi-automaton accepts an infi-
nite word if the automaton enters accepting states infinitely many times during the
infinite consumption of the word.

The set of words accepted by an automaton is callddnigaageof the automaton.

When a word is accepted by an automaton thereuis @nsisting of a sequence of tran-
sitions from an initial state to an accepting state. We say that the accepting state is
reachable from the initial state. In a Blchi-automaton acceptance means that an accept-
ing state is both reachable from an initial statd reachable from itself (an accepting
cycle). This shows that graph reachability is important in the analysis of automata.

Reachability in a finite graph is decidable. This is the reason why most practical tech-
niques of model checking are confined to finite state automata to represent the model.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Background

Checking whether a finite-state program P satisfies an' fdimula¢ can be done in

time O(|P| OX0¢D) or spac®((|d| +log|P)2) [133]P andl| represent the sizes of

the program and the LTL specification respectively. We see that the complexity is very
sensitive to the size of the specification. In practice the specification is much, much
smaller than the program, which makes the complexity manageable after all.

An SDL system is not directly a finite state automaton. Since there may be any number
of signals in the channels and since we have no scheduling algorithm given, the number
of (complete) states is unbounded. The value ranges of variables in SDL processes are
also infinite. Still the approximation of an SDL system by a system with bounded chan-
nel buffers and bounded ranges is a reasonable restriction. The available tools for SDL
validation are all based on this restriction [40; 136; 75].

Our Mn-procedure does not assume that a system can be approximated by a finite state
automaton. It applies fragmented reachability techniques such that each reachability
graph is (hopefully) finite. If the assumption is made that buffers are bounded, the Mn-
procedure collapses to the first phase of the general Mn-procedure as shown in Section
4.5.2 (p. 172) and Section 5.2.2.1 (p. 193).

The differences between the automata-oriented model checking approaches are firstly
due to the difference in specification languages and secondly to algorithmic maturity.

CTL is a language defined by Clarke and Emerson and which has been shown to have
fairly effective model checking algorithms. CTL and derived notations have been used
to model check real hardware constructions with a considerable amount of synchronous
communication [27; 134; 28; 43]. There is a slightly absurd competition about how
many states the different methods handle since the state explosion problem is definitely
the major drawback with these methods. The CTL-oriented methods claim to be able to

cover problems where ¥ states are covered. This is hardly the number of states actu-
ally visited, but an estimate of the number of states in the total state space covered.

The significance of counting states is challenged by the most recent advances in verifi-
cation of hybrid automata [67]. A hybrid automaton includes variables with continuous
and infinite domains. Furthermore changes of the (complete) state is considered contin-
uous according to a set of functions over time and transitions occur due to jump
conditions on the variables. It is obvious that every domain covered will have an infinite
number of states, but this is not the point since individual states are not visited. The anal-
ysis of the hybrid automata consists of solving equations. This approach seems very
promising in fields of real-time continuous systems. An experimental tool UPPAAL has
been made in a joint research project between universities in Aalborg (Denmark) and
Uppsala (Sweden). They have chosen a fairly practical approach and have reported a
number of successful case studies already. The validation of the Philips Audio-Control
Protocol with bus-collision is the most comprehensive study done so far [6]. The resem-
blance to our work is that we also apply symbolic execution (e.g. for data variables) as
a finite way to represent an infinite set.

1. LTL = Linear Time Logic

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 31

32

Introduction
Background

LTL is another family of specification languages including also PROMELA which is

the language of SPIN — the experimental and practical tool built by Gerard Holzmann at
Bell Labs, AT&T. This is probably the most well founded tool in the area of asynchro-
nously and discretely communicating finite state machines, and it can show off a number
of successful verification efforts [72; 76; 73; 75; 74].

One important idea for the success of SPINupertracean algorithm for partial cov-

erage of a state space based on hashing. In principle every state visited is given an
address in the available storage address space. The address is assigned through a care-
fully chosen hashing algorithm. Whenever a state is encountered there is a need to find
out whether it is visited before. The address corresponding to the state is calculated by
hashing and the corresponding bit is checked in the storage. If it is not set, Supertrace
knows that the state has not been visited and sets the bit and continues. If the bit is set
already, Supertrace assumes that the state has been visited and discontinues the search
along this execution branch. This latter assumption will sometimes fail when there are
more states than addresses, but the coverage becomes random. By applying more than
one analysis with different hashing functions, it is possible to show that the actual cov-
erage can get very close to 1 even with address spaces down to 0.01 of the total space
[75].

Supertrace is used in the commercial SDL validators from Telelogic and Verilog [40;
136].

The main differences between the model checking approach pioneered by Holzmann
and our Mn-approach are that we do not assume a finite state model, and we do not
restrict ourselves to execution from the initial state.

From a practical point of view, reachability from the initial state is not very robust. Since
most of the design is done with only fairly local knowledge, the designers will not be
able to overview whether the set of reachable states are affected by a change which they
want to introduce. In fact whenever there has been a change in the system, the whole
reachability analysis must be repeated.Contrary to this our Mn-approach is more robust
as it considers the whole set of complete states and not only the set of reachable states.

This concludes our discussion on model checking. Their major drawback is that the
analysis is normally not compositional meaning that earlier results cannot be applied in
future analysis of other parts of the system or new versions of the system. In contrast our
Mn-approach based on reducibility is compositional as shown in Section 4.1 (p. 143).

1.6.2.2 1/O relations

Even though automata are attractive as basic semantics building blocks, many proof the-
ory scientists choose otherwise. In the study of communicating finite state machines also
relations between the input sequences and the output sequences have been used as basic
formal model [91].

In FOCUS this principle is called “stream processing functions” [15; 20]. The approach

is a very general one based on formal proof theory rather than model checslirear

is an infinite sequence of signals either input to or output from a procegs.otleess

defined as a set of functions which processes these streams. Even though the processes

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Background

are not automata there is no problem to define automata processes in FOCUS through
the use of simple templates. In this way SDL semantics can be expressed (in principle)
in FOCUS [16; 17; 128; 68].

Time is introduced in FOCUS as special time ticks appearing as signals in the streams.
In this way FOCUS is more expressive than SDL where no declarative reasoning can be
done regarding time and duration.

FOCUS is a monolithic approach to system specification and as a method for system
development its strategy is to define a series of refinement steps from a very abstract
specification to a realizable one [18; 129; 20]. The refinement approach is well com-
bined with compositionality which makes the approach attractive. The FOCUS
approach to interface refinement has been adopted by the Mn-approach as shown in Sec-
tion 4.2.1 (p. 147).

Another approach which has certain resemblance to our approach is the one by Jonsson
[88; 89] where he uses the conceptrate generatorin a compositional model of i/o
systems expressive enough to capture the Brock-Ackerman anomaly. The composition-
ality makes it possible to achieve reductions comparable to ours, but the reduction is
made through formal proofs and not an automatic procedure.

1.6.2.3 Rewrite systems

Rewrite systemare directed equations used to compute by repeatedly replacing sub-
terms of a given formula with equal terms until the simplest form possible is obtained
[37].

The execution of a process can be seen as the computation of a rewrite system. The tran
sition table can be seen as the substitution rules. The consumption of an input signal and
producing output signals can be seen as substituting a ground symbol prefixing a
sequence by sequences of ground symbols appending sequences.

(S;€eE;1;0)0 0 - (T;E;lij Ox)
Figure 15: Substitution rule

In Figure 15 (p. 33) we have given an example of a substitution rule where the external
signale is consumed producing the internal signgdsd external outpwt E,I,O are
variables.S andT are basic states. As we shall see in Section 2.1.3 (p. 44), this is iden-
tical to our notion of an unlabeled transition representing a possible execution step of
the communicating process.

Therefore it should be no surprise that our Mn-procedure is influenced by the theory of
rewrite systems. Our notion of confluence (see Section 2.4 (p. 51)) is very similar to con-
fluence of rewrite systems. Our Mn-procedure has a concept of potential non-
confluence patterns, and this is similar to critical pairs in determining rewrite
confluence.

The search for confluence corresponds to determining Church-Rosser property of the
transition system. Keller [92] shows tltaimmutativitycan be used to show Church-
Rosser. His notion of commutativity implies trivially our notion of confluence and a

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 33

34

Introduction
Background

commutative system is determined confluent by the Mn-procedure in its simplest form
(MO-execution, see Section 2.4.4 (p. 56)). Sethi [122] also makes the search for Church-
Rosser a central point in higplacement systenused to optimize programs.

Our notion of progress (see Section 2.3 (p. 50)) corresponds to termination in rewrite
systems and we advocate to apply techniques from rewrite systems for the determination
of progress. Thus reducibility in Mn-terms (see Section 2.2 (p. 47)) is similar to conver-
gence in rewrite systems. In fact reducibility in Mn terms corresponds reasonably well
with ground convergencef the rewrite system derived from the process.

Ground convergence means that eggound ternrewrites to a unique normal form. A
ground term is a term consisting of oghpund symboldn our terms the ground terms
are the signals.

1.6.2.4 Proof systems

There is an important division concerning verification. Are the proofs automatic, or do
we need human intuition? Most formal approaches have a considerable portion of man-
ual proof construction, but the picture is changing — rapidly.

The proof-oriented methods have (at least) two major drawbacks seen from a
practitioner:

1. Manual proofs are tedious, time-consuming, error-prone and incomprehensible.

2. To find the invariants which are strong enough to make the proof work, requires expe-
rience which is beyond the normal competence of a software engineer. When the
invariants are found, they are great to use, but finding them is a big hassle.

These negative opinions by the practitioner are partly due to reality and partly due to
myths. There is no doubt that the perceived complexity of a formal proof often reflects
the complexity of the problem or the solution, and any explanation failing to realize this
will often miss important aspects of the problem. It is also obvious that practitioners
should be encouraged to express invariants and to use them in their arguments for the
correctness of their programs. The search for strong enough invariants often reveals new
aspects of the problems. Still our opinion is that stronger emphasis on automatic tech-
niques is a positive trend for future development of verifiable software.

Early formal theories for concurrency which were suitable for automation include Petri-
nets [116; 93] which have been used for a number of verification purposes. Petri-nets
led to trace theory [99] which became a research area of its own.

In the tradition of Hoare-logic we have VDM[87] which was an early attempt to apply
verification in software engineering. Competent people made effective use of this tech-
nique, and tools have been developed, but it did not catch on as a general approach to
software engineering. VDM has had influence on SDL as the formal semantics[79] of
SDL is defined in MetalV which is a variant of VDM.

In recent years general software for the assistance of theorem proving has emerged. The
proof assistants are increasingly being used for more practical purposes [4; 100] and
even though the theoretical complexity can be proved to be prohibitive, the actual com-
plexity may be within the limits of modern computers. This is also very much the
assumption behind our Mn-approach where the worst case is very bad, but where meth-
odological reasoning indicates that the actual complexity should be manageabile.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Background

Since there are problem areas where general algorithms cannot be found, itis reasonable
to assume that combined uses of proof assistants and manual proofs will emerge [126;
127]. The combination of the different automatic techniques combined with manual
proofs of details or of certain generalizations becomes attractive [104].

This is very much in line with our Mn-approach where we encourage the combined use
of different techniques rather than expecting the Mn-approach itself to solve all
problems.

The reader is referred to [96] for an attempt to compare different approaches to the same
experimental system. The survey gives some insight into the differences of the
approaches, but the individual efforts are done by different people with differing com-
petence in the specifications used such that the comparisons are not really very reliable.

1.6.3 The Mn-approach does not really address real-time

Even though SDL is being used extensively in the construction and design of real-time
systems, SDL does not have means to describe real time other than by plain timers. Its
dual specification language MSC does not have means to describe real-time either. This
means that real-time reasoning in an SDL environment is difficult or impossible without
applying extra information supplied in other formal or informal languages.

Approaches to real time are still quite formal with few success stories from real life, but
research is progressing. We have already mentioned the theory of hybrid automata [53;
67] which seems very promising, and FOCUS [20] which also offers compositional atti-
tudes to real-time reasoning. Furthermore much research has been done in the ProCos
project [114; 38; 65] to define a “duration calculus”.

The Mn-approach addresses concurrency and asynchrony, but we find that reducibility
preserving real-time properties such as minimal response times, is definitely more dif-
ficult (see Section 3.7.4.6 (p. 126)).

1.6.4 Mn-approach is integrated with design

The main target for the Mn-approach is to contribute to the design of reactive systems.
We have named our design approach “confluent design” to emphasize the aim to create
confluent units which may be functionally reduced.

Traditionally verification methods have concentrated on verification and not on the
design of the system. Still experience from verification led to such slogans as “goto-less
programming” referring to the problems of verifying programs containing goto-clauses.
Structured programming was the answer to easier verification[31; 30]. The interleaving
of specifications and program known from approaches with pre- and post-conditions
based on Hoare-logic [69] could also be considered a motivation for verification-ori-
ented design.

In the application of SDL the integration of verification and design is encouraged. In the
appendix to the Recommendation in 1993 [80] verification of SDL systems is consid-
ered together with their design and implementation. In the tutorial collection for the SDL
Forum 1995 [115] advocates that validation should be performed as an integral part of
every software development activity. The Telelogic SOMT method[131] also intro-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 35

36

Introduction
Background

duces tool support for inter-notational links (“imp-links”) which describes mappings
which should be used during consistency checking. In a Supplement to the most recent
Recommendation [84], validation is again highlighted. SDL as a formal language is
emphasized in [42].

The CleanRoom method [39; 110] is based on small verifiable design steps. The steps
are not necessarily automatically verified, and also walkthroughs are accepted as verifi-
cation, but it emphasizes the integration of design and verification.

Regardless of these attempts in practice there is often a clear distinction in time between
designing a system (program) and verifying it. Commercial companies may have dis-
joint groups of people to perform verification and design. The distinction is partly due
to division of labor, and partly due to difference in competence. Our Mn-approach aims
to let the designer be able to understand and to undertake some systematic validation
effort during his design. The goal is to provide a smooth transition from tentative com-
plexity evaluation through automatic analysis to full reducibility analysis.

The problem with methods applying informal notations such as OOA [29], OMT [118]

etc. is that the consistency between different descriptions is not verifiable. We expect
that UML [119] may lead to more precise semantics, but still SDL offers a lot more in
terms of formalisms.

The method brought forth by SISU [62] presented on electronic form in [12] is a good
framework for adaptation of the Mn-approach. The “distillery” conceptual framework
presented in Section 5.1.3.1 (p. 180) provides the background for more verification-ori-
ented design. The Mn-approach not only provides an answer to whether different parts
of the design are consistent, but also indicates complexity and offers guidelines for
improved verifiable confluent designs.

1.6.5 Comparison summary

We may summarize the relations between the Mn-approach and other approaches by the
following table which tries to presentin short the placement of the Mn-approach and the
reasons for why it is like it is.

Table 1: The Mn-approach and other approaches

Mn-feature similar to different from comments
asynchronous FOCUS, SPIN CSP, CCS asynchrony is often
communication perceived as better

for the designer

monolithic FOCUS, Z most formal | one paradigm is nor-
verification mally enough for a
techniques practitioner

compositional FOCUS, Jonsson CTL reuse of analysis is
preferable

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Reader’s guide to the thesi

Table 1: The Mn-approach and other approaches

Mn-feature similar to different from comments
check also unreach- | Testing, rewrite | SPIN etc. reachability from
able cases systems initial state is not

robust
process as semantic | automata-ori- proof theory the semantic base is
base ented techniques conceivable for
practitioners
unbounded state space hybrid automatanodel often the finitude of
proof theory checking the program state

space is assumed in
model checking

automatic SPIN, etc. proof theory manual proofs are
rewrite systems error-prone and
time-consuming
integrated SISU integrated | OOA, OMT Mn is formal enough
methodology for verification and
(TIMe), SOMT pragmatic enough

for designers

1.7 Reader’s guide to the thesis

The thesis is built up as follows. In Section 1. (p. 1) we have given an overview of the
thesis with an executive and a technical summary. We have also given motivation and
background for our work.

Section 2. (p. 41) contains the theoretical foundations for our “Mn-approach”. We
present the theory in a context which is much simpler than we find in real systems, but
which is complicated enough to exhibit most of the difficulties.

In Section 3. (p. 83) we see how the theory can be made more applicable by generalizing
it to more realistic situations. SDL features such as multiple channels and multiple pro-
cesses, non-determinism and timers, save and priority input, procedures and object
orientation are covered. The Mn-approach is modified to cope with these areas.

Section 4. (p. 143) contains material which shows how the Mn-approach can be used for
formal reasoning, while Section 5. (p. 177) contains a methodology “Confluent design”
where the Mn-approach is central. The aim is to show that the Mn-approach can be used
not only to reduce system parts, but also to give evaluations of the complexity of a sys-
tem. The Mn-approach is seen to be of practical use even if it is unable to produce a
reduction. We report from a rudimentary industrial case study.

During the presentation of the Mn-approach a number of examples are given, but we
want to give an indication of how the Mn-approach works for a medium size toy exam-
ple. Our choice is the RPC-Memory specification problem which was suggested by

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 37

Introduction
Acknowledgments

Leslie Lamport and Manfred Broy before a conference at Dagstuhl, Germany in Sep-
tember 1995. In Section 6. (p. 229) we apply the Mn-approach to this problem and show
successes and shortcomings of the Mn-approach.

Section 7. (p. 269) contains the conclusions and indications for how the Mn-approach
may be improved by further research.

The references to literature follow in Section 8. (p. 275)

In Section 9. (p. 283) we give a summary of the extensions to SDL which we have used
in this thesis in order to make SDL suitable for our purposes.

Appended to the thesis is a list of all the figures.

1.8 Acknowledgments

38

Since this thesis falls in between formal theory and practical engineering, we have had
great benefit from a number of sources, and a lot of people have contributed positively
to the progress of the work.

The take-off of our doctoral studies would have been more difficult without the explicit
support of our former advisor, professor Kristen Nygard. Professor Sverre Spurkeland
opened our eyes to symbolic verification and constituted a valuable discussion partner
in the middle phases of the work. My advisor professor Dag Belsnes has given increas-
ingly important criticisms to the work as the material has matured, especially during the
last years.

Concerning the more theoretical parts of the work, the contacts with Ketil Stglen, Ph.D.
has been of utmost importance. The visits to Lehrstuhl Broy at the Technical University
of Munich were extremely inspiring and valuable. The visits supported our believes that
in the future formal theory and practical engineering should increase their contacts.

We have had the great pleasure to participate in two very interesting workshops con-
cerning the theoretical foundations of verifying concurrent systems. The first workshop
was organized by Graham Birtwistle in Banff in the Rocky Mountains of Canada in the
fall of 1994. The workshop had the topic “Logics for concurrency. Structure versus
Automata” and was chaired by Faron Moller. The Rocky Mountains environment where
the participants joined the excellent lecturers hiking in the wilderness and swimming in
the ice cold glacier lakes, was the perfect setting for learning and for making good pro-
fessional contacts.

The second workshop took place in Arhus, Denmark in the fall of 1996. BRICS Autumn
School in Verification had the topic “Theorem Proving and Model Checking” and some
of the best experts in the field gave a series of very inspiring lectures. The Danish brew-
eries also contributed to the making of contacts.

From the practical engineering side, the contacts made through the Norwegian SISU
project, where we have participated in parallel with the doctoral studies, have been the
most important. The parallel work on an integrated methodology in SISU (now given

the namd’lMe) has been inspiring and established a reference methodology for our sug-
gestions in this thesis. In this work Geir Melby, project leader of SISU, professor Rolv
Breek, scientists Birger Mgller-Pedersen and Richard Sanders have been a fantastic team
to work with.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Introduction 1

Acknowledgments

We would also like to thank the SISU companies in general for providing practical expe-
rience which has been the practical foundations of my work. In particular we are grateful
for the opportunity to perform a rudimentary case study on a real system of the Mn-
approach, which was granted by Siemens AS, Defense Systems. The contacts with Sie-
mens and their engineers Ole Henrik Stgren, Astrid Nyeng and Svanhild Gundersen
were of great importance.

Thanks to Piet Hein for his encouraging poems, his “grooks” which we have used to
introduce the chapters of the dissertation [66].

Finally our family must be thanked. We thank our three children who each in their own
way made it clear that doctoral studies are not the most important mission in life, and
the wife who has tried to keep the family running while the doctoral student was sitting
behind his desk.

Oslo, March 1997
@ystein Haugen

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 39

1 Introduction

Acknowledgments

40 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

2

The Basic Mn-procedure

Problems

Problems worthy
of attack

prove their worth
by hitting back

2. The Basic Mn-procedure

In this chapter we present the Mn-procedure. The Mn-procedure is a procedure which
aims to determine whether a given system is reducible to a simpler process. In this chap-
ter we start by analyzing SDL systems which have several restrictions and as such can
be characterized as basic systems.

The restrictions that we put on the SDL systems analyzed in this chapter are:

1.
2.
3.

5.
6.
7.

The external input sequence is finite.
The system consists of one process only.

The system contains one external input channel, one internal channel, and one exter-
nal output channel.

. The process is deterministic, meaning that given a basic state and a signal only one

transition is possible. The transition contains no decisions leading to different
nextstates.

There are no data variables in the process.
There is no save (no explicit permutation of signals).

There are no timers.

The restrictions and their relaxation will be discussed in Section 3. (p. 83). The restric-
tions make the presentation of the technique simpler and as we shall see, the relaxation
of the restrictions still do not jeopardize the main results of the technique. On the con-
trary, relaxing the restrictions makes the technique even more applicable in industrial
contexts.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 41

2

The Basic Mn-procedure
Basic concepts

2.1 Basic concepts

42

2.1.1 Notation

2.1.1.1 Basic notation
f(x) means that functiohis applied to argumenmnt

f:D - R is the signature of functidnwith domainD and ranger.

ft(x) means the first element of the sequexce

rt(x) means the rest afafter the first element has been removed

tuples are denoted (x,y,z,...) or <Xx,y,z,...> or [X,y,z,...]. There is no semantic dif-
ference between the notations for tuples. Sometimes we use semicolon as
separator, and sometimes comma. The difference is again only to distin-
guish between different kinds of lists.

OA denotes the powerset Af

A* denotes the set of finite sequences of elements of A.

A” denotes the set of infinite sequences of elements of A.

A® denotes the set of finite and infinite sequences of elements of A.

Ba denotes a mathematical variable of tjde . In general we use greek letters

to denote sequences of signals which is not known. The beta symbol is just
one example of a greek letter.

2 denotes the empty sequence
X denotes the system state where x is the basic state and the internal queues
are empty.

v=V' means for two sequences v and Vv’ that either v is a prefix of v’ or vice versa
or they are equal. We say that v and v’ are prefix related.

primes Primes are used to distinguish symbols which are similar, but different

suffixes Suffixes are used to distinguish similar items

2.1.1.2 Process definitions

We will give our process definitions in SDL-92 with some proprietary extensions sum-
marized in Section 9. (p. 283).

2.1.2 Basic model

The concern of this thesis is the analysis of SDL-like systems. SDL systems consist of
componentsvhich communicate viahannelqor signalroutes) through discrete tokens
of information,signals

A typical example of the basic model is shown in Figure 16 (p. 43).

In Figure 16 (p. 43) the channels are namikd2, c3, c4, c5. For each channel there
are sets of legal signals. They are naried2, i1, i2, e3. The channels are divided into
three sets: the external input channels, the internal channels and the external output
channels. Thexternal input channelceive input signals from the environment and
deliver them into the system under analysis. Converselgxteznal output channels
deliver signals from the interior of the system to the environmeninidraal channels

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Basic concepts

=y=tem typical

c o

" W
=] Y 53]

B
o} c
—CSE-]-Eaf’f‘[TE']

Figure 16: Typical structure of an SDL system

deliver signals from the interior of the system to the interior of the system. Observed
from the outside of the system, the internal channels are invisible and their signals are
not observable.

The communication is asynchronous which means that the output (sending) and the
input (consumption) of a signal is not coincident in time. The exact duration of opera-
tions is not usually within our area of concern.

Each component may itself have an architecture like a system with channels and sub-
components. Such components are cdlledks

A component may instead of being a block Imeacesswhich is an atomic processing

unit in the form of dinite state machineOne of our goals of the analysis is to be able

to view a block as a process. An SDL process has an input port which is a signal buffer.
There is only one input port for each SDL process even when there are more than one
input channels. The single input port represents the fact that only one signal can be con-
sumed at the time. In our basic model we shall assume that every input channel has a
buffer and that the selection of which signal to consume happens just before the transi-
tion takes place. The decision of which channel to consume from is non-deterministic
and fair, meaning that no signal should stay forever in the buffer without being con-
sumed. There is a question whether this fairness is actually reflected in the formal
definition of SDL[79; 68], but in practice this fairness is wanted and sometimes needed.

Whenever two channels merge into one, there is implicitdyranerge component
which makes sure that the merge is also fair.

Everytransitionis considereatomic A transition is the actions of a process following
the consumption of a signal until another basic state is reached. That a transition is
atomic means that the transition will not stop due to some interruption. The process
internal state of variable values cannot change due to other actions than those in the
transition.

In a system or a block, the sub-components execute in true parallel, but semantically this
will not be different from considering that only one transition executes at thariee (
leaving semantigsSince the processes have different clocks and are independent there
is no way to observe whether individual transitions execute in sequence or in parallel.
Consider our typical example in Figure 16 (p. 43B1fandB2 execute in parallel, we

still cannot know within the framework of SDL the relative durations of their transitions.
Therefore we cannot know which sigitabri2 will be sent first. Therefore for the sake

of analyzingB3 we must consider both the situation where welgehc3 beforei2 on

c4, and the opposite. In fact we must consider all merges of signe@swath signals

of c4.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 43

44

The Basic Mn-procedure
Basic concepts

Our basic model assumes that transitions eligible for execution are the ones that con-
sume the first signal on one of the input channels.

That it is necessary to have a model with multiple input channels when a transition is to
be considered atomic, can easily be seen from the following scenarigl beve a
transition which produces two output signalsil. B2 executes a transition producing
onei2. If there was one input port 83 in our basic model, the possible sequences of
that input port would be eithét,il,i2 ori2,i1,il since the transitions by assumption

were atomic. If there are two input ports (input bufferd®fit may also consume the
signals in this order1,i2,il1. This corresponds well with a model where the transitions
are not atomic seen from the system level such that the signals may arrive in any order
to the single input port. We conclude that our basic model of multiple input ports and
atomic transitions corresponds well with the SDL model of a single input port and merg-
ing of the individual inputs from the different sources.

2.1.3 Basic definitions

Here we shall present the basic concepts in a more formal framework. We define a con-
cept ofprocesswhich is slightly more general than the one presented informally in
Section 2.1.2 (p. 42). The SDL process corresponds closely to our cG&d(Com-
municating Finite State Machine).

2.1.3.1 Aprocessand related concepts
A processs a tuple(S5; C; Z T where

S afinite set obasic states

C thealphabetwhich represents possible values of all the channels of the process.
Each individual value is of tple where each entry corresponds to a channel.
Each entry may be a sequenceyrhbolsEach symbol may in principle be a se-
guence okignals

Z a set ofinitial complete statefom where to begin the executioca U K)

T thetransitiontable T:Sx A - K where th&S designates the basic state and the
A the input. The result is a complete state.

The auxiliary sets used above are defined by:

K the set ofcomplete stateK = Sx C.

A theinput alphabetA [0 C . The input alphabet consists of the elements of C
which have exactly one symbol on one input channel and nothing on the others.
Normally we denote an elementAfby the name of the signal.

These capital letters will refer to the concepts of a process throughout the thesis, i.e.
whenever we talk generally of a proc®« means the set of its complete statesAand

its input alphabet. If confusion may arise we subscript the notation by the process iden-
tifier e.9.Kp

2.1.3.2 ACommunicating Finite State Machine

A communicating finite state machine (CFSMa process (cf. Section 2.1.3.1 (p. 44))
where

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Basic concepts

C the alphabe€C = E* x|* xO* where:

- E: the external input alphabet, a finite set of signals input to the system from its
environment;

- I: the internal alphabet, a finite set of signals for a channel within the system itself

- O: the external output alphabet, a finite set of signals for transmitting signals out
from the system to the environment.

Z the set of initial complete states is based on one initial basic state z
Z = {(z;6g;2;9 O K‘(GE [0 E*)} which we denote.z

The reader should notice the notation used to denote a complete state because this gen
eral notation is used throughout this thesis. A complete state is a tuple of a basic state,
external input channels, internal channels and external output channels. Each of these
parts are separated by a semicolon. In the general case which is treated in Section 3.2 (p.
87), each of the sections may consists of a set of elements. They will then be separated
by comma. Notice that we make no special syntactic distinction of the alphabet element
within the complete state. The alphabet element is the tail of the complete state where
the first basic state element is removed.

A the input alphabetif(e, i,0) DCled Ei =g il Oe= g which means
that the CFSM reacts to either one external or one internal signal.

2.1.3.3 A transition system

The execution of a proces$; C; Z TlJ can be interpreted relative to the transition sys-
tem [K;A; U 0 - ;Z0 where K is the set of (complete) states, A the input signal
alphabet,J 0 — the transition relation derived from T, and Z the set of initial (com-
plete) states.

The transition table T of the process is used to transform the complete states. Each com-
plete state can be seen as the root of an execution tree. An execution of a transition
means to consume the first signal of one of the non-empty input channels and to perform
the transition indicated in the transition table. The result will be a new complete state.
Assume that the process is a CFSM. If T is the name of the transition tatd®otes

the complete state reached when consuming the first internal signgl dedofes the
complete state reached when consuming the first external input signal. More formally in
Figure 17 (p. 46):

The plus symbol (“+”) in Figure 17 (p. 46) refers to a simple concatenation operator
where the signal sequences are concatenated. The state is not affected. The trivial defi-
nition is not given here.

The labelled transition relation is a simple application gaid T.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 45

2

46

The Basic Mn-procedure
Basic concepts

T, K - K
T(s;& 00 =(rt(e);i;0) + T(s;ft(e);2;0)
wheree# g

T.:K - K
Ti(s;&i0 =(ert(i);0) + T(s; & ft(i);2)
where i Zg

Figure 17: Transition function

08 - :KxA xK - Bool

(S]_;e]_;i]_;ol)[] ﬁ N (Sz;ez;iz;oz)
when (T (s;;€13i1;07) = (S,;€,11,;0,)) O(c = ft(e;))
or (T,(s;;€4:i1;07) = (S,:€511,,0,)) O(c = ft(iy))

Figure 18: Labelled transition relation

The reader should notice that in Figure 18 (p. 46) there are two right arrows which serve
two different purposes. One purpose is to serve as a symbol for the labelled transition
relation, and the second purpose is to separate the domain from the range in the function
signature.

OO0 - :KxK - Bool
k00 ~ky=HaO A« kO3 - k,d

Figure 19: Unlabeled transition relation

It is obvious how these definitions in Figure 18 (p. 46) and Figure 19 (p. 46) generalize
to processes from CFSMs. The formulation is slightly more intricate and adds little to
the understanding.

2.1.3.4 Execution graph

Theexecution graplis the execution tree afdenoted byG(x). The execution graph is

a set valued function which is based on the unlabeled transition relation as defined in
Figure 20 (p. 47). The nodes®@{x) is denoted by (x).

2.1.3.5 Leaves

Theleavesof the execution tree are the states which have no input. The set of leaves of
the tree with roox is denoted by.(x).

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2
Reducibility

G:K- {(uv)OKxK|juOO -v}
H:K - K

For anyx K , H(x) and G(x) are the least sets such that:
x O H(x) and

(yOH(X)OyO DO -k)O ((y, k) OG(x) Ok OH(x))
Figure 20: Execution graph of x, G(x) with nodes H(x)

L:K-0OK

L(x)={k OH(x)|G(x) = O}

Figure 21: Leaves ofx

If the set of leaves contains only one element, the executitatasministicirom the
given state. If the execution from all complete states is deterministic, the process is
deterministic.

2.1.3.6 Astable state
A stable state is a complete state where the internal queues are empty.

The concept of stable states differ from “leaves” since leaves are stable states with no
external input signals left, either.

Stabilizationis the execution of internal signals only such that a stable state is reached.

2.2 Reducibility

The idea behind establishing reducibility is obviously to eliminate aspects of the system
under analysis that is irrelevant for the kind of analysis which we currently are doing. In
our thesis we concentrate on the properties of processes as signal consuming and signal
emitting entities.

From this point of view, to reduce a process would mean to eliminate all internal signal-
ling such that only the external signalling relations are present. It is our hope that such
a reduction will yield a new process description which has some interesting features:

1. Improved overviewapabilities through the removal of internal signals. Understand-
ing the system may become easier. The reduction may also reveal aspects of the
system which was more hidden in the complete description.

2. Simpler descriptions such th@her methods may be applicalidelarger systems.
Often other techniques such as reachability analysis and formal verification cannot
handle large systems. If parts of the systems are reduced, larger systems can be
manageable.

3. Thebehavior of the reduced process is identicaihe original one when seen from
the outside.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 47

48

The Basic Mn-procedure
Reducibility

Furthermore, the procedure to establish reducibility may have as a spin-off effect that
complexities of the original process are revealed. The problems of the establishing of
reducibility may even prove to serve as a complexity measure (see Section 5.2.2 (p.
193)).

2.2.1 What is reducibility?

Kwong showed already in [94] that with his definition of reducibility which corresponds
closely to ours, a number of correctness criteria are preserved over reductions. For our
purposes the preservation of different variants of deadlock-freedom and homing are of
special interest. Homing means that there is a set of complete states which can be
reached from any other complete state. Homing can express that the system may always
return to an idling situation.

If subsystems can be reduced, e.g. to a single finite state machine, the analysis by stan-
dard reachability techniques can be feasible for larger enclosing systems. We give in this
chapter a reduction algorithm that yields a reduced system in terms of Kwong [94].
2.2.1.1 DefiningReducibility

A processP1 is reducible to a proce®R if the following criteria hold:

P1=<S1;C1;Z1;T1¥educes tdP2=<S2;C2;Z2;T2f

S20 S1

C2=(ElxOxoboca
where E and O are the sets of external input and output of P1
Z2 = Z1 (which means that the set of initial states are equal)

0(zO Z1), 3(6 D ED) » (Lp4(2;8:2,9) = Lpy(2:6;2;9))

Figure 22: Reducible process

This definition of reducibility (Figure 22 (p. 48)) corresponds closely to that of Kwong.
See Section 2.5.3 (p. 75) for the detailed correspondence between Kwong's definition
and ours.

We notice that the definition says nothing about the input alphabets and the transition
tables. We also notice that a reduced procesdssisrvationally equivalet02; 103] to
the process from which it is reduced.

2.2.2 The reduction algorithm

Our reduction algorithm is based on the process being redupemiessiveandcon-

fluent These two concept will be defined in Section 2.3.1 (p. 50) and Section 2.4.1 (p.
51), but here we just want to present the simple reduction algorithm. The proof of the
correctness of the algorithm follows after the presentations of progress and confluence
in Section 2.5.1 (p. 73).

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2
Reducibility

1. Let P1=<S1;C1;Z1;T1> be the original process and P2=<S2;C2;Z2;T2> the reduced
one. The set of external input signals of C1 is E and the set of external output signals
of C1lis O. We will build P2 from executing P1.

2. Initialize S2:=Z2:=71 and Q:=@. Q will hold the states of S covered so far.
3. FindpUd S2 pU Q

4. Foralle E do

1
4.1 FindLwk(phejsasgmple since P is progressive . That it is progres-

sive means here that we are certain to find the one leaf node just by stabilization
(see Section 2.1.3.6 (p. 47)).

42 LetT2(p;g g g:=Lpy(p;e g 92
4.3 Include qin S¥vhere (9;2,4 9 ULy (p;e; 3 9

4.4 Nexte
5. Include p in Q.
6. Repeat from point 3 until such a p cannot be found (i.e. S2=Q).

2.2.3 The example process D

Throughout our presentation of our Mn-approach in this chapter we shall use an exam-
ple process D shown in Figure 23 (p. 49) and Figure 24 (p. 50).

system Dm

I . TN O I

[£] [

Figure 23: Structure of example process D

Process D is a CFSM with one external input signal {2}, two internal signals {0,1} and
one external output signal {3}. It is not immediately obvious that process D is reducible.
But given that it is reducible it is simple to calculate by the algorithm in Section 2.2.2

(p- 48) that the reduced process is process D’. Both the original process D and the reduc-
tion D’ are given in Figure 24 (p. 50).

1. When the CFSM is deterministic there is only one elemeng(iné;2;2).
2. The type of L is generally a set of complete states, but in our simplest case the set of leaves contains exactly
one element and therefore the type of L can be considered K.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 49

2

The Basic Mn-procedure
Progress

mocess D process D

IBSOE i

Figure 24: A reducible process

2.3 Progress

50

2.3.1 What is progress?

At this point in the thesis we define progress mainly as termination of the execution of
a finite input. We may also express this by saying that for any external input signal,
eventually it will be consumed and all internal derivatives of its execution (recursively)
will be consumed until only external output is the result of the original (external) input.

More precisely we define that progress means that the execution graph of any complete
state with finite input stream should be finite and cycle free.

Let P be a process <S;C;Z;T>
Pr(P) = (0O(x OK) » G(x) is finite and cycle free

Figure 25: Progress

We notice that our definition in Figure 25 (p. 50) says nothing about situations where
the external input stream is infinite since we have restricted ourselves only to complete
states where the external input is finite. The generalization to infinite external input
streams will be covered in Section 3.1 (p. 84).

Progress is a desirable property by itself in most systems, but here progress is also a pre-
requisite for the Mn-procedure for determining confluence to be presented in Section 2.4
(p. 51), and for the reduction algorithm presented in Section 2.2 (p. 47).

2.3.2 Progress of the example process D

In order to prove reducibility we must show that the process D in Figure 24 (p. 50) has
progress i.e. that the stabilization of any instable state is a finite path.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Confluence

This is simple in this case as process D adheres to the signal ordering principle intro-
duced in Section 2.6.4.1 (p. 80). All transitions that consume signal “2”, produce either
“0”,"1” or “3". All transitions consuming “0” produce “1” or “3”, and finally all transi-
tions consuming “1” produce only “3”. Thus we have a signal order “2"->"0"->“1"-

>“3” and all stabilizations will terminate.

2.4 Confluence

2.4.1 What is confluence?

Confluence is that race conditions between internal and external signals cannot affect
the final result. Arace conditions when the signals of several channels race to be con-
sumed first. If we can reach a situation where the process can choose between
consuming an internal signal or consuming an external signal, and the choice is signifi-
cant for the final outcome, then the process is not confluent.

2.4.1.1 A confluent state

A confluent states a complete stateof an CFSM where the predicdtéx) given in
Figure 26 (p. 51) holds.

F: K - Bool
F(seig=(ezgUiza 0 (L(Ts g1 0) =L(T(s;g10)))

Figure 26: Confluent state

The final result of all the different feasible execution branches are the same. It follows
from Figure 26 (p. 51) that a complete state where some input queue is empty is
confluent.

A simple consequence is that the set of leaves of the root node itself is also equal to the
set of leaves of any of its subtrees since they are all equal.

F(x) O L(Tg(x))= L(T;(x))= L(x)
Figure 27: Consequence: leaves of root node

A set of states is confluent if all the states in the set are confluent.

Confluence in our terms corresponds to Church-Rosser property [122; 92] of the asso-
ciated transition system representing the execution of the process.

2.4.1.2 A confluent CFSM

A confluentCFSM is a CFSM where all reachable complete states are confluent. In
more formal terms we may describe a confluent process by Figure 28 (p. 52):

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 51

52

The Basic Mn-procedure
Confluence

F(C5CzZzM=0z0Z OxOH(2) * F(x)
Figure 28: Confluent CFSM

The set of reachable complete st&téx) cannot be determined in general [48] such that
we will normally concentrate on assessing confluence of the whole set of complete
stateK. We define this aabsolute confluencef the CFSM.

F(5,CZzT) =0k 0K, Ox OH (k) * F(x)

Figure 29: Absolute confluence

We have used the leaf function L in our definitions of confluence. In this chapter we
concentrate on situations where there is no explicit non-determinism. This means that
the only factor to make the set of leaves contain more than one element is the race con-
dition between external and internal channels. Thus if the process is confluent, it is also
deterministic meaning that the set of leaves contains only one element. In Section 3.5
(p- 97) we shall introduce explicit non-determinism and that is the reason why our def-
initions of confluence is more general than the restricted case covered in this chapter.

2.4.2 Determining confluence

We shall now present an approach which may determine confluence. We ca¥iit the
approach. The approach is a procedure which is such that if it concluded confluence, this
is definitely the case. Conversely if the Mn-procedure concludes “non-confluence”, a
tentative non-confluent state is suggested as a counterexample of confluence, but the
procedure gives no support for establishing whether the proposed non-confluent state is
actually reachable. We have then established that the process is not absolutely confluent,
but it may still be confluent.

As we shall see in Section 2.4.7 (p. 69), there is also a chance that the Mn-procedure
may not terminate even when the system under analysis is progressive and confluent.

Thus the procedure has two major, potential drawbacks:

1. The Mn-procedure may not terminate Pragmatic improvements of the procedure to
make it terminate is discussed in Section 2.6.5 (p. 81)

2. The Mn-procedure may find non-confluence patterns which cannot be reached.

The Mn-procedure aims to eliminate the possibility of a non-confluence pattern. A non-
confluence patterns is a situation where in a state S there are an internal and an external
signal which may execute, and their execution order makes a difference in the final
result. In other words we try to find a complete state,isayx such that(x) does not

hold.

2.4.3 The non-confluence pattern examined

Here we show that it is sufficient to find only quite restricted non-confluence patterns.
It suffices to find aninimal non-confluence pattewhere:

1. There are only confluent states in their subtrees. This means that the non-confluence
shows up exactly at the root state.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Confluence

2. The sequence of external signals is only one element long.

We shall approach this result gradually. Firstly we defindgthgt non-confluence pat-
ternformally in Figure 30 (p. 53):

N(y)=-F(y) O(0Or OH(y)\y < F(r))
Figure 30: Least non-confluence

We want to show that if we have progress and a non-confluent state, this implies the
existence of a least non-confluence pattern in the graph of the non-confluent state.

2.4.3.1 Proof: progress and non-confluence implies a least non-confluence pattern

We want to prove that progress and non-confluence is sufficient for the existence of a
least non-confluence pattern. Formally we want to show the statement in Figure 31 (p.
53)

= F(x) O(G(x) is finite and cyclefrepl] Oy O H(x) * N(y)
Figure 31: Existence of a least non-confluence pattern

This is quite simple to see. Assume that we have the complete@¢@plConsider

T,(x) andTg(x). If they are not both confluent, pick one which has a non-confluent state
and repeat the procedure from that state. Since we assun@xha finite and cycle-

free somewhere down the tree we will reach a leaf and leaves are always confluent since
their internal queue is empty. Thus we will find a non-confluent root where all subtrees
have only confluent states.

2.4.3.2 Necessity of progress for the restricted non-confluence patterns

Example process in Figure 32 (p. 53) shows that an internal livelock will make an exe-
cution tree where there is a branch which consists of only non-confluent states infinitely.
It is impossible to find a non-confluent state with only confluent states in its graph.

process k

1

S 5

mpIalp:

Figure 32: Necessity of progress for least confluence pattern

The proces& has external alphabet {j} and internal alphabet {i}.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 53

2

54

The Basic Mn-procedure
Confluence

We show the beginning of an execution graph in Figure 33 (p. 54).

(L)o@
P
B =1) B
H ﬂ-_h_L_i
(Sjiia) (a2
(S i) (L@@ (L e@ el
"/ \\ #ii
o o LN s =TS

Figure 33: Selected execution of process K

We observe easily that there is a livelock since the process reproduces (duplicates) the
internal signal and there is not necessarily progress. We find no non-confluent state
with only confluent states below, and consequently no least non-confluence pattern.
2.4.3.3 The symmetric non-confluence pattern

Now we assumbl(y). Thus we have a complete staighere both the subtrees contain
only confluent states. This means tHatT ,(T;(y))) = L(T,(y)) and

L(T,(T(y))) = L(T(y)) according to consequence of Figure 27 (p. 51). Since we

have that N(y) (defined in Figure 30 (p. 53)), we haveltifa@t,(y)) # L(T,(y)) which
we may transform by substitution to the formula given in Figure 34 (p. 54)

N(y) O (L(T(Ti(y))) # L(T;(Te(y))))
Figure 34: Symmetric non-confluence

2.4.3.4 The minimal non-confluence pattern

We shall now show that we need only consider non-confluence patterns where the
sequence of external signals is of length one only. Such special symmetric non-conflu-
ence patterns we shall calinimal

The reason for that is that the external input channel will not be appended during the exe-
cution. To see that a minimal confluence pattern is sufficient, assume the converse that
we shall have to need more than one signal on the external input channel. The situation
is presented in Figure 35 (p. 55).

Observe the resulting stabilized states on the bottom of Figure 35 (p. 55). If these two
states are exactly equal, the root state has to be confluent (contrary to the assumption).

This follows from the assumption that the first level subroots are confluent by the
following:

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Confluence

(5 Ueg, V@) assumed non-confluent
/ \
(Sa o p sz (S Uaeg Pyt o') e assumed confluent
lI.I'i l u
(53 ot filizhia; Ugz Ves) (53 o Pz Uz Vag Ugg')
!l l !
stabilize stablize
(S g B U2z Wy, (S e B Yop' Upp' W, - are they equal ?

Figure 35: Minimal non-confluence pattern
L(S,,0g;VB UyiUgn) = L(S,:0g;8; UoVeaWepy,) Since the subtree is confluent
= L(s,,,0g:8; Vo U oW,) Since the set of leaf states are assumed equal
= L(s,uag;B,v,';v,,) since the subtree is confluent.
If the subtrees have equal sets of leaves for any pair of signals, the root must be

confluent.

Since our assumption was that the roeiasconfluent, the two states ametequal
which means that no value®f should make them equal. This will also have to include

the empty sequence g. Thus the non-confluence will show up alsp fop which
leaves the original external input sequence to only the single signal

This proves that the non-confluence pattern needs only a single external input signal. In
other words if there is a symmetric non-confluence pattern, there will also be a minimal
non-confluence pattern.

2.4.3.5 Summary

We assume that a CFSM is progressive.

If a CFSM has no minimal non-confluence patterns in its set of complete states, there is
no symmetric non-confluence pattern either.

If there is no symmetric non-confluence pattern, there is no least non-confluence
pattern.

If there is no least non-confluence pattern, there is no non-confluence pattern.

If there is no non-confluence pattern, the CFSM has only confluent complete states and
it is therefore confluent.

The Mn procedure will aim to explore whether there are any minimal non-confluence
patterns.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 55

2 The Basic Mn-procedure

Confluence

2.4.4 MO — the first generation

The Mn-procedure is a procedure which consists of executing a tree of “machines”. The
name “Mn” comes from “Machine on level n”. The root machine is MO and it is defined

in Figure 36 (p. 56) as a transition system. The execution of the machine starts from the
initial states and continues along the transitions. The transition systems are infinite, but
the Mn-procedure is designed such that only a (small) portion of the transition system is
visited.

The Mn-procedure has a simple goal. By trying out all potential minimal non-conflu-
ence patterns as defined in Figure 35 (p. 55), we shall eliminate them incrementally and
finally conclude that the CFSM under analysis is absolutely confluent as defined in Fig-
ure 29 (p. 52).

If we find non-confluence, this is normally a good indicator of errors or complexities in
the CFSM design.

2.4.4.1 Formal definition of M,

We define the root machine MO in Figure 36 (p. 56).

M, = EKoiAoiD,\%* ,Z,Uis a transition system based on CFSM <S;C;Z;T> and

the derived transition systenkK;A ;0 U - ;Z[

Ko = K xK the set of MO-nodes, pairs of complete states

Ay = {((2 a,(g, @)|al I} pairs of equal internal signals

The empty sequences of thg-Alements refer to the external input.
O

Zy = OxX)OKo|tpOSUDEVOID
O

\Y u H
(p;u;v; @90 M .o ﬂ -xO((ppuvieO 0 00 aX'EE

which represents the potential minimal non-confluence patterns.
)0~ (1Y) O T, (8,) DA+ [+x]0 0 ~y O +x]00 ~y

where the plus operator again is the concatenation operator used in Figure 17|(p. 46).

Figure 36: Mg definition

The execution of irepresents the execution in the CFSM of all possible minimal non-
confluence patterns (p;gw) wheref3 [I*

56 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Confluence

The Mn-procedure will calculate the Ztates and evaluate them. Thereafter, depending
on the evaluation, further execution of, light take place. Whenever a new node is
generated it will be evaluated. See Section 2.4.6 (p. 65) for termination criterga of M

2.4.4.2 Evaluation of the states of MO

Every node in Nj is a pair of complete states of the CFSM. In general we may depict
the node a$(s; 2 i 0, (s';2 i50)) DK, .The two elements of the pair are compared.

The evaluation criteria should be applied in the order they are presented below. Implic-
itly, then, the negation of all earlier criteria can be assumed.

1. Confluent branch(s = s) O(i =i') O(o = 0
Since Ay is aparallel alphabet (its two components are equal), it is clear that if the
two elements of a node of JMire equal, all further execution ofyNtom that node

will produce states which have pairs of equal elements. Stabilization of any MO-node
with equal elements will have to reach a stable node with equal elements since the
internal signals consumed during the stabilization are also in equal pairs.

2. Non-confluence.:= (0= 0')
If the external output signals of one element of thgbtle is not a prefix of the out-

put signals of the other element (or vice versa), we know that no further execution of
Mg may turn the elements equal since further executionsapplgndsignals to the

external output sequences.

3. Non-confluence As=s)0(i =i') O(o=0) O(0# 0
We know that stabilization will reveal non-confluence if the state elements are equal
and the internal queues are equal, but the external output is prefix related, but not
equal. This is because the stabilization will produce equal appendices on both ele-
ments and the outputs cannot become equal.

4. Stabilization
As noted in Section 2.4.4.1 (p. 56) the execution gfé&presents possible contents
of the internal signal queue of the potential minimal non-confluence pattern
(p;u;wB;@). We may also assume that the remaining tgii®empty and perform the
concrete stabilization. We evaluate the leaves. If the node elements of the stabilized
node are not equal, we conclude non-confluence otherwise we continue to check the
next evaluation criterion.

5. Sequence permuted(d = 0") 0= (i =i')
If the external queues are prefix related, but the internal signal queues are not prefix
related, we can neither conclude confluence nor non-confluence as the situation may
change during further execution and stabilization. We may conclude, however, that
continued execution of jwill not produce nodes which are confluent since further
execution cannot change the non-prefix situation as further execution only appends
to the queues.

6. Sequence permuted@=0") O(s=s) O(i=i") O(>i #i')
If the situation is that the state elements are equal and the internal queues are prefix
related, but the internal queues are not equal, we may also conclude that further exe-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 57

2 The Basic Mn-procedure

Confluence

cution of M, cannot produce nodes with equal elements since the subsequent

appendices of the queues will always be the same since the state elements are equal
and the alphabetfparallel.

7. State different(o= 0) O(s#z s) O(i =i')
The remaining situations based on states, internal and external queues are that state
elements are unequal but the queues are prefix related. Continued executjpn of M

would have a chance to produce nodes with equal elements. However we cannot be
sure whether execution of Jwersists forever only producing such state different

situations.
The evaluation determines the continued execution withjomMén higher generations.

1. Confluent branchWe do not execute in §/further along this branch as no non-con-
fluence can be found by further execution here. We are still in business for
determining confluence.

2. Non-confluenceWe have found non-confluence. The minimal non-confluence pat-
tern can be derived from the execution path g Mis possible that the found non-

confluent complete state is non-reachable, but this is beyond our Mn-procedure.
Unless supplementary techniques exclude the found non-confluence pattern, the Mn-
procedure will cease with conclusion that the CFSM is non-confluent.

3. Stabilization Similarly stabilization may find non-confluence and the Mn-procedure
terminates with non-confluence verdict. If the stabilization shows equal leaf state
sets, we are still in business and continue the evaluation of the node.

4. Sequence permuted/e cannot conclude at this point. We know, however, that we
shall not benefit from continuedxecutiort, and therefore we need to find a more
complex solution. That solution is to produce another transition system on a higher
generation level. This is covered in Section 2.4.5 (p. 59).

5. State differentHere we tentatively continue theylxecution along this branch hop-
ing that continued execution will make the elements confluent.

2.4.4.3 MO of the example process D
To determine confluence we will now perforrg-@valuation based on definition of D
in Figure 24 (p. 50).

Table 2: Process D, initial set of M, Zg

T# State Ext. | Int Z, element Category
signal| signal
{0,1,2} {2} |{0,1}
0 2 0 (1;2;01;9) (1,2;10;9) seq. perm. 1
2 0 2 1 (0;2;0;333) (0;2;0;333) confluent

1. We may perform further MO execution and conclude confluence by “external stutterineetion
2.4.5.2 (p. 61)

58 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Confluence

Table 2: Process D, initial set of i, Z

T# State Ext. | Int. Z, element Category
signal| signal
3 1 2 0 (2;2;0;9) (2;9;9;3) | non-confluent by,
stabilization
3-S | stabilize - - (0;2;9,9) (2;2;2;3) non-confluent!
1 2 1 (0;2;0;3) (0;2;0;3) confluent
2 2 0 (0;2;9;3) (0;2;0;9) seq. perm. 2
2 2 1 (0;2;2;333) (0;2;0;33) seq. perm. 2
(similar to 5)

We see that there is a non-confluent node, and in principle we should conclude the whole
Mn-procedure by the conclusion that the process D is not confluent. We shall later, how-
ever, show that the non-confluent state is not reachable. Thus a search for absolute
confluence concludes non-confluent, but a search for plain confluence will show
confluence.

There are no incidents of state different nodes and therefore we shall have to leave MO
and change generations, which will be presented in Section 2.4.5 (p. 59).

2.4.5 Mn — changing generations

The motivation for changing generation is that executing internal signalg sorve-

times results in new internal signals. Even though the internal sequences of the
comparable complete states of the Mn node are different, this does not necessarily mean
that the initial state is a non-confluence pattern. We must see what happens when these
signals in due turn are executed.

2.4.5.1 Formal definition of Mn
We give the formal definition of the Mn transition system in Figure 37 (p. 60).

Some explanation may be needed. The idea behind the Mn transition system is that ear-
lier generations of the Mn-procedure have not been able to provide a decision
concerning a potential non-confluence pattern (Eg;where the contents pfis not

known. The executions in MO amounts to trying out finite prefix sequengesnof we

may have to conclude that continued MO execution cannot reach a conclusion. By
changing generation we create a transition system which also generates the results of sit-
uations where the internal output from MO (in genergl{Ms also consumed.

Assume that (s;ej@) is a non-confluence pattern. MO executes a prefiximft decides

to change generation before the non-confluence has been detected. There will be a tall
of g left (which we still may denotewithout loss of generality). Changing generation
means to resume the execution of the non-confluence pattern in the CFSp/hafier

been executed. Zefers to all possible states where the CFSM could possibly end up

afterp and the internal signals (here: (c,c’)) produced in the former generation (say MO)

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 59

Confluence

2 The Basic Mn-procedure

M [((s9.(s\c)] = EKn;An;DI\% —,;Z,0is a transition system relative to
n

((s,9,(s'c)) UK, _; in M, and based on CFSNI5;C; Z TL and the derived transi-
tion system(K;A;00 0O - ;Z0 .

K, = K,*K,, the set of Mn-nodes, pairs of generalized complete states whefe

— oS ooo _
C, = EUx10x0olUx olx ... x OO the type of generalized CFSM alphabet

A
I

Sx Gn the type of generalized complete state

C, = C,xC, the type of the generalized Mn alphabet

>
I

n E(X!XI) D Cn_l‘ [(p!p)! (t!tl) D Rn_l(S! S) * ((p1(p)!(pli(p))|:||v||:| - ((t!X)!(tlixl))E
W n-1 i

where @ thézelmea} with only empty sequences and R n-1 1S a set
valued function which returns all reachable basic states (i.e. oStyp8 .pf M
from the operand basic statg, Ris decidable by executing M and pruning when

reaching a basic state already visited. This will terminate since there is a finite| set of
basic states.

Z, = E;((t,d),(t',d)) O Kn‘%p, P)OR,_ (s s) O((p.0).(p'c)) e.©) ((t,d),(t',d'))gé

where the labelled transition refers to a generalization of the labelled transition rela-
tion of the original transition system shown in Figure 38 (p. 61).

x0 ~6y) 0 T DA, @i +x i +xDEE . gy)

Figure 37: Definition of Mn

as been executed. The executiop baés produced a Sequence of input symbolsjo M
which must be a sequence of output symbols from the former genergfigivea the
alphabet of output symbols of the former generation.

The complete states on higher generations need a slight generalization. We need to keep
the external output from the different generations separate. This is because the external
output from a late generation actually in time appears after external output from earlier
generations. When we execute Mn we actually simulate executions on all generations
before then-th simultaneously.

The labelled transitions in Figure 37 (p. 60) refer to generalized transitions based on the
transition table of the CFSM itself as shown in Figure 38 (p. 61).

60 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Confluence

Cl
éqﬂ 2» ;KnxAnxKn
where each of the elements of the pair is given by the following simpler labelled

transition:

(ﬂ;i;Oﬁ, ..., 0

. 1) .
(S;8 iU Vg, -y O _ 1V _ 12 Vp) oL (t;8;Uj; o0y, -, Vi

O (T(s;2 59 = (tij;w,)

Figure 38: Generalized labelled transition

In Figure 38 (p. 61) we assume that elements of the alphﬁbet can be seen alterna-
tively as a tuple of sequences (according to the definition of the type in Figure 37 (p.
60)) or as a series of tuples where each elemen6§ in and the piecewise concatenation
of the series makes up the tuple of sequences.

We notice that the external output elements of the symbol are just removed from the
head of the sequence and appended to the tail.

2.4.5.2 Evaluating nodes of M

The Mn-procedure on this generation is very similar to the onegasNhe nodes are

evaluated as they are generated through the execution. The evaluation then determines
the further execution.

The evaluation of Y nodes follows very much the same lines as wignkldes.

Leth = ((sgiey ..., e,), (,]:fy ..., f,)) be the node in Ma] to be evaluated
where (i,)) is the sequence(s) of internal signa|sf,(erepresent the k-th generation of
external output.

Confluent We recall that a confluent branch is a branch where we are certain that the Mn execution

branch graph from the node under analysis will only consist of nodes where the complete states
in the pair are equal when they are stabilized. In the general situation it is not as simple
as in My since a node where the two complete states are absolutely identiotsus-
ficient. If the A, alphabet has a pair of symbols where the symbols are not identical,
continued execution may bring the node with the identical complete states to a node
where the two complete states ao¢identical. From this we can conclude that also the
alphabet plays a role in the confluence conclusion. We shall give a series of sufficient
criteria for the confluence conclusion for a nddén Section 2.4.6.2 (p. 67) we give a
more detailed walkthrough of why the criteria are sufficient.

Everything The simplest and most obvious set of requirements is only a slight generalization of the
equal Mg case.

1. The basic states of the node are equal;

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 61

Generation
glue

Equal
output

62

The Basic Mn-procedure
Confluence

2. The internal queues are equal,
3. Each generation of the output queues are equal;
4. The input alphabet has only symbols that are pairs of equal sequences of signals.

That this leads to confluence should be obvious. The two parts of the Mn execution are
absolutely identical in all respect which affect the Mn execution.

Let us first relax the third criterion, and this will also affect the fourth requirement. In

fact we are not interested in absolute identity before the stable states. The final stabilized
states are compared not generation by generation of the output sequence, but the concat-
enations of the output queues. The reason why this may be significant is that there may
be situations where internal signals on one generation are “compensated” and trans-
formed to external output on another generation. Relative to the process execution graph
G this means that the necessary external outputs are produced at different depths in the
two alternative execution branches. There is a generation change in between these two
execution depths. We cannot merely compare concatenated output sequences as can be
seen from our explanation of why the Mn procedure works in Section 2.4.6 (p. 65). The
reason is that further execution inserts outputs into the concatenated sequences.

After some consideration about how this insertions of more output signals can be neu-
tralized such that the stabilizations will become equal in the whole Mn execution graph
below the node under analysis, we have reached the following criterion for the output

sequences and the associated alphabet.

If h can be written as

h=((s8iBy0g -y Br_ 1051 Bp): (S8 5Bg 0By, .. 0, _1B,,)) and A, is paral-
lel relative toh, we conclude thdt is confluent and this branch of vhay be terminated
with success.

That A, is parallel relative to hmeans that all its elements follow the form:
((B31:Yo%0s s Yn— 10 n 1), (B350 oYy O1Yq, ooy Oy Y 1)) Where thex -s are the
same as those in h. They represent comghamsignals between the generations.

The point, of course, is to make sure that subsequent executions from h will not destroy
the property of confluence which means that the two elements of the pair will be equal
if the external output is concatenated.

We notice that this somewhat complicated property is weaker than requiring that the
external output shall be piecewise equal. We also notice thabMorms trivially to

this requirement.

We notice with the generation glue above that the requirements are put on the input
alphabet of the Mn execution. But it is possible to relax the requirement of the alphabet
even further. Since the node under evaluation will also be checked for stabilization, we
are here more interested in the possible further executions. It is true that the internal
components of the alphabet symbol do not have to come in equal pairs. What we actually
must require is that their output is equal. Thus we should rather check that the alphabet

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

External
stuttering

Non-
confluence

Stabiliza-
tion

The Basic Mn-procedure 2

Confluence

A+ (relative to a possible generation change at the node under evaluation), is parallel.
We have to check this criterion for all basic states in the reachability sgobfite node
under evaluation.

The difference in checking parallelism of the output alphabet rather than the input alpha-
bet is significant when the reachability sgti&(clearly) smaller than the set of all basic
states and in this set the difference in the input alphabet is not significant with respect
to. the output.

The clue to conclude confluence of a node is that further execution will not bring in new
possibilities for non-confluence. Our last sufficiency criterion relaxes the two first
requirements that the states and the internal queues of the node under evaluation must
be equal. Thexternal stutteringriterion is based on “deja vu”, something which has
been encountered before comes up again. Assume that the node under evaluation is
equal to another node encountered (and evaluated) before, then it is obvious that a new
evaluation will result in the same confluence verdict. Our external stuttering criterion is
based on this.

1. Assume that the node under evaluation is similar to a node which has been analyzed
before as confluent. To bsitnilar’ means that the node is modified by equal
sequences of the external output. Since external output plays no role in stabilization,
it is obvious that this modified node must also be confluent.

2. Assume then that there is a node which is similar to another node higher up in the
current execution tree. That node has not been concluded as confluent yet as a con-
tinued execution is being performed. If stabilization of the current node under
evaluation is acceptable, the branch can be concluded confluent.

The reason for this conclusion is again that the external output plays no role in stabili-
zation. Therefore any problems of stabilization for nodes following the node under
evaluation will have a structurally equivalent counterpart from the similar node. Thus
any non-confluence in the execution graph of the node now evaluated is sure to turn up
in another branch (which also is shorter) in the current Mn execution tree.

Leth = ((sgiey ..., e,), (t,8):fyf)) . If O » = (e;=f;) which means that

there is a generation component of the external output which is not prefix related, we
conclude that non-confluence is possible and we terminate the whole procedure.

In fact we must suppress any “glue” of the alphabet presented earlier in this section. This
means that glue from the alphabet must be removed from each generation element of the
external output before the prefix relation is checked.

We stabilizen and check thats = tO eye,...e, =f,f;...f) where the external outputs

have been concatenated across generations. If the formula does not hold, we conclude
non-confluence, and the procedure should terminate.

This criterion corresponds closely to the one i M

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 63

2

Sequence
permuta-
tion

State
different

The Basic Mn-procedure
Confluence

Leth = ((sgiey), (1:2;);f5 ..., T,)) . If =(i =), meaning that the internal

sequence is not prefix related, we know that confluence cannot be reached by further
M -execution from h. We must sooner or later change generation, which implies creat-

ing an M, 4.
This is also the case if the states are equal (s=t), and the internal queue is prefix related
but the two elements are not fully equal{=j)).

The two cases correspond well with the two cases of sequence permutation identified
for MO.

If none of the above checks have triggered, we know that the state elements are different,
but the internal queues are prefix related. We continue executingnfioi . We can-

not in general be certain that the, Execution terminates.

2.4.5.3 Mn of the example process D

From Table 2 (p. 58) we see that situation 1 is sequence permuted (type 1). We shall per-
form generation change.

Table 3: Generation change in state 1

AqlT4] Z, element | Category

Ry[T]

11{(0,0),(1.1).(2.2)}| {((9,1,9),(2,1,9)),
((2,2,333),(2,2,333)
((9,2,9),(2,9,9)),

((2,2,33)(2,2,33))}

a. T refers to the complete state on line 11n the transition table T.

We see that the next generation alphabet is parallel. Alphabet elements where the only
1

difference is equal appendix of external signals can be considered equivalettter-
more the elements with only empty internal queues can be excluded as they will cause
immediate external stuttering.

Table 4: Execution of M, from state 1

Ry[T4] Aq[T4] Z, element Category
1 {(0,0).,(1,| {((2,.1,9),(2.1,9))} | base=(1;2;01;2) (1,2;10;¢
1),(2,2)}

a (0,0) gen. change (0;2;1;92,3) (1,2;1,2,333)| state dif-
11 ferent
11-1 ((2,1,92),(2,1,9)) (0;2;1;2,3333) confluent

(0;2;1;2,3333)
12 (1,1) gen. change (0;2;2;2,33) state dif-
(1;2;1;2,3) ferent

1. This is not entirely true as the appendix must adhere to the rules of confluence laid down in the evaluation
of Mn-complete states iBection 2.4.5.2 (p. 61)

64

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Confluence

Table 4: Execution of M; from state 1

b (2,1,2),(2,1,2)) (0;2;2;2,33333) seq. perm
12-1 (0;2;1;2,33)
12-1-S stabilization (0;2;2;2,33333) ok
(0;9;2;2,33333)
12-1-1 (2,1,2),(2,1,2)) (0;2;2;2,33333 333) external
(0;2;1;2,33 333) stuttering
wrt. 12-1
12-1-1-S stabilization (0;2;2;2,33333 333) external
(0;2;2;2,33 333 333) | stuttering
stabiliza-
tion ok
13 (2,2) (0;2;2;2,333) similar to
(1;2;1,2,33) 12

a. The numbering scheme here Is that the state§ﬁHsZthe numbers 1,2Z,3, while states pt Z

has numbers such that the prefix designates which zeroth generation state it was based upon.

b. The numbering scheme within a generation is such that 12-1 is a result of executing from state
12, 12-2 is another execution result from state 12. 12-1-1 is an execution result from 12-1 and
so forth.

In Table 4 (p. 64) we have an example of a state different node (11) where continued

execution leads to a confluent state directly (11-1). We also have an example of state
different nodes (12) where the continued execution leads to 12-1 which is a sequence
permuted node where external stuttering can be used to ensure confluence.

Since all of the branches following node “1” (namely “11”, "12” and “13") are con-
cluded with confluence, we have shown that the whole branch “1” is confluent.

2.4.6 Why the Mn procedure works

Having presented the Mn procedure and explained how the nodes are evaluated, there
may still be some who feel uncertain about whether the Mn procedure is sure to uncover
any non-confluence pattern. Here we shall go through this in greater detail.

2.4.6.1 A detailed walkthrough of the Mn procedure

The idea of the detailed walkthrough is to compare the execution within the original
CFSM of an assumed non-confluence pattern gsz@;with the coverage of the Mn-

procedure.
1 We have in Section 2.4.3 (p. 52) shown that it suffices to detect minimal
non-confluence patterns.
2 Assume that (s;@;i@) is a complete state of the CFSM which is the root of
a minimal non-confluence patte@ 010 e0 E iD 1 . We then have that

from definition of non-confluence
L(T(Ti(s;eB;2))) 2 L(T;(T(s € 1B;9))) .
The execution grapB (\sjk:Haes two separate branches since the

choice to execute an external input is only present at the root. After having
executed e and i the corresponding states in G are

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 65

2 The Basic Mn-procedure

Confluence

3.1

3.2

3.2.1

3.2.2

3.2.3

3.24

3.24.1

3.24.2

3.24.3

3.24.4

((s1,2,Bi1;07), (s,,2;Bi,";0,")) by symbolically executing the T-func-
tions. We may also write this
((2:81:2), (2:B1;2)) + ((2;B,;9). (2:B,:2)) *+ ...

. +((s1;2311;01), (112:i"507'))
by again seeing the tuple of sequences as a concatenated series of tuples
wheref3, O1 .
From the definition of ijwe have that
(To(Ti(s;&0:9), Ti(T(s; &1 9)) JZ,. From the definition of we see
that the execution of jyifollows the execution of G. The internal signgls
are executed in the order of their suffixes. We shall compgranel G.
If Mg executes the wholesequence, the non-confluence will be revealed

by the stabilization of the node reached when having executed thepvhole
sequence.
If Mg has not covered the whalesequence, this means that evaluations of

an M, state has interrupted theyMxecution before the whofesequence

was executed:

Confluencecannot have occurred since then no further execution or stabili-
zation could produce non-confluence and that was our assumption in 2.
Non-confluencean have occurred which means that another non-conflu-
ence pattern has been detected. The non-confluence verdict of the Mn pro-
cedure is still correct.

Stabilizationleading to non-confluent situation can also have occurred and
similarly to the non-confluence evaluation, another non-confluence pattern
has been found, but the Mn procedure verdict is still correct.

Sequence permutationay have occurred and generations changed. The
node where the generation change occurred is in general

((s,2,1,i,,0,0,), (S,,2,1,'i,';0,'0,")) . The corresponding pair of states in
G is ((s,:8;Yii,;0,0,), (S,@8Yi,'i,;0,'0,")) whergy contains a sequence
which is the tail ofs.

Now there is a discrepancy between the execution of G and thatidfév

idea is that M should “catch up” with G by trying all points where G pos-
sibly can land. We finish the executionyah G and conclude that it results
in state pair((s;;2;i,i,0,0,0,9), (S;',2;i,'i,'0';0,'0,'9")) .

Itis no doubt that if we had continued executiggv®lwould have reached
the same state pair as in 3.2.4.1. Thus we havgshat,') U Ry(s,, S,')

which says that the basic state of the reached state in G is reachable from
the basic state of the generation change gnAdrthermore we know that

((2;0;0), (2;0';¢")) has been produced bygMxecution. Thus according

to the definition of A we have that(2;0;¢), (2;0;¢")) O Alﬂ .

Continued execution of G after the has been executed, must now start by
executing the internal signalg;i,, i,'i,") . This will lead to
((s4,2,0i,4;,0,0,00,), (s,2;0'i,;0,'0,'d'0,')) .

From the definition of;Ave have that since our generation change state is

66 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Confluence

((s,,2,111,;,0,0,), (S,,2,1,'i,',0,'0,")) and sincés;, s;') O Ry(s,, S,) ,we
must have thaf(s,;2;i,,0,0,, 0,), (S,2;i,,0,'0,’,0,")) is a node ipkM
The correspondence between G andhds again clearly been established.
3.2.4.4.1 Assume that Mexecutes the whole sequer(¢e;5;¢), (2:;0';¢")) O AU
we reach((ss;2;i,9,0,0,9, 0:0), (s5';,9;i,9";0,'0,'¢", 05'0")) . Notice the
generalized transition relation used for the external output.
Correspondingly G will execute the internal sign@sd') and reach
((s5,2,i49,0,0,0050), (s5,2;i,9",0,'0,'0'05'0")) . Stabilization and exter-
nal output concatenation will show non-confluence. The obvious corre-
spondence between G and Mads to this.

3.2.4.4.2 If M, does not execute the whole sequence, we are back to very much the

same situation as 3.2, only now we are on a higher generation. The approach
repeats itself again on higher generations. Formally the proof can be done
through induction on the number of generations.

3.2.5 State differentmay have occurred, but this will not terminate the execution
of thep sequence.

4, Finally we must conclude thab non-confluence pattern can escape
through our sieves of Mgenerations.

2.4.6.2 A more detailed walkthrough of the confluence criteria

We presented in Section 2.4.5.2 (p. 61) four sufficient criteria for concluding conflu-
ence. The reasons why the three last criteria are actually sufficient for concluding
confluence may not be entirely obvious. Therefore we walk through them in greater
detail here.

Generation The idea is that the production of the external output may happen in different genera-
glue tions in the two alternative branches of execution from the potential non-confluence
pattern.

If h can be written as

h=((ssaiBy0g - B_10n_1: Bp): (8,8 5By, 0By, ..., A, _1B,)) and A, is paral-

lel relative to h, we conclude that h is confluent and this branch ofdy be terminated

with success.

That A, is parallel relative to hmeans that all its elements follow the

form: ((2;];Yo%g, - Yn_ 10 n_ 1), (110 0Yg, A 1Yy, - O _qYp_1)) Wherethex -sare

the same as those in h. They represent common “glue” signals between the generations.

Let us execute frorh using some arbitrary element of,.AAccording to the execution

rule of the generalized transition relation given in Figure 38 (p. 61) we get the following
result shown in Figure 39 (p. 67).

(t:8;1K: B0 Yoy -0 Br_ 10— 1Y 10h 1 BrVi),

(t:2; KB Yo OoB1A 1Yy, s O _1BLY,)
Figure 39: Executed the parallel alphabet symbol

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 67

Equal
output

External
stuttering

68

The Basic Mn-procedure
Confluence

We see that the concatenation of the output signals over generations gives equal results
for the two elements of the state pair.Tthe -s are still the glue. It is obvious that stabi-
lization will give identical (confluent) results.

We noticed also that we are more interested in the result of the execution as shown in
Figure 39 (p. 67) than on the input alphabet. The input alphabet and the output alphabet
share the first n-1 generations. A parallel output alphabet should have equal internal
component and equal external component on n-th generation. Referring to Figure 39 (p.
67) the internal componentksand the external component . What we gain is that the

internal components of the input alphabet symbols need not be identical. We need to
find the output alphabet when the basic states are in the reachability set of the basic state
of h since this is the execution graph we want to cover.

Leth = ((s;4gie), (s;@ i;e)) . Then we assume that execution gfl&ads to another

similar stateh' = ((s; 4 ie0), (s; g i;e'9) where the only difference on both branches
is the addition of the external output signal sequence o. We have stabilized and found
confluent both h and h’ and all nodes in between.

Our hypothesis is that any node in the execution graph of h’ will have a counterpart in
the execution graph of h with shorter length from the potential non-confluence pattern
which is the root of the Mn execution. This counterpart state will be analyzed for con-
fluence. Any non-confluence in the execution graph of h’ will also appear as non-
confluence in the counterpart.

First we stabilizén. The stabilization results in appendicesndu’ on the external out-
put sequences. Since the difference betvie@mdh’ is only in the external output, the
appendix is the same forandh’. Since botth andh’ were confluent when stabilized,
the output sequences must be identical.

1. eu= e'u
2. eou = e'ou

From 1 we see that we may assughe eu without loss of generality. This leads to
1.1. eu = euu'
which by stripping off the prefig leads to:
1.2. u=uu
Substituting 1.2 and' inte@, we get:
2.1 eouu'= euou'
and stripping off prefixe and postfixu’ leads to:
2.2 ou = uo

This string equation has the solution:

3. o = X" andufer s0me non-negative integers n andm and shorter
sequence of signails

Assume now that we execute frdrnand reach:

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Confluence

4. d' = ((tgijeoV), (t';@;i']';e'oVv))

We want to show that the stabilization of thiastbe confluent. If we stabilize 4 we
reach in general:

5. d" = ((t;g, g eovyy, (t';;i'j';e'ov'w))

A counterpart of d’ is found when the same execution which led from h’ to d’ is applied
to h. Since the same execution is performed from the same basic states, we have:

6. d = ((tgij;ev), (t;a;1];e'Vv))
We may assume that d stabilized is confluent which means:

7. evw = e'v'w'since the stabilization follows the same execution of internal
signals as we could find in stabilizing d’ to d” (in 5).

Then we substitute foe' = eu and also=ard get:

8. evw = eX'v'w' which means
8.1 vw = XTv'w'

Then we return to the two sides of the node in 5. (First the left side)

9. eovw = exXx"'v'w' from 3 and 8.1
Then we take the right hand side of 5.

10. e'ov'w' = eX'x'vVw' frome' = eu and 3
We see from 9 and 10 that the two sides of the external output of d” must be equal and
thus confluent.

We have shown that external stuttering criterion is sufficient.

2.4.7 Why the Mn-procedure may not terminate

We mentioned briefly that the Mn procedure itself has no strong termination criteria.
There are two different possibilities of executing the Mn procedure eternally:

1. In some Mn, there is an infinite series of state different situations.

2. Changing of generations take place infinitely. There is no upper limit to the number
of generations.

We show one example of each of the two situations.

2.4.7.1 Infinite series of state different situations

In Figure 40 (p. 70) we see extracts of a process which seems to be progressive because
it follows the signal ordering criterion for all those transitions we see. Still performing
Mg from complete state (S;e;i;@) leads to an infinite stuttering as we can see from the

following. Executing the external and the internal signal leads to ((T;@;ij;9),(U;2;i;9)).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 69

70

The Basic Mn-procedure
Confluence

This situation is state different and continued executionpisMdvised. Continued
execution of M will give an infinite branch on executing (i,i) giving

(T;2;ijj...;2),(U;;ij...[;2)).

process £ (Extracts)

32—

e|>1

_P

“*».f_
1]
R

]
]
]

=] >t]

Eood

Figure 40: Process E which makes Wlivelocked

e — T

We conclude that the Mn-procedure may not terminate even when the process under
analysis is progressive.

2.4.7.2 Infinite generation changes

The execution of the Mn-procedure becomes more complex than one expects with pro-
cess G of Figure 41 (p. 70) and the alphabet does not converge towards expressing only
external signals since the outputaindb will always be present. Changing generations

does not help as neither the state space nor the alphabet decreases. To perform the Mn-

process G

El

:
9
l

Se] >a: |>%|
EDJED

@@a”

Figure 41: Process G which makes infinite number of generations

2]

]
]
]

Na

@
QU

b

procedure on procesis left as an exercise to the reader. The clue to the unexpected
complexity is that andb are distinctly different signals, but they behave identically in
the process.

We may notice that the process is not infinitely progressive (see Section 3.1.3 (p. 86)),
and it does not keep to signal ordering criterion (see Section 2.6.4.1 (p. 80)). It is, how-
ever, progressive for all finite complete states and it is quite simple to see that it is

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Confluence

actually reducible. Each external inguproduces either amor ab. Whenever aa or

ab is consumed either an extermzas output or the internal signal is reproduced. Even-
tually all internal signals will be consumed and extezr@aitput since when the internal
signals are reproduced the state changes as well. The externakaudpatudes the
execution of an external inpatand the system must reside in sthtterwards. This
gives the reduction shown in Figure 42 (p. 71).

process Grreduced

El
z]

L X

Figure 42: Process G reduced

2.4.8 Why the stabilization step is necessary

In Section 2.4.7 (p. 69) we showed that the Mn-procedure is not certain to terminate and
therefore there should be a need for pragmatic modifications to the Mn-procedure to
ensure termination.

In this section we look at the necessity of the stabilization step during the evaluation of
nodes. One may get the impression that the stabilization step is a matter of optimization
and that the same result would appear if the execution was continued within the same
Mn generation. This is not the case.

2.4.8.1 Stabilization step of example process D

In our example process D where the MO execution is shown in Table 2 (p. 58), we have
state 3 revealed by stabilization to be non-confluent. If we continue execution in MO we
get the states 3-1 and 3-2 shown in Table 5 (p. 71).

Table 5: Continued execution of MO

Int. signal node category
3 (2:2,0,9) (2,2,0:3)
3-1 (0,0) (0;2;0;9) (0;2;9;3) seq. perm.
3-2 (1,1) (0;2;0;33) (0;2;2;333) seq. perm.

The nodes labelled 3-1 and 3-2 are both confluent when stabilized. Thus the non-con-
fluent situation disappeared when the MO execution was continued.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 71

72

The Basic Mn-procedure
Confluence

The node labelled 3 is sequence permuted (type 2) if we disregard the stabilization step.
A generation change directly will of course reveal the problem since a series of genera-
tion changes is a general stabilization.

2.4.8.2 Stabilization step of example process J

That generation change reveals what the stabilization step reveals is not quite good
enough since generation change is not really necessary for every node.

We have here an example procéss Figure 43 (p. 72) which shows that the stabiliza-
tion criterion may reveal non-confluence also in cases where the node is state different
(disregarding stabilization) and the evaluation thus implies continuation of the current
Mn generation. We see that it is possible that the process is confluent “in the long run”,
but not “close to the start”.

process |

&

]

e|>1| >i

|_i|>|
G S

Figure 43: Stabilization of intermediate results are needed

]
]
]

(k
OLF

oL

In Figure 44 (p. 72) we display a part of the execution pbMprocess from (U,e,B,2)
to show why stabilization is necessary.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2
Reducibility revisited

(L eip e
e \
(T f,e) (T2 pa)
i l le
(5.0,p2) (U@, f 2 Initial state of My

: takilized when p=@
let p=ivy

(5,082 (T8,0:z2) non-coafuent

(T.8,d,2) (T.@d.2)
This looks confluent!
Figure 44: Part of the execution tree of)\ of process J

2.5 Reducibility revisited

We motivated our presentation of progress and confluence by our reduction algorithm
in Section 2.2.2 (p. 48). Having discussed progress and confluence, we may now return
to reducibility to show that our reduction algorithm really yields a reduction as defined
in Figure 22 (p. 48)

2.5.1 Why the reduction algorithm yields a reduction

The question now is whether the algorithm in Section 2.2.2 (p. 48) actually gives a
reduced process according to our definition in Section 2.2.1.1 (p. 48) provided that the
process is progressive and confluent.

The requirements on the sets S2, C2 and Z2 are trivially covered since Z2 is initialized
to Z1 and not changed, S2 always gets elements from S1 and C2 is by definition given.

We now turn to the last criterion.
1. To be provedUz 0 Z, 06 O E* » (L 51(2,6¢:2,9) = Lp(2,6¢;9;9))
2. Induction base

2.1 WhenbBthe statement of 1. is trivial since (z;9;9;9) is a leaf state. This

is actually sufficient as an induction base, but we also give the case where the
sequence of external inputs has length 1.

2.2 From the reduction algorithm 4.2, we get that
OpO0S20el B (Ly(piead =T2(p;eq 9)

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 73

2

74

The Basic Mn-procedure
Reducibility revisited

2.3

24

2.5

2.6

From definition of CFSM in Section 2.1.3.2 (p. 44) we have that
OpOS20eld B Ly(p;ea g = Lp(T2(p;& g 9) since the execution of

e is the only choice from the state given.

By simple substitution of the result of step 2.2 into right hand side of step 2.3:
I—pz(Tz(p;e': aq9) = I—pz(l—pl(p;e; a9)

Since leaf states have no input signals we must have that
I—pz(l—pl(p;e;ﬂ 9) = Lpl(p;e;ﬂ 9

By2.2,23,2.4,25wegepdS20el B Ly(p;e89 = Lpy(pie a9
which constitute the induction base in our proof of 1.

3. Induction step

3.1

3.2

3.3

3.4

3.5

3.6

3.7
3.8

Induction hypothesis:

Op0S20g...e,0E"s Lpy(pie...6,:8,89= Lp,(p;e,...e,:2;9 for any
n. We assume that the hypothesis holds for some speaifici shows that it
will hold for n+1.

Let us now find. fo(zepee...€,;2;9) z0S2

By executing thegeve getlp1(z;6y€,...€,,8;9) = Lpy(p;e;...e,i;8) for
some basic stafgand some sequence of internal sigmnals

By confluence (Figure 26 (p. 51)) we have
Lpy(Ti(p;e;...€,i8)) = Lpy(To(p;e,...6,;i;9)) as long as the internal sig-

nal sequence is non-empty. By progress of P (Figure 25 (p. 50)) we know that
execution of internal signals will terminate. Therefore we continue executing

the internal signals and finally reath ,{pf; spme hasi state
p' and sequence of external output sigrals

Since earlier external output is irrelevant for the future execution, we can use
the induction hypothesis in 3.1 &n,, [@ading ¢;2; 0)

Lpi(Ziepe,---€,8:9) = Lpy(p;e...€y5i;0) by 3.3

= Lps(pe...€,;8,0) by 3.4

= Lpy(p';g...€,;8,0) by induction hypothesis 3.1.

The execution in 3.4 is exactly the execution which would lead(izoeg @; 2)

to a stable statép';2; g o) and this is exactly what the reduction algorithm
does in step 4.. Therefore we have that

p'0 S20(T2(z,€,9,9 = (p';2,4 0)).
Let us now find_p,(z; €€, - €,;2;9)

We start by executing @s given by 3.6 leading to
LpZi6€;---€1:2:9) = Lpy(P'se;...€,:8;0).

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2
Reducibility revisited

3.9 By 3.5and 3.8 ardW8dave proved the induction hypothesis for an arbi-
trary sequence of external signals which has length

4. The conclusion is that 1. holds and our reduction algorithm gives a reduction accord-
ing to our own definition. QED.

2.5.2 Non-confluent, reducible process?

It is quite obvious that confluence comes in handy when a reduction is to be generated,
but can there be reductions on processes thatoamonfluent?

If the process is non-confluent this means that there is a race condition which introduces
non-determinism in the execution of the system. If we had a reducible, but non-conflu-
ent process this would mean that the reduction has to be able to express the non-
determinism introduced by the non-confluence. The question of explicit non-determin-
ism is handled in Section 3.5 (p. 97).

2.5.3 Mn-reduction is a Kwong-reduction

Here we prove that the Mn-reduction as defined by the reduction algorithm in Section
2.2.2 (p. 48) under the assumption that the system is confluent and progressive, is actu-
ally a Kwong-reduction[94]. Intuitively this is no big surprise since Kwong shows that
Church-Rosser is preserved over Kwong-reduction, while we base our Mn-reducibility
on a Church-Rosser criterion, confluence.

Kwong specifies four criteria for when a transition system is a reduction of another tran-
sition system. We shall go through these four criteria.

We showed in Section 2.5.1 (p. 73) that the reduction algorithm yields a reduction as
defined in Figure 22 (p. 48) where P1=<S1;C1;Z1;T1> reduces to P2=<S2;C2;Z2;T2>.
We shall show here that for their corresponding transition systems

[K1;A1; 00 - ,;Z10is reduced to K2 \@orig fermsZ 20
2.5.3.1 Kwong criterion (1)

(K2 OK1)O(zZ2 = Z1)

From the definition of complete states in Section 2.1.3.1 (p. 44) and the assumption of
Mn-reducibility defined by Figure 22 (p. 48), the Kwong criterion follows immediately.

The set of basic states of the reduction is a subset of the set of basic states of the original
and the alphabet likewise. These two components make up the complete state. Further-
more the definition of Mn-reducibility also defines that the set of initial states should be
equal which is exactly what the criterion says.

2.5.3.2 Kwong criterion (2)
O(z, 0 Z1)0(k, OK1)if z,0 M - kq then
1

[k, 0 K2) kg0 1Y - k02,00 ﬁzkzg

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 75

76

The Basic Mn-procedure
Reducibility revisited

This criterion is at the heart of what reducibility amounts to also in Mn-terms. If there is
a path from an initial state in P1 to some complete sjatedre should be a path in the

reduction P2 from the same initial state to some statehich is reachable fromykn
P1.

According to the definition of reducibility in Figure 22 (p. 48) we know that from every
initial state the sets of leaves are the same for the original P1 and the reduction P2. Any
complete state;kin P1 reachable from an initial stateiz on a path to a leaf state (see
Figure 21 (p. 47)) due to progress defined in Figure 25 (p. 50). That very leaf state is
also reachable from the initial stateiz P2 since the set of leaf states are equal accord-
ing to definition of reducibility. The leaf state thus reached is the sjate k

2.5.3.3 Kwong criterion (3)

+
Oa, rO0Rx(Z2)ifq0 0 - ,rthen @O - 1
1
If g and r are in the reachable states of the reduction and if r is reachable in one step from
g in the reduction P2, then r should be reachable in a finite, positive number of steps in
the original P1.

Any reachable state g in P2 is a stable state, one transition in P2 corresponds directly to
a series of execution steps in P1 following the reduction algorithm. The algorithm exe-
cutes the external signal (which is also executed by P2) and then stabilizes. The resulting
stable state is by definition the state of P2.

2.5.3.4 Kwong criterion (4)

Oq, rOR,Z2) ifqo] rthenayfy & r
1 2

If g and r are reachable states of P2 and r is reachable from g in P1, then r should also
be reachable from g in P2.

Both g and r must be stable states since they are reachable in P2, but r need not in general
be a leaf state (i.e. with no external input). If r has external input, then g must have the
very same external input as the tail of its own external input since the external inputs are
only consumed and never produced. The external input of r is of no significance for the
path between g and r, therefore we may without loss of generality eliminate the external
input of r from both r and q such that r is a leaf state.

From the proof in Section 2.5.1 (p. 73) we have the following general result:

Op0S20g...e,0E"s Lpy(pie...€,:2:9= Lp,(p;€,...€,:8:9 . In terms of the

transition systems this means that the leaf sets of any complete state of P2 is equal to the
corresponding leaf set of P1.

What the Kwong criterion (4) says is that when r is in the leaf set of g relative to P1, then
ris in the leaf set of q in P2 as well. This is exactly what we concluded above.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Basic pragmatics

This Kwong criterion has a stronger version which assumes that the leaf state has been

reached in P1 with at least one step then the leaf state should need at least one step in P«
as well. In our Mn-reduced systems this holds always since P1 must execute an external

signal to leave g and the same signal is executable by P2.

We conclude that Mn-reductions fulfill all Kwong criteria and therefore an Mn-reduc-
tion is also a Kwong-reduction. QED.

2.6 Basic pragmatics

As we have shown through our example process D which will be summarized in Section
2.6.3 (p. 79), the Mn-procedure is not certain to succeed. There are three points encoun-
tered so far where pragmatics and auxiliary techniques should supplement the Mn-
procedure to make the Mn-approach more usable:

1. Eliminate the unreachable nodes.
2. Make the Mn-procedure terminate each generation.
3. Make the Mn-procedure terminate the series of generations.

2.6.1 Unreachable nodes

Later we shall introduce different kinds of remedies:

1. introduce aaveconstruct to force the sequencing of the inputs,
2. define erroneous transition as a special escape criterion,

3. prove that the state is unreachable from the initial state.

In order to be able to prove our example process D confluent and reducible we show here
how backwards execution can be applied to prove that the state is unreachable from the
initial state.

2.6.1.1 Unreachability of the example process D

The state 3 of Table 2 (p. 58) is non-confluent by stabilization as shown in Figure 45 (p.
77).

((2,2,G0 9, (2,2, 4 3)((2‘; O;D@ﬁ(i;g’ a)((O;raf;raz 9,(2;2,a 3)

Figure 45: Stabilizing state 3

At this stage we will try to prove confluence on the original proBelsg performing
backward execution from the problematic (simple) complete statg@i}j2 to show
that it is not reachable from the initial statey;@2).

Since the external input is not produced by the process itself, the last transition must
have produced the internal signal “0” (or nothing) and ended in state “1”. The only pos-
sibility is the transition consuming the external signal “2” in state “1”. We thus have the
following state as the next to last state before the problematic oned;@;y22 From

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 77

78

The Basic Mn-procedure
Basic pragmatics

this state backwards there is no road! We conclude th& Q1|8 cannot be reached
from initial state and that the state must really bed{0¢2) whered is non-empty and
the state is simply sequence permuted rather than non-confluent.

We have now considered all states that were evaluated to non-confluence, and we have
a profile for the process D which consists of 4 sequence permuted situations (of which
two are similar) and 2 confluent situations.

We continue with the branch “3” where we quickly realize that the set of reachable states
from “3” and the next generation alphabet is the same as with branch “1” shown in Table
4 (p. 64).

Table 6: Execution of M, from state 3

RT3l AqT4] Z, element Catego-
ry
3 | {(0,0,(1,1).(2.2)} |{((2.1,2).(2,1,2))} base=(2;a0;2)
(2,2,9:3)
31 (0,0) gen. change 1;2;¢'1;9,9) similar
(0;2;0";3,2) to 12

32 (1,2) gen. change | (2;9,¢";2,9) (1,2;¢;3,8) | non-con-

(Section 2.6.2.1 (p. 78)| fluent?
33 (2,2) gen. change | (0;2;9"9,9) (2;9;¢’;3,8) | non-con-

(Section 2.6.2.1 (p. 78)| fluent?

2.6.2 General invariants

Sometimes there are invariants which form the base of the specification. These should
definitely be made explicit, and can as such be used favorably during the Mn-approach
as auxiliary information about reachability.

2.6.2.1 Auxiliary information used in analyzing example process D

We observe that there are two problematic situations in Table 6 (p. 77). Regarding situ-
ation “3” we have already proved manually by backward execution that the internal
queue portiop must be non-empty.

Even thoughp is non-empty the correspondifgneed not be non-empty, but here this

is the case since to reach basic states “1” and “2” from initial state “0” it is necessary to
pass through the transition which produces the internal signal “1” when the signal “0”
is consumed in state “0”. This is the only way to leave state “0”. $hoaust contain

at least one element of AThus we conclude that situations “32" and “33” are only state

different and not non-confluent (yet).

We continue execution within M1 of branches “32” and “33".
Table 7: Execution of M; from states 31, 32 and 33

RT3l AT, Z, element Category
3 1{(0,0),(1,1) |{((2.1,9),(2.1,2))) base=(2;a0;2) (2;2:9;3)
(2,2)}

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Basic Mn-procedure 2

Basic pragmatics

Table 7: Execution of M; from states 31, 32 and 33

31 (0,0) gen. change (1;2;¢'1;0,0) (0;09";3,0) similar to
12

32 (1,2) gen. change (2;92,0";9,2) (1;,0:9";3,9) state dif-
ferent

32-1 (2,1,9),(2,1,2))| (0;0;¢";2,33) (0;0;$";3,3) confluent

33 (2,2) gen. change (0;2;¢;0,9) (2;0;0";3,9) state dif-
ferent

33-1 (2,1,9),(2,1,2))| (0;2;¢";2,333) (0;9%";3,33) | confluent

2.6.3 Concluding the analysis of example process D

2.6.3.1 The final states

Now finally we must consider situation “5”. As the evaluation is sequence permuted, we
change generation and again find the same set of reachable basic states and alphabet.

Table 8: Generation change of M1 from state 5
Ry [T5] AT Z, element Category

51{(0,0),(1,1),] {((.1,0).(2.1,9))}| base=(0;2;2;3) (0;2;0;2)

We recognize that the base of situation “5” is similar to the base of situation “3” when
seen from M since the set of reachable basic states is the same and the rest of the base

is also the same. The argument of the non-emptingisshofds equally well. Thus the
whole new generation of situation “5” is similar to that of situation “3” since both reach-
ability set and alphabet are the same.

Since situation “6” is similar to situation “5”, we may conclude that process D is
confluent!

Finally the conclusion is that process D is reducible. The reduction gives the process D’
shown in the Figure 24 (p. 50).

2.6.3.2 Lessons learned

Then, what can be learned from this example? We have taken an intricate process with
feedback (internal signals) and shown that it is reducible. The proof could not be per-
formed automatically, but required two manual interventions. Firstly we needed to
prove that the non-confluent state @ ®y) could not be reached. Secondly we needed

to prove that the sequentein M ;-state (2;2¢’,2,9) (1,2;¢",3,2) had to be non-empty.

The manual proofs were simple in this case, but the necessity of manual intervention is
always worrying as it is more time consuming and less maintainable than purely auto-
matic proofs.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 79

80

The Basic Mn-procedure
Basic pragmatics

The question then is how the process could have been improved in order to obtain a more
easily proved reducibility without losing the major aspects of the process. In this exam-
ple it is hard to know what the major aspects are, but the confluence can be more easily
established if we saved the external signal “2” in states “1” and “2”.

2.6.4 Basic pragmatics of determining progress

In this thesis we shall not go in great detail into the subject of progress. A lot of work
has been done in this area to prove termination for different classes of programs. Since
systems of CFSMs have the power of a Turing machine [13], it is also the case that ter-
mination (and thus progress) cannot in general be determined. Related to this result is
also the result that the reachability of a specified complete state cannot in general be
determined [48].

Still we expect that common systems are such that termination can be determined with
a moderate effort. We have identified three classes of mechanisms that are used to
ensure progress in the class of systems that we are dealing with.

1. Thesignal ordering criterion

2. Progress bfairness

3. Progress may also be assured thrdungérs

We shall go through these mechanisms one by one.

2.6.4.1 The signal ordering criterion

If there is a strict partial order on the signals defined by the transition table of the process
such that every transition produces signals of lower value than it consumes, then every
execution path will terminate.

Our example proces$sin Section 2.2.3 (p. 49) is a CFSM where there is an order among
the signals: 2 >0 > 1 > 3. Thus we may conclude that any execution path from any com-
plete state of procegswill terminate.

As we may consider any process as a rewrite system (see Section 1.6.2.3 (p. 33)) it is
reasonable also to look for assistance in the search for termination of rewrite systems
[37].

Very often the signal ordering criterion covers most situations in a process, but there are
a few potential loops. Then it suffices to apply other approaches to these loops.

2.6.4.2 Progress by fairness

Fairness is a way to specify that certain choices cannot be made infinitely many times
in succession. A fair die must show a 6 sooner or later.

We shall introduce assumptions of fairness in a number of places. We have already
assumed fairness whenever there is an internal input ready to be consumed. It shall not
be ignored forever as defined in Section 2.1.2 (p. 42). This means that there cannot be
an infinite number of external signals consumed before the ready internal input signal is
consumed. This ensures the progress of all specific input signals, but it does not elimi-
nate the possibility of loops.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Max depth

Basic State
Cycle
detected

The Basic Mn-procedure 2

Basic pragmatics

We shall in Section 3.5 (p. 97) introduce explicit fairness in non-deterministic decisions,
and this may be used to express progress even when unbounded non-determinism is
present. A typical example is a loop which may iterate any number of times, but not
infinitely.

2.6.4.3 Progress through timers

In real systems one cannot always rely on the continuous correctness of all parts of the
system. That the system shall not remain in deadlock or livelock situations is secured by
guarding timers which exit from situations where the wanted return has not arrived.

Guarding timers may also break an eternal loop on internal signals, but it will then intro-
duce a dash of non-determinism which we shall have to cope with. More about this when
we handle timers in Section 3.7 (p. 119).

2.6.5 The termination of the Mn-procedure

The Mn-procedure may not terminate even when the system under analysis is progres-
sive as pointed out in Section 2.4.7 (p. 69).

Will the Mn-procedure terminate or may we change generations forever?

The Mn-procedure applied to example process G shown in Figure 41 (p. 70) does not
terminate the changing of generations.

We shall argue in Section 5.2.2 (p. 193) that in practice it is not necessary to consider
systems with more than very few generations.

The proof of the algorithm is not dependent on when generations are changed. Heuristics
may be utilized to find the most probable good places. Backtracking and further M

execution before generation change is another approach.

In practice we will not expect the executions to be very long, neither within each
machine (M) nor with different generation of machines. We suggest the following sim-

ple improvements which will make the Mn procedure terminate.
1. Max depth
2. Basic State Cycle detected

The simplest remedy is to set a limit to the depth of executions within one generation
and on the number of generations. A simple suggestion would be 5 levels within one
generation and max 3 generations. In practice the limits could be even smaller. We shall
argue more about this in Section 4.4.1.2 (p. 164). The Mn-procedure technique must be
supplemented with other techniques if there seems to be a need for long executions.

If the execution within one generation has reached the same basic state pair as before,
this means that there is a cycle which is possible to repeat. If the cycle has left only exter-
nal signals in equal proportions between the elements of the situation, we may conclude
confluence on this branch due to external stuttering (Section 2.4.5.2 (p. 61)).

If the cycle has left internal (as well as external signals), we should change generation
because further execution of this generation can never reach confluence since the loop
may just be repeated.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 81

2

The Basic Mn-procedure
Concluding the Basic Mn-procedure

2.7 Concluding the Basic Mn-procedure

82

In this chapter we have presented the basic Mn-procedure. Our starting point is a very
basic SDL system consisting of only one process which had one external input and one
external output channel. It had an internal channel to communicate asynchronously with
itself, too.

We presented an idea of reducibility which was based on two requirements, progress and
confluence. In this thesis we concentrate mostly on confluence, but progress is a prereg-
uisite for our procedure to determine absolute confluence — the Mn-procedure.

We show that it is sufficient to prove absence of minimal non-confluence patterns to
prove absolute confluence. A minimal non-confluence pattern has only one external sig-
nal. The Mn-procedure compares two branches of execution, firstly to execute the (only)
external signal first and then some internal signal, secondly to execute the internal signal
first and then the external signal. The resulting pairs of complete states constitute the ini-
tial set of nodes of the transition system MO. The continuation of MO is defined through
the execution of internal signals.

Unfortunately we find that it is not sufficient to pursue only the MO transition system
and we define a generation change giving rise to transition systems on higher levels
called M1, M2 etc. and in general Mn.

We apply the Mn-procedure to an example, the process D which is reducible, but where
the reducibility is not simple to spot ad hoc from the definition. We find that the Mn-
procedure is not fully sufficient to prove the reducibility. We must use auxiliary, ad hoc
techniques to prove that some of the encountered complete states are actually unreach-
able. This highlights the fact that the Mn-procedure determines absolute confluence,
while we are usually interested in (plain) confluence where onhetighablecomplete

states need to be confluent.

The Mn-procedure may not terminate and at the end of the chapter we indicate a few
simple pragmatically inspired remedies to ensure that the Mn-procedure does terminate
for all interesting cases.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

3

General Mn-procedure

A Maxim for Vikings

Here is a fact
that should help you to fight
a bit longer:

Things that don't act-
ually kill you outright
make you stronger.

3. General Mn-procedure

Having explained the principles behind the Mn-algorithm we want to see how we can
generalize the approach such that the restrictions imposed in Section 2. (p. 41) can be
relaxed. The restrictions were:

1.
2.
3.

5.
6.
7.

The external input sequence is finite.
The system consists of one process only.

The system contains one external input channel, one internal channel, and one exter-
nal output channel.

. The process is deterministic, meaning that given a basic state and a signal only one

transition is possible. The transition contains no decisions leading to different
nextstates.

There are no data variables in the process.
There is no save (no explicit permutation of signals).

There are no timers.

We shall see how the Mn-procedure must be modified to accommodate for relaxation of
each of these restrictions. We conclude that the Mn-procedure is well suited for systems
that are close to real SDL systems in the respect that the seven restrictions can be relaxec
without abandoning the general approach of the Mn-procedure.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 83

3

General Mn-procedure
Infinite external input sequence

3.1 Infinite external input sequence

84

In Section 2.3 (p. 50) we defined that the external input sequences of the complete states
were finite. Considering the fact that modern systems should be designed to execute infi-
nitely, we will review our initial restriction in these respects and examine how the
restriction of finitude can be relaxed.

Still even though modern systems may be designed to last forever, most practitioners
will settle for less than eternity. For all practical purposes it suffices that a certain prop-
erty holds for all finite external input sequences. Still studying infinite input sequences
may provide us with more insight into the behavior of systems.

3.1.1 What challenges do infinite input sequences pose?

We defined in Figure 25 (p. 50) that the external input sequence should be finite. This

is not necessarily a reasonable assumption in our modern world. There are many systems
which should be designed to run forever (even though this is not a realistic ambition). A
telephone switch should be made to receive and connect telephone calls infinitely.

That we restricted ourselves to systems with finite external input in Section 2. (p. 41)
does not necessarily have to be interpreted as a synonym for the system having to termi-
nate. We only need to assume that the system every once in a while “cools down” so
much that the processing triggered by the consumed external signals can be assumed to
have taken place before the next external signal is admitted. This still leaves an interest-
ing class of systems.

Conversely we can argue that systems which do not have such stable situations infinitely
many times during the processing of an infinite external input, are inherently instable.
This could mean that we cannot ascertain that the size of the internal queues will stay
below a given limit. Since our model of communication is strictly asynchronous, we
cannot in general assert anything about limits to the signal queues since we do not reason
about the speeds of the transition consumption and the frequency of external input
signals.

Finally there is a class of systems, which we mayticad-dependentvhere the signals

are purely dependent on time and not of some random user. Such systems include man-
aging sensors which give a measurement at certain time intervals. This kind of system
may or may not turn into stable situations. It is reasonable that such a sensor manage-
ment system consists of a pipeline of processes such that there are internal signals
present at any specific point in time.

We may conclusively classify the systems in these three classes:

1. Stable systenthat every once in a while are in stable states;

2. Unstable systentbat haphazardly have internal signals at any point in time;
3. Time-dependent systemhsit systematically have internal signals always.

Example of a stable system may be local electronic locks which demand to return to an
idle state before the next person can enter. Telephone switches can be seen as an exam-
ple of unstable systems as we can be pretty sure that for a reasonable size switch there

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Infinite external input sequence

is no safe time where it can be brought to a halt without the loss of internal communica-
tion. Finally sensory systems like ABS brakes and antispin may serve as example of a
time-dependent system.

We covered stable systems in Section 2. (p. 41) and we shall now see how we could
extend our scope to unstable and time-dependent systems as well.

3.1.2 Reducibility of unstable and time-dependent systems

Assume that we have a system which we have proved reducible according to Figure 22
(p. 48). We then have an original system and a reduction. What is the relationship
between this original system and its reduction if the external input is not finite, but
infinite?

To compare the two versions of the system, we assume that they are executed in parallel
synchronized by every consumption of an external input.

Firstly we realize that at any synchronization point the external output from the original
must be a prefix of the output from the reduction. This is clear because we could just
stop the execution at this point and have a finite input. For finite input, confluence is cer-
tain and the reduction has finished its execution while the original may still have some
internal signals left to execute, but that execution cannot change the output already
output.

Our next concern is whether we are always certain that the original will “catch up” with
the reduction. By “catching up” we mean that the original will always reach an output
which the reduction produced up to some earlier point. We shall see thanttithis
case.

A counter example is given in Proc&sshown in Figure 41 (p. 70). @ is a time-
dependent process such that for every consumption of an internal signal in giate

next signal to be consumed in st8tes an external input. If we also then make sure to
consume an internal signal in st@tagain, the signal consumed will be the same signal

as produced before and the signal is reproduced again. The queue of internal signals will
keep growing.

(S;e8565...:8,9) 0 S L (T,ee5...;8,,2)0 ﬁ . (Siees...;2,,9)
00 - (Tieg.aa,8)0 3 _ (Si8s..53,a,;0) [g

Figure 46: Infinite consumption of internal signal

We have for the execution graph shown in Figure 46 (p. 85) that internal signals are
always handled in staiewhile external ones come in at st&teThis means that the
internal signals never will manage to produce the external output which only takes place
in statesS.

Consequently we have a reduction (Figure 42 (p. 71)) which produces external output
as a sequence p%, while the original syster® produces no external output at all!

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 85

86

General Mn-procedure
Infinite external input sequence

3.1.3 Infinite Progress

Informally we mean by progress that the processing of the external inputs should not halt
and that the processing of one external signal should eventually terminate. In everyday
life a process may be compared with a bureaucracy. Whenever we send a letter (i.e.
external signal) to a bureaucracy we want it to respond eventually and not that the
bureaucracy should get tied up in its own red tape (i.e. internal signals). Since no single
letter may activate the bureaucracy for ever, any specific letter will eventually be han-
dled as long as the bureaucracy cannot stay idle while letters are pending.

More precisely we can formulate this by marking all internal signals with the external
signal which originally produced it. No execution branch should have infinitely many
states with internal signals marked by some particular external signal.

We summarize our definition of infinite progress in Figure 47 (p. 86).

Given a procesB=<S;C;Z;T>
1. Assume that every individual external input has a unique identification.

2. Inthe initial complete states of the transition sysi&rannotate the external inpyt
signals with their identification.

3. For all transitions , annotate the resulting complete state by annotating all signals
produced by the transition with the annotation of the consumed signal.

P isinfinitely progressiveff

For all individual signalg and for all execution patlesin P there is only a finite
number of complete statesdnwith signals annotated with the identificationeof

Figure 47: Infinite progress

Infinite progress is implicitly based on our basic model fairness assumption that every
signal received will eventually be consumed (see Section 2.1.2 (p. 42)). Thus an internal
signal which has been produced cannot be overtaken by external input signals for ever.

We see that the modified definition of progress in Figure 47 (p. 86) coincides with our
original definition of progress (Figure 25 (p. 50)) in the cases for finite external input
sequences. Thus infinite progress implies finite progress.

Our example process G studied in Section 3.1.2 (p. 85) was not infinitely progressive
which can be seen from the counterexample in Figure 46 (p. 85) and this is what made
the reduction behave significantly differently from the original. Infinite progress ensures
that the original is faithful to the reduction even for infinite external input.

The signal ordering criterion defined in Section 2.6.4.1 (p. 80) ensures infinite progress.

3.1.4 Concluding infinite complete states

In this section we have shown that to prove reducibility for all finite input results in a
reduction which may not always be fully faithful to the original in unstable infinite
systems.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Multiple channels

We gave an example where the reduction outputs, while the original runs the risk of
never producing any external output.

By strengthening the requirement for progress in the infinite case such that the effects
of any individual stimulus is completed within a finite number of transitions, we get that
reductions are sufficiently faithful to the original.

3.2 Multiple channels

In this section we shall discuss the generalization of the Mn-procedure and of reducibil-
ity provided there are more channels. This turns out to pose few problems. In fact the
generalization may in some cases be an advantage.

We have in our simple model already two different input channels, one external and one
internal one. Correspondingly we have two different output channels, one external one
and one internal one. The latter is the same as the internal input channel.

Our basic model is that if there are signals available on both channels, it is an arbitrary
choice whether the first signal of the internal channel or the first signal of the external
channel, should be consumed first. Readers acquainted with SDL will know that SDL
processes have only one input port (i.e. input sequence). This means, however, simply
that the arbitration takes place at the entry of the input port. If we consider the input port
an integral part of the process there is no difference between our multiple input sequence
model and the SDL model as discussed in Section 2.1.2 (p. 42). Similar to the traditional
SDL model we have that the process cannot explicitly specify from which channel it
wants its input.

The challenge of multiple channels is that the degree of freedom increases. There are
more choices during an execution since there are more input channels. There is more
flexibility on output because there are more output channels. It could be conceivable that
the results of our restricted model could not be transferred to the more general case. It
turns out, however, that this is not the case. The results of the restricted analysis is
mostly transferable to the more general context.

3.2.1 More external input channels

Having more external input channels actually adds nothing to our model since we have
assumed that external signals can occur at any time. Our aim is to show that the choice
between an external and some internal signal is insignificant wrt. the final result of the
computation. We remember that we showed that the Mn-procedure need only check for
the existence of a minimal non-confluence pattern which had only one external signal
(Section 2.4.3.5 (p. 55)). Which channel this external signal comes from is not signifi-
cant. In fact it is equivalent to considering all external signals on one channel.

However, what is external to one subsystem, may be internal to an enclosing system. On
that level the distinction between the very same channels is significant as we shall cover
in more detail in Section 3.3 (p. 90).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 87

General Mn-procedure
Multiple channels

3.2.2 More internal input channels

The idea behind confluence is that all execution branches from a given complete state
will result in the same set of leaf (stable) states. A generalized non-confluence pattern is
a complete state from which not all execution branches lead to the same set of leaf states,
but where each of the first level subtrees of the complete state are confluent. This is illus-
trated in Figure 48 (p. 88).

(S;6,X,Y;0) M 2SSUMeEd NoON-confluent

)

(S;2:xX,yY;00) (S;e;X,yY;00)

(S;e;xX,Y;00)

sets of leaves, all equal

g sets of leaves, not all equal

Figure 48: Generalized non-confluence pattern

The clue is again that the first level subtrees of the non-confluent state are assumed con-
fluent. This means that the subtrees themselves can be executed in any order. This means
that stabilization may consume the internal signals in whatever order suits the execution.
This means that the input alphabet of the MO-transition systems is the union of the inter-
nal input signals of all input channel.

It is necessary, however, to consider all pairs of internal signals from different internal
channels as starting points for the search for non-confluence pattern as well as all pairs
of one external and one internal signal. It is quite possible that the non-confluence pat-
tern occur due to the conflicting initiatives of two internal channels.

An example is shown in Figure 49 (p. 89).

We have two internal channels, one external input and one external output. We notice
that the consumption of external input results in internal buffering and the subsequent
consumption of the internal signals results in external output. The two different external
inputs results in loading two different internal buffers (channels). This means that the
four potential non-confluence patterns involving one external input and an internal input
will all be confluent trivially since the output of consuming external input and output
from consuming internal input are placed on different channels. The potential non-con-
fluence pattern of one internand another internglwhich are on different internal
channels, leads to a non-confluence since the result is either external output of

vu. The non-confluent state is definitely reachable as the external #nputs will pro-

duce it.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Multiple channels

h] +|]]

process |

@ [| -
Ten| =] >E15] >

55OE

Figure 49: Process U with internal non-confluence pattern

Conclusively multiple internal channels result in having to check also the potential non-
confluence patterns resulting from conflicts between two internal signals on different
channels in addition to the potential conflicts between an external and an internal signal.
This means that the number of potential non-confluence patterns will increase with the
number of separate internal input channels.

3.2.3 Multiple output channels

Multiple output channels make less conflicting situations than only one output channel.
In Process U of Figure 49 (p. 89) we have that the problem appears when the consump-
tion ofi andj both are output to the same external output channel. If we had had two
external output channels as well, onedand one for, the problem would have been
non-existing and the process confluent since sequencing between channels is insignifi-
cant for the final state.

3.2.4 Concluding multiple channels

Having more channels than the restricted amount assumed in Section 2. (p. 41) imposes
almost no complications for the use of the Mn-procedure. The complete state must be
extended to include one element per channel (buffer), but this is trivial.

Multiple internal input channels mean that it is necessary to check all potential non-con-
fluence patterns involving two internal channels as well as the patterns involving an
external and an internal channel. The MO-alphabet, though, is not affected as it is the
union of all internal signals.

The signals on internal channels can be executed in any order as long as the order on
each channel is preserved, since the generalized minimal non-confluence pattern has all
subtrees confluent. This means that the generalized reduction algorithm can also execute
the internal signal (which is first on a channel) that suits the algorithm best.

Multiple output channels makes it easier to conclude confluence since more output
channels mean greater freedom and independence of pieces of the output.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 89

3

General Mn-procedure
Multiple processes

3.3 Multiple processes

90

Up until now we have considered processes which have been described by one SDL pro-
cess graph. This is not a very realistic system. Internal channels will normally not appear
from an SDL process to itself, internal channels are normally between components of a
larger system.

Here we show that a system of multiple processes can be seen as one process, but that a
non-confluence pattern can only occur within one component.

3.3.1 Definitions

We need a few more definitions to be able to talk more effectively about multiple com-
municating processes. Some of these concepts have already been informally introduced
in Section 2.1.2 (p. 42).

3.3.1.1 System

A systems a set o€omponent§Section 3.3.1.2 (p. 90)), which communicate asynchro-
nously via channels. A system in our terms corresponds closely to an SDL system.
3.3.1.2 Component

A componenis either elock(Section 3.3.1.3 (p. 90)) ompaocesq Section 2.1.3.1 (p.
44)).

3.3.1.3 Block

A blockis asysten{Section 3.3.1.1 (p. 90)) on a lower nesting level. Sometimes we also
refer to blocks asubsystems

3.3.2 The basic model and the combined CFSM

We assume that we consider an SDL block as our unit of observation. It contains a set

of processes and a set of channels between these processes. Each internal channel should
have one process on either side. Each external channel should have a process on one side
and the environment on the other.

Thus our model implies that where SDL allows merging channels, we have to separate
the channels all the way to the receiving processes.

We want to transform the block such that it becomes a process. Thus we reach the fol-
lowing definition of the block as a CFS&B;C;Z;T>:

1. The seB of basic states is the Cartesian product of the sets of basic states for each
process.

2. The alphabet is the cartesian product of all signal sets of all channels. This can eas-
ily be divided in an external input set, and internal set, and an external output set of
channels.

3. The initial seZ of complete states is derived from the tuple of initial basic states of
the processes and the sequences of external input.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Multiple processes

4. The input alphabeX contains the elements Gfwhich have only one non-empty
input channel, and only one element on that channel.

5. The set of complete stat€ss simply defined as befoke=S x C*.

6. The transition tabl& is derived from the individual transition tables of the compo-
nent processes. We assume that a signal also contains information from which
channel it comes such that we may distinguish between signals of the same type on
different channels.

We may then in principle calculate the combined CFSM explicitly and work from there.
It is more practical to consider each component separately as far as that works because
the combined process meets state explosion very quickly.

3.3.3 Interleaving semantics

Let us first convince ourselves that the combined CFSM behaves exactly as the block it
is derived from. While the block may have several transitions execute in parallel, the
combined CFSM can only have one transition at one point in time. Does this make a dif-
ference? The only difference we accept as a real difference is if there is a way the block
can reach a complete state which the combined CFSM cannot reach or vice versa. To
determine that two actions on different processes are actually concurrent, is in practice
impossible if the processes do not share a common clock. We can only observe that two
transitions have taken place approximately at the same time when their output is merged
in a way that makes the output different from the situation where one transition executes
before the other.

With our basic model (Section 2.1.2 (p. 42)) the output from two different processes are
merged only when there are two channels going into a merging process one from each
of the concurrent ones. This means that the output from the concurrent processes are
placed on different channels and thus considered to be independent relative to the merg-
ing process. Thus all possible interleavings of the signals will be considered also in the
combined CFSM.

We conclude that the combined CFSM corresponds to the original block with respect to
the complete states.

3.3.4 Piecewise execution of the Mn-procedure

Assume that we have constructed the combined CFSM and we start performing our Mn-
procedure. Let us assume that we have been able to establish progress of the CFSM and
that we are determining confluence.

Any potential non-confluence pattern involves two signals on two independent chan-
nels. If these two signals are handled in two distinct component processes of the block,
we know by definition of our basic model that the output from handling the two different
signals cannot occur on the same channel. Thus confluence is assured directly for this
kind of potential non-confluence patterns.

The simple conclusion is that a non-confluence pattern can only occur within one indi-
vidual component process meaning that both the involved signals must be handled by
the same component.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 91

Projection

Stabiliza-
tion

Example:
uv

92

General Mn-procedure
Multiple processes

This simplifies the search for non-confluence patterns considerably since most of the
theoretical non-confluence patterns of the combined CFSM can be eliminated at the out-
set since the signals are handled in different processes.

Our “piecewise” execution of the Mn-procedure is actually a projection of the Mn-pro-
cedure applied to the combined process. We notice which potential non-confluence
pairs cannot ever produce non-confluence since they involve more than one component.
Said differently the MO-procedure for a combined CFSM consists basically of taking the
MO-procedure for each component process. Higher generations may similarly be pro-
jected. The M1-procedures involve the components which receive output from the
process which triggered a generation change in its MO-procedure. Often the M1-proce-
dures can be performed for one process at a time, but there are also (theoretical) cases
where the set of processes receiving the M1 input, interact mutually and then the inter-
acting set should be included all at the same time when performing the M1-procedure.
Similarly an M2-procedure may in principle be even more involved.

The pure confluence search can be performed very much piecewise, but stabilization
which is an important part of Mn-procedure often involves more than one process. Since
the piecewise execution of the Mn-procedure is a projection of the Mn-procedure used
on the combined process, it should be clear that stabilization is not only a linear execu-
tion. If we analyze non-confluence of a component prageglsich outputs to a

component process stabilization of a state pair inwill involve executingv, and we

must make a sequence of assumptions concerning the stafEhfs a stabilization is

in principle an execution tree.

Stabilization should, however, be performed breadth first since whenever the two ele-
ments of the node pair are equal, we may halt the stabilization. Furthermore we take
advantage of the fact that the stabilization can be performed in any order wrt. which
internal channel to choose signal from. Thus we execute all signals input to one process
before going on to the next.

We shall give an example of piecewise execution of the Mn-procedure in Figure 50 (p.
92).

block LY

e f] I 4] ch [E]
[:1.. L b
|] (o [[:—I'--ﬁ i

ip| A

cZ cd

Figure 50: Block UV

We connect the processshown in Figure 49 (p. 89) with another procestiown in
Figure 51 (p. 93). We shall show that blackis confluent by applying Mn-procedure
piecewise.

Procesw takes the internal signalsandv and produces external outguandf on sep-
arate channels.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Multiple processes

process

i

.1
=

*.]
=

ok

O

Figure 51: Process V

We apply Mn-procedure piecewise to procedur&he MO-procedure is quite similar

to what we did in Section 3.2.2 (p. 88), but when the difference in production of
sequences onta is encountered this is not a direct sign of non-confluence, but merely
a sequence permutation which may be resolved when changing generations isince
an internal channel of bloakv. The M1-procedure originating from potential non-con-
fluence patteritS;@;i,j;@) of processs, activates/. The output alphabet of MO ofis
{(u,u),(v,v)}. This is the input alphabet to M1. It is parallel. The state from which the
generation change should take plageriav;z,2),(T;vu;z,2)) relative tov. Stabilization of

this node must take placewand leads directly to a confluent result.

The generation change leads to initial set of M1 equaitte;ef),(T;z.e;f))} relative to
process/ (which is equal to the stabilization results).This is directly confluent.

To apply Mn-procedure to processs trivial sincev has only one input channel and no
conflicts may arise. Thus block is confluent. It is progressive due to signal ordering
criterion and therefore bloakv is also reducible.

3.3.5 Progress

Progress in a system of processes is equal to progress within a process as we introducec
itin Section 2.3 (p. 50). Normally there are some feedback loops which prevent the sim-
ple signal ordering criterion from holding. What is normally needed is to consider each

of these cases individually.

Even though progress is not a major part of this thesis, we shall spend some time dis-
cussing three ways to ensure progress. We have already presesigddherder

criterion in Section 2.6.4.1 (p. 80). In Section 3.5 (p. 97) we show how fairness in non-
determinism can ensure progress and in Section 3.7 (p. 119) we show how timers can
prevent an infinite loop.

3.3.6 Concluding multiple processes

Since a system of multiple component processes can be seen as one process, the Mn-
approach can also be used for systems.

Progress must be determined globally in the system by examining possible feedback
loops.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 93

General Mn-procedure
Save

Confluence may be determined piecewise meaning that non-confluence patterns are
always in one component only. MO-procedure can be done one component at a time
while higher generations may be more involved. Still the work needed in a piecewise
approach is normally much less than transforming the system to a process and perform-
ing a total Mn-procedure from there.

3.4 Save

94

Saving signals to a more appropriate state is the only way SDL can express permutation
of incoming signalsSavecan be seen as suspending some transitions such that conflu-
ence more easily can be established. On the other hand the existence of saved internal
signals makes it necessary to modify our notion of stable state.

The designer may also want to establish that the saved internal signals will disappear
eventually. This problem modifies the concept of progress. To establish the disappear-
ance of saved internal signals is the same problem as the reachability problem which is
not determinable in the general case [48].

SDL has the property that all signals eligible to the process are legally consumed in any
state of the process. This is not necessarily the case with other notations where finite
state machines are described by graphs where not every possible combination of state
and input signal is defined. Of course a major problem when implementing systems is
that signals show up in states where there was no intention that they should arrive. What
is the interpretation of this if there are no default transitions? To cope with undesired
signal receptions, SDL has the option to save the signal for later. One may interpret this
to mean that all the saved signals of a process are put in a separate save-queue parallel
to the input port. When the process changes state the whole save-queue is inserted in
front of the rest of the input port. Alternatively one may interpsatv@as just ignoring

the signal and taking the next. The saved signals are kept in the queue, but ignored when
in a state which saves them. The latter interpretation suits our basic model best since we
assume a queue for each channel.

In a state where there isaveconstruct, confluence is more easily established since
there is no need to look for non-confluence patterns involving any saved signals since
they cannot be consumed before the state has been left.

3.4.1 Stable states revisited

In Section 2.1.3.6 (p. 47) we definedtable stat@as a complete state where all the inter-

nal input channels were empty. As we introduce saved signals, we run the risk of
reaching complete states where there are only saved signals in the internal queues. Is this
a stable state? At least it is certain that no more stabilization is possible as no more inter-
nal signals can be immediately consumed (since they are saved in this state). On the
other hand the internal queues are not empty.

We decide to define two specializations of stable statéstafly stable statés a stable

state where the internal queues are empty. This corresponds directly to the former defi-
nition. A semi-stable statis a state where no more stabilization can be performed, but
where the internal channels are still not empty.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Save

During confluence calculations, however, we may find states which are not totally stable
as end results of stabilizations. When we introduce non-deterministic saves in Section
3.5.4 (p. 106) that we must be even more lenient with the stability of states.

3.4.2 Save and Progress

Itis a question whether progress should mean that all stable states must be totally stable.
Otherwise there are internal signals in the system which must originate from some exter-
nal input and that input has not been fully handled.

At this point we should remind the reader that progress plays two slightly different role
in our approach. Firstly it is a goal in itself that a system has progress which is synony-
mous with the system getting things done. Secondly we need progress for our Mn-
procedure to function properly. The second aspect of progress is only to ensure that the
execution graph of any complete state is finite.

When analyzing progress as an end in itself, we want to examine whether all saved sig-
nals will eventually disappear. We defisieong progresso mean that all stable states
are totally stable.

Progress s closely related to termination and to reachability both of which are in general
not decidable. Our task may still be manageable for each individual practical case. Due
to the theoretical complexity of the establishment of progress, we must accept that a full
proof will require use of advanced proof techniques. That is not the topic of this thesis.

For the sake of the Mn-procedure it suffices to estallestk progresswhich we shall
define to mean that the execution graph of any complete state is finite. This definition is
satisfied if stabilization ends in semi-stable states.

Weak progress suffices for the Mn-procedure to work since every stabilizing execution
is finite and therefore the assumption that all complete states in the execution graph of
a non-confluent state are confluent can be kept (Section 2.4.3.2 (p. 53)).

Weak progress is significantly simpler to establish than strong progress. We only have
to ascertain that feedback loops do not run forever.

3.4.3 Save and confluence

We introducedsavefor the explicit purpose of controlling the order of signal consump-
tion, which means that confluence should be more easily established.

Nevertheless we need to clarify a few points concerning the comparing of the two ele-
ments of the Mn-nodes. How different may two semi-stable states be before they are
considered non-confluent?

It is perceivable that two non-identical semi-stable states are such that whatever signal
consumed, either the signal is saved or both states are resolved into totally stable states
which are identical. Should such a state pair indicate non-confluence?

The simplest approach, which we will adopt, is that two semi-stable states are consid-
ered confluent only if they are identical (with the possible modification of “glue” as
presented in Section 2.4.5.2 (p. 61)).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 95

96

General Mn-procedure
Save

During MO-execution, the only problematic situation is a potential non-confluence pat-
tern where both signals are consumed from the starting basic state, but (atdeast) a

is invoked in the follow up state. This leads to at least one of the elements of the pair to
have asave All other situations are trivially confluent wheaveis involved.

3.4.4 Save and reducibility

If we have established weak progress, we know that the Mn-procedure can be applied to
the system. If the Mn-procedure returns confluence, the system is reducible and the
reduction algorithm can be applied.

If the reduction contains no basic states which correspond to a semi-stable state of the
original system, we may also conclude that the system is strongly progressive. The rea-
son for this is that any stable state reachable in the original system is also reachable in
the reduction.

We explain this in more detail. Assume that there is a reachable stabl@ efetes

original system which is not in the reduction. Siqres reachable, there is some com-
plete stat&V of the set of initial states which has an execution path leading to the

stable stat€. This initial state W is also an initial state in the reduction. We execute the
reduction from W and because it is progressive, we reach some set of stable Stetes
execution in the reduced process corresponds to an execution tree of the original system
as a consequence of the reduction algorithm. According to the assu@ptiomt a

member oL. ThenW must be a non-confluent state of the original system since there

is one path leading Q and other paths leadingltovhich does not includ®. But our
assumption was that the system was reducible, and thus confluent. The conclusion must
be that our assumption tH@tis unreachable in the reduction cannot hold. All reachable
stable states of the original are also reachable in the reduction.

Our Alternating Bit Protocol example Section 3.5.3.1 (p. 100) is shown to be reducible
since it is weakly progressive and confluent, and the reduction Figure 61 (p. 105) shows
that it is strongly progressive and that there cannot be any deadlock in the waiting states
since the reduction includes no stable states with the waiting states as components.

3.4.5 Concluding Save

Introducing the SDlIsaveconstruct makes it easier to obtain confluence, but we have to
modify our notion of stable states.

The property of progress becomes slightly more involved as we distinguish between
strong progress and weak progress. Strong progress means that only stable states with
no internal signals (totally stable) should exist in the execution graph, while weak
progress only requires that stable states should be semi-stable where also saved internal
signals are present.

We show, however, that weak progress is sufficient for determining reducibility. Fur-
thermore we show that strong progress can be deduced from reducibility and the fact that
no basic states of the reduction originates from semi-stable states of the original. The
Alternating Bit Protocol example shows this.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Non-determinism

3.5 Non-determinism

The requirements for reduction are that the race conditions between external and inter-
nal signals (and between internal signals) should not be significant. Explicit non-
determinism can be handled by a generalized Mn-procedure by talking about sets of
states rather than single ones.

SDL has defined two different kinds of non-determinism, the anyvalue expression in
decisions and the spontaneous transitions. We shall cover them both and then we shall
introduce a couple of new mechanisms which extend SDL, but add expressiveness to our
description of reduced processes.

3.5.1 Anyvalue expressions in decisions

Decisions with pure anyvalue expressions are the simplest form of non-determinism.
The only change is that a transition does not necessarily result in one specific state. It
may result in any of a set of states. This does not prevent the process from being reduc-
ible! Already in our definition of reducibility given in Section 2.2.1.1 (p. 48), we

foresaw this and defined that the final set of leaves should be independent of the race
conditions between channels with signals to be consumed.

Our Mn-procedure must be elaborated such that every complete state in our simple pro-
cedure becomes a set of states in the more elaborated one. Still our proofs and other
extensions to the simplest model are not dependent on there being only one complete
state as the result of every transition and the results may be generalized accordingly.

We give a simple example just to show how the execution of the Mn-procedure looks
when generalized to sets of states.

block MHonD
[2] 2,1 y]
ey
[¥]

Figure 52: Block NonD, a reducible block with non-determinism

The blocknonD (Figure 52 (p. 97)) does not do much sensible computing. It consumes
ana signal inN1 which then produces either awr ab, if it produces & anx reply will

come back fromn2, butN1 will only respond by sendingya In N2 they anda signals

will result in outputting eithes or b. If the reader is confused by this informal specifi-
cation, please take a look at Figure 53 (p. 98).

We show the computations of the Mn-procedure through a graph in Figure 54 (p. 98).

There is only one possible non-confluence patteni@nd no patterns for2 sincen2

has only one input channel. The initial 3gbf My shows a pair of sets of states which
we see is sequence permuted and we decide to change generation. The initiahgtate of
is obviously confluent since the input alphabeis parallel and the pair of state sets has
equal elements.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 97

3

98

General Mn-procedure
Non-determinism

process i1 process M2

slol|lefetctsts

Figure 53: The processes of NonD

(=5, E&,x0,00 The only possible non-

a, E‘I@/ \(wi'm confluence pattern
(55,3, 53,80, 1155 @,e, a0
(25, (@, %, benr

i3, H,E,El}l e,
1S5 @eaye), H{550.0.y0)), The =120
(55, 0.8,y (55, 0.0, yha; "Sequence perrated”
’ Zeneration change
A l={ ({00, 0), 0.0, 0000}

{550,808 aa)), (55,008 a3)],
(S5, @0 0,8k, (S5, @0 0, a0,

(=5, (8,00, kA, (35, (0,00, 1a), C'onflue nt!
(25, 0,80, 0, (=5, 0,80, 0,

(=5,(@,x0.4a), (=3, x84,

(=S5, %0, 00 (=3, x,8,00

Figure 54: Executing the Mn-procedure

The evaluation of the nodes of the Mn transition systems becomes slightly more intri-
cate. Stabilization may certainly determine non-confluence as easily as with the
deterministic case. Conversely confluence is not so hard to spot either. The sets must be
equal and the input alphabet parallel. The distinction between sequence permuted and
state different may be slightly less obvious. We have also seen that the exact point on
which to perform generation change can be moved as a result of heuristics and experi-
ence also for the simple case. When it becomes clear that further execution on this
generation cannot succeed in establishing confluence, we change generation.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Non-determinism

Changing generation is also somewhat more involved. Our example in Figure 54 (p. 98)
is too simple to show the complication. The input alphabet of the new generation is the
output alphabet of the former. The output alphabet is dependent upon the basic states on
which the input has been applied. When there are several states as when non-determin-
ism is involved, there will be several (possibly different) output sequences as well. We
need to record one output element for each complete state in the set. Keep in mind that
these elements are different only if the basic states of the complete states are different.
This is the reason why the complication does not show up in Figure 54 (p. 98). Itis
important to keep the association between the states and the signals as shown graphi-
cally in Figure 55 (p. 99). Each element of the output alphabet is associated with at least

{oteniial non-confluence pattern
non-determinism i

N e . | | |
element of input

/77?. — | alphabet
@ @ @ @ O

element of output
alphabet

Figure 55: Symbol alphabets and non-determinism

one element of the input alphabet. Futhermore for every individual state of the non-
determinism set of states, there is a symbol component within the output alphabet. Fol-
lowing a generation change the alphabet is applied as a pair of tuples to the pair of tuples
representing the Mn-node.

3.5.2 Spontaneous transitions

Spontaneous transitions in SDL are transitions where the input symbol comtasms

The transition may execute without consuming any signals at any time when the process
is in a state wherersne-transition is specified. We have two quite different approaches

to this, either the spontaneous transition is considered triggered by an external event, or
it is considered internal.

3.5.2.1 Spontaneous transition as externally invoked

We define thahoneis a signal type which comes on a special channel external to all
possible enclosures. It is consequently considered exactly as any other external signal.
In states where there are no spontaneous transitions this is considered to be equivalent
to executing a default transition foone A default transition means that the signal is
merely consumed and no state change takes place.

Spontaneous transitions do not add much to the question of progressosiesgynals
cannot be produced by any process.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 99

General Mn-procedure
Non-determinism

Concerning confluence, any internal signal must be insensitive to whether a possible
none-signal arrives before or after its consumption. This is exactly the same as with nor-
mal external signals.

3.5.2.2 Spontaneous transition as internally invoked

Alternatively to the interpretation of spontaneous transitions as external signals is the
interpretation which considers the spontaneity as internal. During an execution the pro-
cess may either haltin the state with spontaneous transition, or it may continue along the
spontaneous transition. This becomes exactly similar to interpreting a spontaneous tran-
sition as a non-deterministic decision (Section 3.5.1 (p. 97)) at the end of all transitions
leading to a state withreoneinput. The non-deterministic decision decides between an
empty branch and a branch corresponding to the body of the spontaneous transition.

It is possible that there is a cycle of (non-trivial) spontaneous transitions. The interpre-
tation of spontaneous transitions as internally invoked will then yield an infinite set of
states. For an automatic application of the Mn-approach, infinite sets are not very prac-
tical. Theoretically the infinite sets may not pose any extra problems.

3.5.2.3 Concluding spontaneous transition

Both interpretations affect our notion of stability in states. A state which looks stable,
but which has aoneinput is not absolutely stable after all.

Both interpretations allow reducibility provided their respective confluence criteria have
been met. The reduction algorithm in the two different cases will give two different
reduction results since the reduction algorithm applies the execution interpretations. A
reduction under the external interpretation of spontaneous transitions will include spon-
taneous transitions, while a reduction under the internal interpretation may appear
without spontaneous transitions, but with non-deterministic decisions.

3.5.3 Fair Anyvalue-expressions

While the standard SDL decision does not assume any kind of fairness, we find that
many times fairness is what you would like to have in order to use non-determinism to
terminate a loop in the executidrairnessis defined as a restriction on some infinite
behavior according to eventual occurrence of some events [49].

A perfectly valid implementation of the anyvalue expression in SDL is to pick one value
from the start and stick to that value every time the anyvalue expression is executed for

that sort. Thus the anyvalue expression does not ensure random drawing when it is
applied.

3.5.3.1 Alternating Bit Protocol

TheAlternating Bit Protocokexample shows how fairness constructs can be used to
ensure progress. The example was introduced by Bartlett et al. in [3]. It has later been
used as a simple, but illustrative example of a provable protocol for unreliable commu-
nication. We shall use it to show that non-deterministic decisions with fairness can be

1. “Sort” in SDL means “datatype” in programming languages.

100

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Non-determinism

used to resolve infinite loops to achiawgounded non-determinisifhat the non-
determinism isinboundedneans that it is not possible in advance to determine an upper
bound for the number of iterations of the loop.

The example is a protocol of full-duplex transmission over half-duplex links. In 1969 it
was important to point out that only one control bit is needed to ensure reliable commu-
nication assuming that all errors in the transmission are detected. Our aim is to show that
by a small extension of SDL, we can show that the protocol is progressive. We may also
show that the protocol is confluent (under some reasonable conditions) and thus the pro-
tocol is reducible. The reduction shows trivially the correctness of the protocol.

The structure of the protocol is given in Figure 56 (p. 101).

system ABF

d [AD,A1)
e
] 0] a el

Figure 56: Alternating Bit Protocol structure

We have actually abstracted away the real contents of the message and show only the
control information. The signals between feéder and thereceiver represent the value

of the control bitao anda1 are values and1 of the bit on the message from tnder

to thereceiver, while Bo andB1 are value® and1 of the bit on the acknowledgment

from theReceiver to theSender.

process Sender
Su-

ierror

Figure 57: Sender of Alternating Bit Protocol

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 101

3 General Mn-procedure

Non-determinism

The messages are never lost, but they may be corrupted. If a message is corrupted, this
will be discovered.

Thesender (Figure 57 (p. 101)) will test for the correctness of the returned acknowledg-
ment. Whenever it concludes that it is wrong, it will ask for a repetition of the
acknowledgment.

process Feceiver

Figure 58: Receiver of Alternating Bit Protocol

TheReceiver (Figure 58 (p. 102)) will test for the correctness of the message sent. When-
ever it concludes that it is wrong, it will ask for a repetition of the message.

The big issue here is the progress. We can quite easily conclude confluence since the
saves eliminate the conflicts which may occur.

In order for the protocol to terminate, we need that both the message freendfieto
theReceiver is checked ok and the acknowledgment fromRigxiver to theSender is
checkedbk. If things go very wrong, it is even possible that the acknowledgment from
theReceiver which is meant to ask for a retransmission of the message is not received by
thesender properly, but the response by thender is still adequate as the only sensible
thing to do is to retransmit.

Let us look at the possible eternal loops of the protocol.

1. The original message is not received properly. This gives the infinite signal sequence
e - A0O- Bl- AO- Bl- ... which may be terminated only by the check
finally giving ok.

2. The acknowledgment of a well received message is corrupted. This gives the infinite

signal sequence - A0 - ¢ BO—»~ AO- BO- ... which may be terminated
only be the check finally givingk.

There are two additional cases that are symmetric to the above two where the starting
state of thesender is Send1 instead oGendo.

The first loop is only dependent upon Heeeiver checkingok sooner or later, while the
second loop is dependent only uponsbeder checkingok sooner or later. The SDL
anyvalue in the decision cannot ensure that this happens. We need a construct that
ensures that whenever the decision is visited infinitely many times one (or more) spec-

102 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Non-determinism

ified alternatives will appear infinitely many times. We nedaliradecision Often for
pure specification purposes we are not so interested in the sort of the decision or the val-
ues of the alternatives.

3.5.3.2 Fair decision

We shall specify a construct which is a fair decision which has arbitrary sort and only
specifies that some alternatives will be infinitely-often chosen in an infinite sequence of
choices.

decision any
(4] +151;
ny else: =52,
enddecision

=1

Figure 59: Fair Decision

A fair decision specifies some alternatives denoted by “(+)” which are certain to occur
infinitely many times when the decision is encountered infinitely many times. The other
alternatives may or may not occur. We have in principle no knowledge of their possibil-
ity or probability.

Defined in this way ouiair decisionconstruct is a construct fareak fairnes$49 p37].

The (+)-specified alternatives are tiepful directionsvhich are continuously enabled
when the decision is encountered. Our construct is defined such that the helpful direc-
tions will never be postponed infinitely.

For those more imperatively inclined, the following transformation of the construct of
Figure 59 (p. 103) gives a definition inspired by the method used by Apt et al. in [1] as
referred in [49].

In the definition given in Figure 60 (p. 1031 is the helpful direction, which in our
notation would be denoted by (+) a8d is a normal branch, optionally denoted by (0).

dcl z1 Integer:= any(Natural);
dcl z2 Natural:= any(Natural);

z2:= any(Natural);

decision(z1<=z2)

(true): S1;z1:= any(Natural);
(false): S2: z1:=z1-1;

enddecision

Figure 60: Imperative definition of fairness

Thelnteger variablez1 designate the priority of alternatige while z2 designate the pri-
ority of alternatives2. Whenever the helpful directi®1 has been chosen the initial
setup is repeated and we are back to square one. Whenever the non-helpful direction
has been chosen, the priority of the helpful directions (beyeés decreased (improved).
Whateverz2 becomes (greater than 0), sooner or latevill become less than or equal

to z2 and the helpful direction will be chosen.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 103

104

General Mn-procedure
Non-determinism

3.5.3.3 Extremely fair decision

Are we completely happy with our definition of a fair decision? It turns out that most
programmers would like to be “even more fair” than our weakly fair definition in Sec-
tion 3.5.3.2 (p. 103). Most practitioners will have an implementation-oriented attitude
towards a fair decision. They will be thinking about how the decision should be imple-
mented, and they would like it to be implementetbaally as possible. A local
implementation means that the outcome of the decision should not depend on other parts
of the description than the construct itself. Neither should the global state be considered
nor should the process scheduling matter.

The practitioner will think about implementing a random selection between the alterna-
tives where the helpful directions are assigned constant positive probabilities and the
other alternatives possibly a zero probability. Such an approach is malkebilistic.

From probability theory we get that the probability of being postponed infinitely when
having had an infinite number of constant positive chances is zero. Thus we have
achieved our fairness for the helpful directions.

It turns out, however, that a probabilistic approach is not equivalent to the weak fairness
approach sketched in Section 3.5.3.2 (p. 103). An example will clarify this. Assume that
theReceiver receives messages from multipkenders. Since the messages always carry
their origin (SDL predefined vall®ENDER), theReceiver should only take care to send

the acknowledgment back$eNDER. In this many-to-one situation, however, the weak
fairness construct for the decisionRiteiver is not sufficient. To see this we may con-
sider the specific sequence of signals which is such that every time#her decision

IS OK, it is the process which may terminate its loop. Proc&ssever seems to win an

oK from thereceiver. This situation is legal from the point of view of tkexeiver deci-

sion because it actually returog infinitely many times, but processnever gets the
benefit of it. From the definition of weak fairness of the decision, this is legal. From a
probabilistic point of view, this situation cannot occur. Since pragéss infinitely

many independent decisions taken inRbeeiver, the helpful directions with positive
probability must turn up!

The clue is that our “starvation” efwas legal according to weak fairness since the
selection of the events was made according to some global state while the weak fairness
concentrated on the decision alternatives and not the global state. We want a fairness
concept that is independent of which global state there is. Francez dsfirezse fair-

nessin [49]. Weakly extreme fairnesseans that for any global state in a finiterset

helpful directions shall occur infinitely-often in an infinite sequence of decision invoca-
tions as long as they are continuously enabled. In our case the global statesiek

cover differentSenders approaching th&eceiver.

For practitioners the probabilistic interpretation is most often the best since it models the
sense of stepwise execution best. Even with the extremely fair interpretation we can
apply the transformation shown in Figure 60 (p. 103) only demanding that the anyvalue
expression is really a random drawing from a distribution where all Natural numbers
have the chance to be chosen. That the priority of the helpful direction is improved every
time the other direction is chosen, is actually of no importance. The clue is that the help-
ful direction always has a non-decreasing probability to be chosen.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Non-determinism

We may also express the notion of extreme fairness in terms of the sequence of alterna-
tives chosen by the decision. Fmyinfinite subsequence of the sequence of
alternatives, there is an infinite number of helpful directions.

3.5.3.4 Wrapping up the Alternating Bit Protocol

Having defined our notion of a fair decision, we return to the Alternating Bit Protocol
which has four such fair decisions where the helpful directions are those which are
labelledok.

The question of weak progress of the Alternating Bit Protocol is a question of the termi-
nation of all the feedback loops, which should now have been covered, even though we
have not performed a formal inference of the termination of all possible loops.

Assuming now that we have made reasonable both weak progress and confluence of the
Alternating Bit Protocol, we may reduce the block described in Figure 56 (p. 101) to an
SDL process shown in Figure 61 (p. 105).

mocess ABF

Figure 61: Alternating Bit Protocol Reduced

The processBpP can easily be reduced even more to only one transition conseming
and outputting the very same sigaaEven a practitioner (or should we say: even a for-
malist?) may be convinced that the protocol is correct.

Strong progress is also the question of avoiding that saved signals are never being han-
dled. The progress problem of the Alternating Bit Protocol is whether we are certain to
receiveBo or B1 in Wait0 andwaitl such that theender will proceed. We have already
shown in Section 3.4.4 (p. 96) that reduction of the Alternating Bit Protocol implies
strong progress since the problematic situations do not turn up as stable basic states of
the reduction.

The same result of strong progress can be reached through the following argument.
Every entry to avait state is directly preceded by output ofaaror A1 to theReceiver.
Every transition of th&eceiver will output aBo or B1 back to thesender. Thus we are
certain that when thgender is in await state there is something coming from the
Receiver sooner or later.

We have been able to divide the problem of the correctness of the protocol to questions
of progress and confluence.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 105

3 General Mn-procedure

Non-determinism

3.5.4 Spontaneous save

We have introduced constructs for the explicit specification of non-determinism. In Sec-
tion 3.5.1 (p. 97) we presented the plain SDL non-determinism in decision and in
Section 3.5.2 (p. 99) we covered spontaneous transitions which are also a part of the
SDL standard. Finally in Section 3.5.3 (p. 100) we presented a new construct which
introduced explicit fairness into decisions.

In our basic execution model (Section 2.1.2 (p. 42)) we have also assumed another form
of fairness, namely the fairness between the channels of a process. A signal shall even-
tually be consumed no matter what channel it is on. In standard SDL this is normally
also considered the case only obstructed by priority signals which may always precede
the normal signals. In SDL all signals of a process will enter intopar portwhich is

basically a FIFO queue which is fair

Confluence means that the choice between internal channels and between external chan-
nels and internal channels are irrelevant wrt. the final result of the subsystem. What then

if the non-determinism between channsisignificantfor the final result, and this is

totally acceptable? Are such systems not reducible?

3.5.4.1 Explicitizing race conditions

We could need a construct to express that a certain race condition is actually “accept-
able”. Furthermore the construct must make it possible to talk about progress and
confluence and preserve the desired non-determinism. In that way we may specify
reductions of systems which also include race conditions.

One problem is that the number of legitimate outcomes is usually infinite. If we want to
express the non-determinism of the race condition between an external and an internal
channel, we must express that the internal signals may come in between any number of
external signals. This is an infinite set of alternatives. We need a shorter notation for this
set.

Let us look even closer at the problem. We want to accept the permutations caused by a
race condition as acceptable. In order to be able to utilize our concepts of confluence and
reduction, we must be able to express that a systensKseyshown in Figure 66 (p.

110)) containinga componentm with an acceptable race condition is confluent. Fur-
thermore we must be able to apply our reduction algorithm to the sgst&na obtain

a reduced process.

The reduction algorithm can choose to execute any internal signal present in the inter-
mediate instable complete state. We realize then that the execution path of the reduction
algorithm may never actually encounter a complete state where there are signals present
on several channels which should be (fairly) merged. We need a mechanism which takes
care of the race condition even when there is no race condition! We need a mechanism
which describes a potential merge situation.

We should emphasize that we have no intention to make a construct which changes the
SDL semantics. What we want to find is a way to describe a race condition which pre-
serves the fact that the outcome of the race condition is significant for the final result.

1. Some doubt has been raised whether the formal definition of SDL [79] actually defines this fairness, but a
common interpretation is that there is a fairness between channels in SDL.

106 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Non-determinism

Let us imagine ourselves as a signal on a channel in a race condition. If we suffer from
some random delay, or we are disabled for some random period, we fear that signals
from some other channel will win the race. But we cannot know. The other channels
may also be hampered on their way to the finish, or there may be no other competing
signals around at this point in time. On the other hand, there may be other signals on a
number of other channels such that there are several signals which suddenly pass us
before the finish. The clue is for how long we are being disabled or delayed relative to
the other competing signals.

Taking the position of one signal is exactly what the common SDL execution does. The
different signals have no knowledge of other signals. When a signal is first in the input

port, the state of the process is all that matters. We have to find extensions to SDL which
are operations on one individual signal in harmony with SDL in general.

It seems that we need a mechanism that disables the consumption from a channel tem-
porarily, and then some mechanism that enables the signals of the specific channel
again.

To simulate disabling of a signal we resort to the only SDL mechanism which delays
signals which are first in the input port — g@/econstruct (see Section 3.4 (p. 94)). A
savemeans that the tentatively consumed signal will not be consumed anyway and
rather saved for later until the process is in a state where this signal type can be con-
sumedSaveby itself does not introduce non-determinism, but it introduces
permutation. Our disabling mechanism will be a kindafewhich not only saves the

first signal of a channel, but all signals of a channel. We call this special save construct
aspontaneous save

To simulate enabling, we turn to spontaneous transition covered in Section 3.5.2 (p. 99).
A spontaneous transition introduces non-determinism such that the time in which a tran-
sition executes is not known. This corresponds well with an unknown delay of the
signal. Our modified spontaneous transition concept will be dependent upon there being
some signal which has been saved by our spontaneous save construct sketched above.
This special spontaneous transition is cafipdntaneous consumption

Relative to an enclosing system (s&y the spontaneously saved signals are internal,
but the consumption will appear as a spontaneous transition on top lea¥-(@eel)
as described in Section 3.5.2.1 (p. 99).

Spontaneous save and spontaneous consumption is not intended for the SDL specifier.
The extensions are used in the Mn-procedure and in the reduction. The SDL specifier
gets a way to annotate that a race condition is acceptable and there will be an automatic
transformation to spontaneous save and spontaneous consumption.

Merge
3

slg,

tansition ...

Figure 62: Merge state

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 107

108

General Mn-procedure
Non-determinism

In Figure 62 (p. 107) we introduce notation for an acceptable race condnange

state. Normally if there is one merge state in a process all the other states of the process
reachable from the merge state should also be merge states. This is because reachable
states must also be able to consume spontaneously saved signals. Notice also by defini-
tion that a merge state cannot be the base of a non-confluence pattern since we accept
all possible mergers of signals.

In Figure 63 (p. 108) we define the notations for spontaneous save and spontaneous con-
sumption. We notice that a spontaneous save may have a part of a transition before it

fransition kefare

sig, siz,

ransition after fansition .

Figure 63: Spontaneous save and spontaneous consumption

and a part of a transition behind it. This is because the signal ¢igref the sponta-

neous save is normally an internal signal and the transition of a reduction may have the
spontaneous save as an intermediate action. The transition of the reduction may go on
consuming other internal signals of other component processes. Likewise the spontane-
ous save may succeed a series of internal transitions. Remember also that all
spontaneous consumptions similar to spontaneous transitions (Section 3.5.2.1 (p. 99))
are lifted to the top level of the reduction.

The transformation from the merge state of Figure 62 (p. 107) to the new mechanisms
is given in Figure 64 (p. 108).

Tote nore
=5
@ transifion ...

Figure 64: Transformation of merge state

The merge mechanism is extremely fair in the sense that any spontaneously saved signal
will eventually be consumed. The spontaneous consumption requires that a spontaneous
save has occurred and that such an object is first in the channel.

In Figure 65 (p. 109) we give the definition of the merge mechanism. We show complete
states where the component process containing the merge state has only two channels.
We show merely those parts of the complete state which are relevant to the execution of
the component process containing the merge state. We assume the concatenation oper-
ator “+” for concatenation of signal sequences of the complete state, and the transition

tableT:Sx A - K .

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Non-determinism

1. Spontaneous savémerge S ¢, 8;Y)0 [_, (merge S i, edsaved 0;Y)

2. Spontaneous consumption

(merge S é.avecg)saved G;Y) ﬁ]%“:3—’i((¢saved G;Y) + T(S’ I))

Figure 65: The merge mechanism

1. Spontaneous savAn internal signailis first in a channel in the merge st&terhen
the signal is spontaneously saved and so are all the other signals on that channel.
This will lead eventually to a semi-stable state (Section 3.4.1 (p. 94)). A semi-stable
state may accept signals from other channels. The reason for saving all signals of the
channel is that we do not want to have signal overtaking on one channel. This is dif-
ferent from normasave

2. Spontaneous consumptidfrom a semi-stable state spontaneously saved signals
may be spontaneously consumed. This means that at any point in time non-determin-
istically either nothing happens, or one spontaneously saved signal is consumed. The
spontaneous saved signal must always be the first on some channel. Spontaneous
consumption is extremely fair such that no spontaneously saved signal will be
delayed for ever. Said in a probabilistic way, there is a positive probability at each
decision event that a spontaneously saved signal will be consumed when it is first on
its channel.

What we have defined is no new semantics, but merely a notation which makes it pos-
sible to describe acceptable race conditions in reductions. By introducing the
spontaneous save, we have made a complete state which before was considered instable
into a semi-stable state. This means that the reduction algorithm halts its execution of
internal signals. The consumption of the internal signal which was spontaneously saved
is made external as a spontaneous consumption. This boils down to lifting internal tran-
sitions up to a global level. If all component processes are full of merge states, then all
transitions are lifted to be global and no real reduction has taken place. We would not
gain anything from performing the reduction and that is exactly what one would expect.

Since our new mechanism depends solely on signals of one channel (at the time), there
is no problem with the reduction algorithm. Thus we have been able to describe merge
situations without actually executing complete states with signals on more than one
channel.

3.5.4.2 Fair Merge and the Brock-Ackerman anomaly

The Brock-Ackerman anomaly was described in [14] in 1981. The point of the example
was to show that history-relations do not have the expressiveness sometimes required
for real time asynchronous systems. A history relation is a relation which describes the
process as a relation between external inputs and external outputs.

Central to the problem with the Brock-Ackerman anomaly is the concephgiosi-
tionality. By compositionality we mean that the analysis of a system can be built from
the analysis of its structural components. What the Brock-Ackerman example shows is

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 109

110

General Mn-procedure
Non-determinism

that when a component is described by history relations, this description is not always
sufficient to use in the analysis of some enclosing entity. We may also express this by
saying that history relations cannot quite capture the full semantics of a system of com-
municating finite state machines.

The Brock-Ackerman example contains non-determinism deep inside the system. To
reach the necessary expressiveness it is necessary to find some means to express the
inner non-determinism on the global or external level. Broy and Stglen [19] present two
ways to lift the internal non-determinism out as an external stimulus. One way is to
include time ticks in the signal stream. The other way is to define a “prophecy” which
describes the possibilities of the inner non-determinism as a parameter to the (global)
stream processing function. The stream processing function then becomes a set of func-
tions. In our version below we shall use spontaneous consumptions as the externally
defined non-determinism which expresses the inner non-determinism.

We shall go through the example described by our SDL-like notation and show that our
reduction strategy is expressive enough to capture what history relations do not capture.
Central to the problems of the example is the non-determinism introduced by the race
condition in the Fair Merge component which is internal to the system.

system Tk
¥ Y
block =k)
= im

[i] (il

¥
oA

[i.]

Figure 66: The Brock-Ackerman example system

The Brock-Ackerman example includes two variants of a system, sysieansiT2.

They both have the same structure as given in Figure 66 (p. 110)whezi¢her 1 or

2. The overall idea for the systems Tk is as follows. The proceshgslicates the
incoming signalFm merges fairly the two channels into one output channel which is in
turn input intoPk which forwards the two first signals and then terminaig@dorwards

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Non-determinism

General Mn-procedure 3

the incoming signal one by one onto the environment as well as genejaiigge onto

the internal feedback channel every timeiaeonsumed. In Brock-Ackerman'’s version

of the example the DA is represented by the signal being fed back with a positive
increase in the value of the parameter. Our version shows the point equally well without
introducing data into the CFSMs.

The difference betweeri andT2 lies inP. P1 outputs one signal when it consumes the
corresponding one, whik2 buffers the first signal and outputs both when the second
arrives.

process type O || process DA process FMh

=signal == _
arge
(o)

i

|
@{m e é}'j-{m e I |jl>

{ iz intern
(D <

Figure 67: Processes D, DA and FM

As shown in Figure 67 (p. 111), the proced3eBA andFM are quite trivial. The clue
is the difference betwed?il andP2 shown in Figure 68 (p. 111), and the way the sys-
tem is connected shown in Figure 66 (p. 110).

process F1i process P2

& 2

]
]

>T|> |>1I>
|>I1>| T>|
|.1T>I1‘>|_>|i>

]
]

x—@—

Figure 68: Processes P1 and P2

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 111

112

General Mn-procedure
Non-determinism

Brock and Ackerman show in their paper [14] that the history relatiogsarids2 are
identical and equal to the definition in Figure 69 (p. 112), butsthanhds2 actually

behave differently when appearing in the contextandT2. This shows that history
relations are not compositional in the sense that we argue in Section 4.1 (p. 143) that our
reductions are.

Sz 9 = {a}

S (iX,2) = {ii}

S(@ jY) = {ij}
S(X,jY) = {ii,ijji jj }

Figure 69: History relation for Sk

Let us now see how our reduction strategy workskoand what results we reach.

Progress o$k is easily established since the signal ordering criterion holds when we
annotate signals with their channel. Progress &f worse since there is a feedback loop

of j being fed back frormA to D<j>. Progress is assured through the terminatiark of

after having issued two signals. Confluencelofs also easily established since it is

only FM which has a potential conflict and that has been resolved by the merge-mecha-
nism. By definition of the merge-mechanism, we concluderthas confluent relative

to all levels enclosing it. Thusk andTk are all reducible.

We start by reducinga illustrated in Figure 70 (p. 112). The state names inside the com-
plete states refer to the state name=si@ince all the other processes have only one state
each which cannot change. Semicolons separate state, external input, internal queues
and external output. The stable states are enclosed by rectangles and labelled.

|FJ'.'[F“1 iee.e.e;e] | | FIF10.0ye.2.2;8] |
| Desiz= Fhd[=z pontaneous
[F1@2 @i @2;0] consurmplon]
Fti[s ponneous sawve] [Flieeeeino
| 7 1F12.0imd saws 2.0:0) | F1

[w1iwie sio.0.2i) |

| WriW1iee.000) | | WTZ[W'liﬂ.B:imd.El.El:Bj
| Lesiz= Fhi[=s pontaneou s
W 10,210 ,0;0] W ‘I;ﬂ.al?n?rg,li-l;gl]pim]
Fhi[= pontaneou s sawve) =3
| L L - - P Y- I - || | | FaA [termo@ @2.0.2;] |

Figure 70: Stabilization during reduction of S1

We notice in Figure 70 (p. 112) that we reach some semi-stable, but not totally stable
states. The stabilization of the stimul@i®m the start state is symmetrical to the shown
stabilization of. The totally stable state is marked by a fat enclosing rectangle. Itis in
the stateerm, which in this case means tid has terminated. Termination means that

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Non-determinism

states with internal signals are still totally stable since no more signals will actually be
processed for output. Equivalently we may assume that a terminated process always just
consumes its input.

We should also notice that the system stateomes in two variants, one totally stable

and one semi-stable where there are spontaneously saved signals. This is a consequenc
of the spontaneous save rule. The statseems also to come in these two variants, but

that is not quite true because it is a provable invariant that when the system js in

there is a positive odd number of spontaneously saved signals. It can also be proved that
in P1 there is an even non-negative number of spontaneously saved signals. In our case
these extra invariants are not really needed for the reduction as such.

The picture is symmetrical for the consumption of external inpMe have no benefit

from separating as different basic states of the reduction those without and with sponta-
neously saved signals. The defined extreme fairness of the spontaneous consumptions
takes care of the merging.

We can now show the reduc8d process in Figure 71 (p. 113).

process 51

|
I'IDI'IE'

ﬁ- CX)
M

ane

im

ane

=l
25
i

Ok
#e
e

HOkE

I
none nnne
A i

are one

o%ef
F&}
(et

Figure 71: Reduced S1

It is uncertain whether the reduced process descripti®nisfmore transparent than the
block description given in Figure 66 (p. 110) supplemented by the process descriptions
of Figure 67 (p. 111) and Figure 68 (p. 111). It may be argued that the process descrip-
tion shows the real complexity of the description while the block description hides the
problems. In this section the readability of the description is not the main issue. Here we
concentrate on showing that our SDL notation is powerful enough to express the differ-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 113

114

General Mn-procedure
Non-determinism

ence betweega1 ands2 when we apply these reductiondtbandT2 respectively. The
difference reappears in andTt2 contrary to what happens when history relations serve
as the reduced descriptions.

By reducings2 we reach the following similar, but not equal SDL-like description in
Figure 72 (p. 114).

[
i none nione
IRy LT
one
i

0.%

i RS o e none none
1 IRy ;7] IRy iI;T]

i
o/ O O Lnd/ S5 0> >
. _.|> 0> Lmd S i j)‘?
(> SIS S

Figure 72: Reduced S2

It is not obvious that the difference in structure betvgaeandsz2 is actually significant
wrt. any enclosing system, but it turns out to be very significant in the context of

We continue to use the very same strategyioandT2. They are also reducible, and

now the reduced processes turn out to be significantly simpler to read. We show also the
reduction steps in Figure 73 (p. 115) to demonstrate that the reduced processes are
reached stepwise according to the compositionality of our method as argued in Section
4.1 (p. 143) and not directly from the original systems.

We see from Figure 73 (p. 115) that thestate may have spontanegyssignals and/
or jpy-Signals. This is the reason behind the two transitions for spontaneous
consumption.

In Figure 74 (p. 115) we observe tliatcan never produgg,-signals, whileg,-signals
are at least produced when masggnals arrive when iw2i. Actually due to the invari-
ant mentioned earlier, there will always be anoihesignal wherr2 is in wai.

From the reductions we can make the SDL-like reduced processes shown in Figure 75
(p. 116).

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Non-determinism

| [P12;0.0.i:2) |

[Fliee000)

| 51 [spon . sawe) | =1 [spon. cons.)
| [P1:2:0.0) pd g | (Wigig.e.oe
o
[W1a@,je.ei

51 [=pon. sawve]
IEREEEENT

(EREEEEEETT | (W 1208, pe @) | | (W 12;0.0.0,p@) |
| = [5pon . sawe] | Sl [spon . cons.] | 51 [spon. cons.)
| [W1;a;a.@j“’m.a;a]| [termm@;ie.2.2;8] [term;oj.0.@.2;0]
o | Da
[term ;@0)2, | [term ;B;a,a,a,a;j]_l
51 [emninated)

| [term ;@;0.2.0,2;) |

Figure 73: Reducing T1

| [PZ:2;2,0.i g 2] |

[FZi@0.0,0;8]

| =2 [spon. cons.]

| 52 [zpon . sawve]
|[F‘E;a;a,ajnjm,a;a]| | (W2iee.00 20 |
EEIEEEEET |[WE;@;@.B.im.a;u] |
| =2 [=pon. sawe) | =2 [spon . cons
| [W2ie2.0,ip m.a;a]l [term @i @ @.2;2)
Cra
[term @i j.@.;i]
Ca

[term @2 jj @.e;ii]
=1 [terminated)
| iterm 2:2,2.0.2;i) |

Figure 74: Reducing T2

In Figure 75 (p. 116) we see the difference betwaeandT2. We can see that may
produce the sequendeandij, while T2 can only produce the sequeric&his is accord-
ing to the Brock-Ackerman findings. The cause of the difference is of course that in
there is possibility for a feedback, butrimit is not possible that the fed bgekignal

will ever reaclpA since both-signals have to come first.

We summarize:

1. Non-determinism caused by a race condition that is considered acceptable, can also
be modeled in our framework such that confluence and reducibility can be estab-

lished and reduction performed.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 115

3

116

General Mn-procedure
Non-determinism

process TV, process T2

™
W

P

Ot

none nane

IRy

g

ane
| Py

W=

ot

)
Okl O

¥

Figure 75: Reduced processes T1 and T2

K

<0k
oo

2. The clue trick to describing acceptable race conditions is the spontaneous save. It
makes it possible to specify the desired non-determinism without sacrificing the sim-
plicity of the reduction algorithm. The non-determinism of the race condition is
transformed into the non-determinism of the spontaneous consumption. The gain of
the transformation is the possibility to use our reduction technique.

3. Our technique is expressive enough to explain the Brock-Ackerman anomaly. The
inner non-determinism of the system is preserved in the reductions which then safely
are used in the analysis of enclosing systems. The difference between the two variants
of the Brock-Ackerman example system is easily seen from the final reductions. The
inner non-determinism is also present in the final reductions.

3.5.5 Concluding non-determinism

Non-determinism can be included in our Mn-approach with some penalty in complexity.
The Mn-node can no longer be a pair of plain complete states, but must be a pair of
tuples of complete states where each state tuple represents the non-determinism of the
execution. Likewise, the Mn alphabets must have symbols that are pairs of signal
sequence tuples and not merely pairs of signal sequences. The tuples correspond closely
with the tuples making up the nodes of the transition systems in the Mn-procedure.

The SDL construct of spontaneous transitions was modeled in two ways, either as an
external input with its own channel, or as an internal non-deterministic decision.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3
Data

We introduced fairness in decisions as a means to provide better ways to ensure progress
of the system. The Alternating Bit Protocol example showed this approach and it was
successfully analyzed.

Finally we introduced a way to define specific race conditions as desirable. A new con-
struct “spontaneous save” was introduced. Our analysis of the Brock-Ackerman
anomaly showed that the construct was useful and that our model was expressive
enough to cover the Brock-Ackerman anomaly.

3.6 Data

The handling of data variables in the processes is definitely not the topic of this thesis.
The reason for that is mainly because our interest has been the problems concerning race
conditions. Furthermore we experience that systems (or subsystems) where concurrency
conflicts are in focus very often have rather simple data handling. However, when data
is important, they may lead to any complexity, and decidability issues may be either
unsolved or negative (undecidable). There are numerous other scholars concentrating on
data.

Data as such is only supported by symbolic execution in our Mn-approach. Decisions
based on data give rise to alternatigaardedby an expression. Instead of pure system
states, we introduce guarded system states.

We do not go into detail about how data expressions are simplified.

There are two major ways to treat data in the process of verifying concurrent systems of
the kind that we are trying to verify, either the data are ignored or they are included.

3.6.1 Ignoring the data

To ignore the data means that we consider them irrelevant for the major problem of the
system under analysis. Either we believe that the data are non-decisive for potential
problems, or we mean that we cover whatever values the data have.

We start by transforming the original system under analysis such that the data are
removed. The resulting system representaletractionof the original one (see also
Section 4.3.3 (p. 157)). We believe that any problem of the original will also show up in
the abstraction, but the abstraction is (supposedly) easier to handle.

The following transformation rules will produce a system without traces of data:
1. Remove all tasks,

2. remove all parameters to procedures, processes and signals,

3. change all decisions to non-deterministic decisions.

This abstraction is true to the original in the sense that any statement which holds for
any execution path of the abstraction will also hold for any path in the original. This is
because there are no paths in the original which does not have a path in the abstraction
since every branch of every decision is represented and there are no changes in the signa
sets.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 117

118

General Mn-procedure
Data

The disadvantages with this abstraction are that progress may be more difficult to estab-
lish in the abstraction, and that errors in the original concerning data values are
obviously invisible in the abstraction. Confluence may also under special circumstances
be more difficult to establish, but normally it will not matter.

Failure to establish progress of the abstraction may be remedied by adding fairness to
the non-deterministic decisions with helpful directions to exit the feedback loops. It is
necessary, however, then to add some argument that the original system has the quality
of fairness in the problematic places.

The biggest disadvantage of this strategy is that an eventual reduced process is not a
reduction of the original, but of an abstraction of the original. Thus for the purpose of
applying the reduction in other analysis, we have to take this fact into account.

3.6.2 Including the data

To include the data means to do calculations with them. Since our approach is based on
calculations from all basic states in the finding of confluence in the Mn-procedure,
including the data would mean to perform symbolic executions as opposed to normal
executions where values are used. The complete states will be supplemented with the
symbolic values of the variables.

To assert confluence it is necessary to verify equality between data expressions. Some-
times this is trivial, while in other cases it is beyond the reasonable scope of a tool to
assert the equality. Simplification of data expressions is not a part of this thesis.

The branches of decisions are represented by symbolic boolean expressions. Sometimes
they may evaluate generallyttae orfalseregardless of the values of the variables, but
more often they cannot be evaluated to a constant. This means that the continued execu-
tion must be performed under the assumption that the branch expression evaluates to
true. This is what we shall callguard Every complete state is in principle guarded by

an assumption. When the guard is not present, the defawie is

The RPC-Memory example in Section 6. (p. 229) shows the use of guards and simple
symbolic execution.

When the executions of the reduction algorithm are brought back to the shape of an SDL
diagram, the converse strategy is applied. The guards become the branches of decisions
and changes of the symbolic values must be made into assignments.

3.6.3 Concluding data

We have decided to exclude a thorough discussion of data in this thesis. It is obvious
that data may play significant roles regarding confluence and reducibility. Still we
present only two very simple methods to cope with data.

1. Abstract the data.
2. Perform symbolic execution on the data.

The success of the first approach is dependent upon the ultimate analysis goal since the
system is transformed to a system which comprises more behavior than the original.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Timers

The success of the second approach is very dependent upon the complexity of the data
expressions.

We believe that real, reactive systems are such that either the data are quite simple, or it
is possible to encapsulate the data complications in data operators which is then used as
atomic concepts in the Mn-approach.

3.7 Timers

Timers in SDL are special signals which the process (in principle) sends to itself, and
which are delayed a specified duration. Timers which havémetl out can bereset

and thereby cancelled. The timers are set by a sg&ti@nstruct which can be con-
sidered as a special output of a delayed signal. Timers are saiddtived they have

been set, but not reset or timed out.

Timers are used to conclude operations which have taken too much time or to make sure
that certain actions do not start until they should. Timers are basically the only way SDL
handles time. We notice that timers are imperative. We cannot in SDL reason about the
duration of an operation or a transition.

3.7.1 Basic model of timers

Since timers are signals when they have timed out, they are merged into the same input
port as the other “normal” signals. Still in our (modified) basic model we shall assume
that timer signals have a channel each and thus may be executed independently of the
other normal signals.

On the other hand we shall not expect our systems to be insensitive to the expiration of
timers. By this we mean that we would expect that the expiration of a timer would result
in a different final stable state than if it had not timed out. Thus we accept that timers
introduce non-determinism of the final result. Thus confluence is not dependent on the
absence of non-confluence patterns between timers and other internal signals. In this
respect our handling of timers resemble our model for acceptable race conditions in Sec-
tion 3.5.4 (p. 106). The setting of a timer can be compared with a spontaneous save and
the expiration and following consumption of the timer is similar to a spontaneous con-
sumption. But there are differences as well, while all signals in a merge state would turn
into spontaneous saves, this is not the case with timers. The existence of a timer does not
mean that all other normal signals are subject to an acceptable race condition.

We want to establish confluence between channels with normal signals, but we shall
have to assume that timers may be necessary parts of such non-confluence patterns. At
any state where a timer is active it may in theory trigger since we have no concepts for
timed executions in our basic model so far. Therefore there is always a non-deterministic
choice whether an active timer times out or not.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 119

120

General Mn-procedure
Timers

3.7.2 Progress

Our analysis method is oriented towards reducibility through the determination of
progress and confluence. Timers often help provide progress. Since time is fair in the
sense that all future points in time will eventually arrive. Therefore all active timers will
eventually time out if they are not reset. This means that the expiration of a timer can be
compared with a non-deterministic decision where one alternative is a helpful direction
with positive probability. Loops which are guarded by an active timer will eventually
terminate.

3.7.3 Confluence

We accept the non-determinism of timers. Thus non-confluence patterns may include
active timers in situations with a race condition between normal channels.The existence
of an active timer could be necessary to show non-confluence.

In Figure 76 (p. 120) we see a state overview diagram of a process where the existence
of timers in non-confluence patterns is shown to be necessary. The legend is that the cir-
cles are basic states, the edges represent transitions where the text is “input/output”.
Default transitions are not shown. In Figure 76 (p. 12@jdy are input on different
channelst is a timer and when it is on the output side of the slash it means that it has
been set in the transitiomy,w are external output on the same channel.

wia

't

Figure 76: Non-confluence with timers

We can see that in basic staj¢he potential non-confluence pattezix,y) does not lead
to a non-confluence since we have the Mn-procedure branches shown in Figure 77 (p.
121).

We notice also that we have considered the timer which is set in the transitions and also
included the continuations when the timer expires.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Timers

(Zrma——(faytailay 5 Taqrd Nag; 7]
(Frma—Hdoad—>{daqtalNaq o
Figure 77: Timers and confluence (1)

Likewise in basic state no non-confluence can be found for patistry) as can easily

be seen from the commutative geometry of the transitionsgrdrhe patterns;x,y;t)

where t is an active timer, however, does lead to non-confluence as we can see from the
execution tree in Figure 78 (p. 121).

(Frgtd—H(TagialNand— = Wag sl Fag sl Faa i)
(Fograd— 2 Toged{Nya, N> Waa] Taq s Faq d

Figure 78: Timers and confluence (2)

We summarize confluence and timers by the following points:
1. Timers are considered to have an external channel of their own;
2. Active timers are considered to have the option to time out;

3. Itis not sufficient to consider potential non-confluence patterns without the timers (as
shown by the example in Figure 76 (p. 120)). It is not sufficient to consider the timers
only in the transitions where they are set.

4. Potential non-confluence patterns in processes containing timers must also consider
all situations where the timers may be active.

3.7.4 Reduction

When having considered progress and confluence it is reasonable to consider the reduc-
tion once the process has been shown to be reducible.

We shall see that we have two possible approaches to how the final reduction should
appear:

1. The timers are completely eliminated.
2. The timers of the components appear as timers in the reduction.

The first approach sees the timers only as means to ensure progress and possibly some
non-determinism. The second approach wants to retain the element of time also in the
reduced process. So in fact our choice of strategy should be dependent on the purpose
of the timers of the components.

3.7.4.1 The Alternating Bit Protocol Revisited with Timers

We shall give one example of the use of timers which also reveals a few interesting fea-
tures of timers and reductions when applying timers. We take the Alternating Bit
Protocol presented in Section 3.5.3.1 (p. 100) as our starting point. In our first version
the assumption was that all signals will arrive to the opposite process, but the signal may
have been corrupted. Any corruption will be detected. We shall now relax our assump-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 121

122

General Mn-procedure
Timers

tions by allowing a signal to be lost on the way. We model this by making the signals go
through a process which either forwards the consumed signal or just consumes the sig-
nal. The architecture is given in Figure 79 (p. 122).

system ABFT

Al [11:Lossy=in, a1= e [F-D,ﬂ

[EI:I, EH]E |EZLDSS'5.I'-=CE:|.E1:=-j [El:l,EI'I]f

Figure 79: Alternating Bit Protocol with Timers

The definition of the lossy channel is given in Figure 80 (p. 122). We notice that the

process Lossy=signal s1,52=

Figure 80: Modeling the lossy channel

lossy channel cannot be constantly lossy meaning that no messages come through. The
alternatives to actually transfer the message have positive probability.

A timer is introduced in theender which now is modified and shown in Figure 81 (p.
123).

TheReceiver remains as defined in Figure 58 (p. 102).

3.7.4.2 Progress and Confluence of ABPT

In Section 3.5.3 (p. 100) we argued for the progress and confluence of the diigiral
nating Bit Protocolwhere the signals could not get lost. The introduction of lossy
communication and a timer does not alter the general argument.

To assert progress we consider the changes made by the introduction of the lossy com-
munication. If no signals are lost, the arguments of the original version applies still.

If the A-signal is lost on its way from ttsender to thereceiver, there will be no action
by theRreceiver, but eventually the timer expires and another egisiginal is re-issued.
This is very similar to what happens if either thsignal or thes-acknowledgment is

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Timers

process Sender m
Sl

e | BIELY Se | B0BLYS
m 1errcr m igrror
Zetp

(ran) ()
B DB | Se] B | SR | Se 7
0)
[a0 >[an a1 “»[al

[=ettl | |SE'TI[T]| [resett | |se"c[t]| |se'|:[t]| resett

() () o) o) (Fo) o)

Figure 81: Modified Sender of Alternating Bit Protocol with Timer

found to be corrupted. We are back to the starting situation where the A-signal is sent to
the lossy channel. Since the lossy channel cannot be lossy forever this tight loop will be
resolved by the lossy channel finally forwarding the A-signal.

If the B-acknowledgment is lost on its way from Hegeiver to theSender, this is a sim-
ilar situation as above from the point of thader. Thesender cannot know what has
happened beyond his sending the A-signal. Whether it is lost on its wayRex¢hver

or from thereceiver is not different at theender. At theReceiver, the situation may be
slightly different as theeceiver may know that tha-signal has been properly received,
and thus output the external signal. Still a lost return frorrébever is similar to a cor-
rupted return, theender should retransmit the originatsignal, which is exactly what

it does when the timer expires. When ghgignal eventually occur at tiReceiver again
(due to earlier argument), tiReceiver will again issue the acknowledgment, but refrain
to output another external signal. Eventually the lossy communicatiorréesiver to
Sender Will forward the necessary numberssacknowledgments such that one is cor-
rect and also theender understands that the message has been successfully transmitted.

Considering confluence, the argument is still simpler. Since we are only interested in the
race conditions between the external input sigraeld internal signals ®ender B0,B1,

the use of save in theender makes sure that such race conditions are made illegal or
impossible. ThuaBPT is confluent.

SinceABPT is both progressive and confluent it is also reducible.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 123

124

General Mn-procedure
Timers

3.7.4.3 Reducible does not mean error free!

Here it is in its place to recall that reducibility is not the same as lack of errors. Even if
theABPT is reducible it may not do the job it was designed to do. What we know is that
the reduction will show the same behavior as the full system, but that behavior may not
be desirable.

In ABPT we know that the behaviors of the original versier is included in the newer
version sinc&BP is equal to an implementation of the channels which always forward
the signals. Still there may be more possible behavioxsrf than inABP. Such addi-
tional behavior patterns may be due to the timer expirations.

We said in Section 3.7.1 (p. 119) that a timer could trigger whenever it is active. If we
start reducing\BPT and let the timer expire very quickly, we see thattheier will
retransmii-signals not as a result of a lost signal, but just because the timer has expired
too early. This may quickly lead to an internal error. Assume that the lossy channels are
reliable for a while. Assume that the quick timer expiration results imbagignals

having been sent to tiReceiver. The firstao results in an acknowledgment of correct
receptionBo, the second results in an acknowledgmemieist designating corrupted

signal which in that state is alBo, Thesender then consumes the fiso and concludes

that the A-signal was correctly transferred and moveerial state. Before another
external input has arrived tlsender has to handle the secopal This is an internal

error.

The small fix of ABPT which consumes any B-signals in the Send states will theoreti-
cally work provided the external input is finite. The solution is not infinitely progressive
very much the same way as process G in Figure 41 (p. 70). Very similarly to that exam-
ple the Mn-procedure does not halt without manual intervention with induction proofs.
The clue here is that a message can be conveyedéiai toReceiver by any number

of (equal)a-signals and the acknowledgment can also be with any number of corre-
spondings-signals. The eventual consumptiorsind states will make the situation
stabilize. A practical problem is of course that the very quick timer expiration produces
more new signals than what is being processed and then this means that the number of
internal signals in the system will increase regardless of new external input or not.

Conclusively it is important that the timer does not expire before it is certain that the sig-
nal is actually lost and not just on its way.

3.7.4.4 Sufficiently big duration of timer t

We must make the timer sufficiently big such that it will not expire before it is certain
that a signal either is lost betwesgnder andreceiver or the other direction. On the

other hand we do not want the timer to be set to a duration much above what is needed
because that would slow down transmission on a lossy line.

Firstly let us assume that the timer is set to a sufficiently large duration. Firstly we shall
assume that “sufficiently large” means thatAlseT can always finish other internal
signals before the timer expires. Under this assumption one half of the reduction algo-
rithm execution is given in Figure 82 (p. 125). The other half is symmetrical taking the
other totally stable sta&iR1 as starting point.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Timers

[B0R0E20.0,0;0]

\ | Sa0Er

(WORDe: Mo ta)

\ Siandar Lowx A
+

| (WORD 2000 .a;t;aj (WORDe@ Aae ta)

[WORDee.0,.E1.0;ta]

| Loxx &
(+ WORT 2@ BOa;te

WORD2e@ @, B1;t.e]

Loxs &
Sander +
[WORT 202 2, B0t | WOR1 202 .E.EI;I;E']l
SeacEr
Seader
I [51R1e00.00 ;;E-]I [WORT;e;80,0,02;t
Logs A

[WORT 22 80,0 ;t:=

| Facaier

Figure 82: Reducing ABPT

The legend is that a complete state has the s Sender state Receiver; external input;
internal channels:Sender->LossyA,LossyA->Receiver, Receiver->LossyB, LossyB->Sender;
eventual active timers; external output). The states afender is abbreviateds” for “ Send”
and ‘w” for “wait”. States of th&eceiver is abbreviatedr” for “Rec”.

Since progress is due to fairness, the reduction tree is a directed graph with cycles. Tran-
sitions leading to states which has already been reached is shown by upwards arrows.
The cycles represent loops which will eventually terminate by the process escaping
through branches marked with (+). The branches denoted by fat lines are transitions
where the timer is set (again). Thin line rectangled states are semi-stable when consid-
ering an active, but not expired timer as a saved signal. The totally stable state is shown
by the fat rectangle.

By pruning all the loops, there is only one possible stable state whichsisRhstate.
This is exactly equal to the original reduction in Figure 61 (p. 105).

Our next question is how we may find such a sufficiently large timer duration.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 125

126

General Mn-procedure
Timers

3.7.4.5 Reductions and timed executions

We want to find some measure of how long the worst case executNeRDIs without

lost signals. It may not be certain that there is any upper bound. Let us rush to emphasize
that our basic model does not actually contain time. The arguments in this section is
therefore ad hoc in relation to the mainstream of this thesis, and yet another example of
how one verification approach alone may not be sufficient.

Firstly we assume that saving an external signal takes no time at all. Otherwise we may
always postulate a burst of any number of external input signals such that any given
upper bound is exceeded.

Secondly we assume that all transitions have a common upper bound of the duration of
the transition itself. When confluence is determined by MO-procedure only, we can con-
clude that all different execution traces depending on the choice of input channel have
the same upper bound. If also timers are included we must make sure that both sides of
every potential non-confluence pattern contain the same number of timer time-out
transitions.

In ABPT the save construct ensures that only one course of action is legal at any pointin
time. Race conditions never apply.

Still the loops of our reduction graph of Figure 82 (p. 125) may in principle be such that
any duration timer could be too small. The loops must not be such that internal signals
are executed unboundedly (not infinitely, because progress has been determined) with-
out the timer being set again. Inspection of the reduction graph reveals that every loop
has at least one transition which sets the timer. Thus we may conclude that the execution
without loss of signals is bounded. Closer inspection shows that 5 transitions are the
maximum including the transition setting the timer.

In the general case to find the worst case trace is by no means trivial and our reduction
strategy does not offer much help since the different choices cannot be described in
advance. We have summarized below the cases where our strategy can be of some help.
We assume that the system is reducible and the problem is to find the smallest suitable
duration for a timer.

1. Restrictions on the possible race conditionséwd make sure that only one choice
is valid at any point in the execution.

2. There is a reasonable common upper bound for all transitions and for every potential
non-confluence pattern the two branches are equally long.

3. Itis possible to determine from the Mn-procedures for every potential non-conflu-
ence pattern which choice will make the longest execution.

Otherwise manual invariants must be found.

3.7.4.6 The reduction which retains the time behavior

We showed in Figure 82 (p. 125) the reduction graph. Our reduced process can have two
forms as pointed out in Section 3.7.4 (p. 121), either eliminate the timers completely or
elevate the timers to the system level. In this situation where the timers are used only to
break a possible deadlock situation, time as such is of no significance. Therefore the nat-
ural strategy is to eliminate the timers and reach the reduction shown in Figure 61 (p.
105).

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Timers

Alternatively we could keep the semi-stable states as basic states in the reduction and
reach the reduction shown in Figure 83 (p. 127). The diagram shows half of the total
graph as the other half is symmetrical by exchangimgz in all identifiers.

process GEPT
? (bor)

: /“f>|tlf’9f>t| :

~ulf n
set(t] [+]
ny [+] reset(t) e[t

& G @ -

Figure 83: Retaining the timer information

This example is hardly a very good example to show the use of this kind of reduction
since the only thing that can happen in states’o andwoR1 is that the timer triggers.
The normal signals (here) are saved.

3.7.5 Concluding timers

Timers are a common means to ensure progress in real systems. Message loss and haurc
ware break down can be made less critical if the continuation of the system execution is
supervised by timers. We consider timers a special variant of non-determinism and in
general we assume that an active timer may always time out. The problem arises when
the timer expires too fast. We show that it may be necessary to assume a “large enough
timer value”. To find such a timer value may be difficult and the Mn-approach offers

little help other than in fairly special situations.

Having established progress and confluence (with sufficiently large timer value), there
are two variants of reductions. One variant eliminates the timer and leaves a process
graph without any trace of timers. This is the normal choice if the timers have been used
exclusively for progress purposes.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 127

General Mn-procedure
Procedures

The other variant of reduction keeps the timers and thus the reduction may also keep
loops where the timers are involved. The benefit of the latter variant is that it may be
simpler to use when there is a need to simulate a system and time is of the essence. In
the first variant, the duration of a transition of the reduction is typically unbounded in
time.

3.8 Procedures

128

The SDL procedure mechanism is used to structure the behavior of SDL processes. The
Mn approach can easily be applied also for such systems by transforming it to indepen-
dent processes. Once the procedure is working, the mother process is inactive. We
transform an SDL process with SDL procedures into a system of two (or more) pro-
cesses which together is reducible. The point of this transformation is to get the non-
basic SDL into the framework that we have already developed.

When the SDL process occurs in larger contexts, the only part which has to be analyzed
for confluence on the first generation is the mother part of the SDL process. The proce-
dure processes only communicate one by one with the mother part. This scheme is

recursive such that each procedure process themselves may be a system of a mother part
and a procedure part. In subsequent generations procedure processes come into play.

3.8.1 A Fictitious Procedure Example

The transformation can be shown by an example in Figure 84 (p. 128).

Eocess) xocedure P

= J>|i |>|i |

P
|
K

Figure 84: Introducing SDL procedures

By the transformation rules given in Section 3.8.2 (p. 129), the process with procedure
is transformed into the reducible system of two interacting processes shown in Figure
85 (p. 129)

The two transformed processes are shown in Figure 86 (p. 129).

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Procedures

hlock O
[iin] [in),startP]

[rout] [iouth,endP transP]

Figure 85: The structure of the transformed process

process f process B!

(in,)
e]

}endP| :‘_;-mnsPl i)

EY

B

Gy () (D) i)
S |
m |EXrar
(pro)

Figure 86: The transformed processes

CakhH G

v-
¥
)
3

[Error

B

-

3.8.2 The transformation scheme

The transformation rules can be summarized as follows:
1. Create the structure of the transformed block from the processghéne:

1.1 Create a process for the mother part (fr@r@nd one process for each proce-
dure (herep).

1.2 For each incoming channel, create a corresponding internal channel between
the mother part and the procedure part.

1.3 For each outgoing channel, create a corresponding internal channel between
the mother part and procedure part.

2. Create the mother part from the process main body by:

2.1 For each invocation of the procedure transform it to an output of a starting sig-
nal to the procedure P (hetartP) and move to a state with a unique name
(here:pwork). Such states are called “work-states”.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 129

3 General Mn-procedure

Procedures

2.2 For each such created work-state, handle four different kinds of signals:

* Normal external input signald hey are saved.

» External output signale/hich come from the procedure. They are re-
layed on to the surroundings of the mother process.

* endP This is a signal which designate tReturn of the procedure. This
transition should contain the rest of the original transition after the pro-
cedure invocation.

» transP. This designates the termination of a transition of the procedure,
but noReturn. This means that the procedure waits in a state. Nextstate
should be another unique state (hexeiit). Such states are called “wait-
states”.

2.3 For each such created wait-state handle two different cases:

* Normal external input signal hey are relayed to the procedure.
» Everything elsevhich designate an internal error and is represented as a
save

3. Create the procedure process from the procedure by:

3.1 The start transition of the procedure process is empty leading to a new state
(here:start).

3.2 From this start state handle two different cases:

» startP. This is the real starting of the procedure and the transition should
be equal to the start transition of the original procedure which should end
by either the output afndP or transP (See explanation below).

» Everything elsa@lesignates an internal error.

3.3 Every transition of the original procedure should be repeated in the procedure
process, but they should end by either outputig or transP.

* endP should be output when the transition terminates wiketarn.
The nextstate should be the start state.
» transP. should be output when the transition terminates in a nextstate.

There are some minor problems concerning this transformation scheme. Firstly there is
the problem of modeling recursive procedures. The transformation scheme is a static
transformation and it cannot handle the unlimited number of procedure invocations that
recursion needs. If we used process creation instead of sendingtthsignal, and let-

ting the process terminateRéturn, recursion could also be handled. Tyaamic link

of the call stack would be represented by the predefined SDL fupatmn In this the-

sis we have not covered how systems with dynamic process creation should be handled
by the Mn-approach.

Secondly there is the problem of naming and of name scopes. This is a trivial problem
which can be handled by clever naming schemes which we find no reason to cover here.
If we also want to model a procedure accessing or modifying variables in its enclosing
scopes, we need to introduce a pointer (SB)): called astatic linkbetween the trans-
formed processes which would represent the linkage between different levels of
enclosure.

130 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Procedures

3.8.3 How to analyze procedures

Itis quite evident that the transformed block is reducible to a process which dynamically
corresponds to the original process with procedure. The transformation scheme creates
a one-to-one mapping between transitions of the original and transitions of the trans-
formed. To perform the reduction is of little use as it will amount to expanding the
procedure in the original. If the procedure has been used more than once, this is not
effective. The gain in work load must lie in considering the mother part of the process
separate from the procedure part. The procedure part should be analyzed separately. The
gain becomes even clearer when one considers the situation where the procedure is local
to an enclosing scope unit and thus used inside different parts.

How can we analyze the procedure (as process) separately? When we analyze for reduc-
ibility a block of processes, determination of confluence can be done piecewise taking
each process by itself. This corresponds partly to separate analysis.

3.8.3.1 What is special with procedures

Procedures have no gates. Thus we have no idea from the procedure definition itself
what input channels and output channels it has. The procedure takes on the channels
(signalroutes) of its enclosing process, but in SDL-92 procedures may be local to a block
and therefore it may be used in principle in all processes of the block. Thus we must
cover all situations represented by the intersection of signal lists on channels and the
input signal set of the procedure to find the potentially problematic signal pairs. We ana-
lyze the procedure for confluence relative to these potential situations. They represent
the use of the procedure in each of the components processes.

Procedures are tightly coupled to its enclosing process (or procedure) which means that
there is no need to consider progress or confluence problems involving the special con-
trol signals between mother part and procedure part (sten®, transP, endP).

3.8.3.2 Progress

Often progress cannot in general be determined piecewise. Non-progress (i.e. livelock)
may in certain (very odd) cases be determined. We may determine whether the signal
ordering criterion holds within the procedure. This may indicate whether an enclosing
scope unit is in turn progressive.

Some procedures may not produce internal signals at all, and then the procedures cannot
cause live-lock and as such they can be said to be locally progressive.

3.8.3.3 Confluence

Can the procedure be analyzed separately wrt. confluence? The answer is not a simple
“yes” or “no”. The transformation scheme makes it possible to see the mother part as
transparent wrt. the incoming and outgoing signals of the procedure. Furthermore the
control signals (HeretartP, transP, endP) can surely not be involved in any non-conflu-
ence pattern.

We have a few different alternatives corresponding to the evaluation categories of the
Mn-procedure. For each possible channel configuration the following verdicts can be
reached.

1. ConfluenceDuring M0O-execution confluence of all branches is established.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 131

3 General Mn-procedure

Procedures

2. Non-confluenceA potential non-confluence pattern is found. We must be aware that
stabilization are often dependent upon other components and then it cannot be per-
formed separately.

3. Sequence permutatioll0-execution shows sequence permuted internal output. The
non-decisive output of the separate analysis is the M1-internal signal sequences, and
the M1 input alphabet. M1 of the procedure is not executed by the procedure itself,
but rather the components which communicate with the caller of the procedure.

3.8.3.4 Conclusions of separate analysis of procedures

Conclusively we can say that a procedure does not lend itself easily to separate analysis
for reducibility of its users or enclosing scopes. This is not very surprising and the causes
can be divided in two groups:

1. A procedure haso channel interfacéor signalroutes, or gates). This means that we
must look at the usage of the procedure to find which channel configuration we need
to compare against. The reason for this is mainly because procedures defined in
blocks are basically shorthands for many definitions of similar procedures inside the
processes of the block. When the procedure is defined within a process, the channel
interface of the procedure is the same as the one for the process.

2. Communication is central to the concept of reducibility. To conclude confluence by
separate analysis the procedure needs to be confluent regardless of the communica-
tion. We would expect this to happen rather seldom.

We feel that expanding the procedures during the analysis will probably often pay off.
When a separate analysis concludes confluence, which is what we want, this would
probably be quite simple to conclude also from the expanded process where the proce-
dure calls have been expanded. Expanded procedures also have the advantage that all
reachability situations have been resolved, while the separate treatment of the procedure
also handles situations which can never occur.

Separate treatment does have an edge when the procedure is recursive because then the
expansion may not be statically decidable. Furthermore separate treatment is more
robust wrt. changes in the use of the procedure. Typically errors occur when procedures
are used in ways which they were not really designed for.

3.8.4 Concluding procedures

We apply a simple transformation scheme to convert a procedure call/return into asyn-
chronous communication between the mother part and a process corresponding to the
procedure. This transformation makes it possible to treat procedures in the same frame-
work of processes as we have devised already.

The separate analysis of procedures shows strong limitations, but it is very dependent
upon the procedure, what a separate analysis can find. One important problem is that the
procedure, unlike a process, does not have clear channel interface. This makes it more
difficult to establish which race conditions are potentially present.

132 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Object orientation: Inheritance and virtuality

3.9 Object orientation: Inheritance and virtuality

How does the object-oriented concepts of SDL-92 affect the Mn approach? By “object-

oriented concepts”, we consider pure types, inheritance and virtuality. In Section 3.8 (p.

128) we handled procedures which are an example of a pure type. We shall go in more
detail into what we can expect to reach when analyzing a type separately. This we shall
use as base for our handling of simple inheritance. Virtuality adds another dimension to

the analysis as an internal part is partly unknown.

3.9.1 Pure types

The main idea about pure types is that instances of the type can appear several times
within the defining scope of the type. Thereby the same type definition is applied several
times. This is what is normally called “reuse” of a pattern. In SDL the instances of the
type will be identical up to the interface while a superfluously similar construct macro
may lead to very different situations when applied several times since the semantics is
dependent upon its expansion environment.

Thus a reduction of lock type B to aprocess typesP means that during the analysis

of blocks and block types surrounding instances oblibek type B, we may instead of

B useBP to find out the behavior. In many cases this simple compositionality explained
in Section 4.1 (p. 143) is very practical to reduce the complexity of the analysis. In cases
where we do not want to use our reduction strategy on this enclosing level, we may still
use the reducesp in stead oB as it externally behaves identically. This use of the
reduced version in place of the original one, we may calhthardsuse of reduction

for the analysis of an encloser.

Theoutwardsuse of reduction is when we want to use our reduction strategy also for
the encloser. We recall that progress typically is not done piecewise while confluence
typically is determined piecewise.

Let us here concentrate on confluence. Assume that we are analyzing the encloser for
confluence. In the first place this means analyzing whether each component (and there-
fore also ang) can produce a non-confluence pattern. Whethes tla@ produce a non-
confluence pattern is dependent upon whether the input and output chamnels of
(described agatessinces is a type) are internal or external to the encloser under anal-
ysis. Seen frors only, paying no attention to which enclosing unit we analyze, we may
qualify its confluence by the kinds of the channels (gates).

We assume first thatis confluent as such, meaning that it is confluent given that all
input channels are external and all output channels are external. This we rbagicall
confluencebut we have both weaker and stronger forms of confluencestidregest

form of confluences when & never can show a non-confluence pattern in any encloser.
This happens i is confluent when all input channels are internal. We notice that such
a configuration is typically a component of a system since the input channels are not
necessarily connected to the outputs. Therefore stabilization will in general need other
processes as well. Conclusions can only be drawn from this when stabilization can be
decided from this component alone. Otherwise eventual strong confluence is dependent
upon a successful stabilization. Theakest form of confluenegwhen all the output
channels have to be internal becamigeoduces sequence permutations onto the chan-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 133

3 General Mn-procedure

Object orientation: Inheritance and virtuality

nels and it must be up to the process receiving signalsgftoncompensate the non-
confluence oB. Between the strongest and the weakest forms of confluence there are
all variants depending on which kind the problematic channels are. We call this out-
wards use of reduction because during the analygisvaf can specify the role afin

the confluence of enclosers.

We have here concentrated on the MO confluenee Ibfis possible also to keep as
annotations t@, higher generation information. Assume that during the analysis of
some enclosing entity of B, we found that componeatto be weakly confluent depen-

dent upon the compensation®pyn M1. This means that we find an M1-alphabet and
1

an M1-origin fromA which we try orB. If B is able to compensate for the non-conflu-
ence ofa, this ability to compensate could be stored as a propestyitas not practical

to try and solve the M1 situations in advance since there is an infinite number of possible
M1 situations. Such practical considerations will be covered in greater detail in Section
5. (p. 177).

3.9.2 Simple inheritance

Inheritance in object orientation means that a new type is derived from another already
existing type. The relation to the existing type is established only by referring to the type

in an inheritance clause. In SDL this referencing is done in the header as can be seen in
Figure 88 (p. 136). The semantics is that the new type starts as a copy of the inherited
type and adds new features in its own description. Hierarchies of inheritance represent
conceptual structures where the most general concept is at the root and the more special-
ized concepts closer to the leaves.

Inheritance without virtuality is not much more than plain aggregation when it comes to
analyzing it for reducibility.
3.9.2.1 Inheritance of block types

Inheritance of block types means that a mother part and a specialization part are aggre-
gated as two blocks besides each other. There are three different possibilities.

1. The specialization and the mother part share nothing.
2. The specialization and the mother part share gates.
3. The specialization adds channels which go to/from the mother part.

Let us assume that we have proven reducibility of the mother part. Our aim is to prove
reducibility of the inherited type.

The first case is very simple. It suffices to prove reducibility of the specialization part.
The second part is slightly more intricate as we in principle need to include fair merge
components (with onmergestate as shown in Figure 67 (p. 111)) wherever the outputs
are merged in gates. The third case is the most intriguing as it is necessary to study new
potential non-confluence patterns of the mother part since new input channels imply
new race conditions.

1. Mn-origin is a double complete state where the generation change take place. Here the pair of sequences of
signals are of highest significance.

134 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Object orientation: Inheritance and virtuality

3.9.2.2 Inheritance of process types

Inheritance of process graphs means that the transition matrix is expanded. During the
analysis for confluence this means that for the specialization many of the potential non-
confluence patterns have been handled by the analysis of the mother part. They naturally
need not be taken again. Thus it boils down to analyzing the new situations defined by
the specialization. We need to consider new states with all signal pairs, and old states
for new signal types.

3.9.3 Virtuality

Here we shall reengineer the Brock-Ackerman example presented in Section 3.5.4.2 (p.
109) by letting the varying park be a virtual processk andTk are then stable block
types representing the context of the variations as shown in Figure 87 (p. 135).

in i EY
wrua
system bype Tw[i] ¥i1|| [block type =
virtual block Rk ¥ (I ¥

= =5k

D=i=

¥l

[i.]

Figure 87: Brock-Ackerman and virtuality

The specific variations can then be described as inherited systermiygresr2 where
the different variants @tk are redefined as shown in Figure 88 (p. 136).

To analyze the Brock-Ackerman example relative to this object-oriented approach, we
start by trying to reduce the remainder of the block type enclosing the wvittUdlis is
depicted byrk in Figure 87 (p. 135). The remainder is not necessarily reducible as such,
but in this particular casek is reducible. Progress ek follows immediately from the
signal ordering criterion, and confluence follows frorheing incapable of showing
non-confluence patterns on any level as it has only one input chewmineby definition

also confluent for all enclosing levels.

3.9.3.1 The reducedk

To reducerk and to observe the reducekl (Figure 89 (p. 136)) may give valuable
insight into the requirements ka and the potentials a&fk andTk.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 135

3

136

General Mn-procedure
Object orientation: Inheritance and virtuality

block type T1 inherits Tk redefined block type
==systemn type T1==3K
rEdEEgnEd inherits <=system type Tk== Sk

block type TZ inherits Tk

“defined like P
redefined redefined block type
= ==gystem type T2==2K

inherits <=system type Tk:== =X

“defined like P2
Figure 88: Variants of the Brock-Ackerman example

process Fh

S

Q

Snli

Y

Figure 89: Reduced Rk (Sk except Pk)

The reader should make sure he accepts Figure 89 (p. 136) as a reasonable reduction of
the block Rk.

1
non e
1T

3.9.3.2 Progress afk

sk will be progressive as long asis internally progressive since there are no feedback
loops in Sk as such. With variantsred P1 andpP2 they are trivially internally progres-
sive since there are no signals internatt@ndp2.

3.9.3.3 Confluence o$k

Since Rk is reducible as sudh, is confluent becaus& cannot include any non-con-
fluence pattern since it has only one input channel. Any non-confluence patern in
relative tosk would also be a non-confluence patterrkmelative to itself sincek and
Rk share input channels.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3

Object orientation: Inheritance and virtuality

3.9.3.4 Progress of Tk

Tk has a feedback loop B8 may produce awhich is fed back intgk, which in turn
producesi,jl ontoDA. SinceDA produces afrom ani, but nothing from @ it suffices
thatsk does not produce arig from consuming ato secure progress of. This suffi-
cient condition may prove to be too strong. Conversely it is quite simple to find a
redefinition ofsk (by redefinition ofPk) such thatrk is not progressive. The clue is of
course to produce i's from j's.

In our cases1 andT2, the fact thabP1 andP2 actually terminates after having issued
two signals ensures progress (or termination) in a very abrupt way.

3.9.3.5 Confluence of Tk

Provided thatk is progressive according to Section 3.9.3.4 (p. II&7$ also confluent
sinceDA cannot contain a non-confluence pattern since it has only one input channel. Sk
is reducible and Tk’s channels are a subset dfkl@hannels. Therefoisk cannot con-

tain a non-confluence pattern .

3.9.3.6 Possible restructuring of Tk

If we consider it important to give a description of everything except the (unknown) vir-
tual part, we should try and restructure the block such that the virtual part becomes
isolated also irmk. This is shown in a slightly non-standard SDL-diagram Figure 90 (p.
137) mixing processes and blocks.

bBlock tywe Th
block RTE ¥ [

Nl

Bk
*npm

| . m
B,)
¥irid

Cr i

I
LT

Figure 90: Restructuring of Tk making RTk as Tk except Pk

It is simple to assert that alsok is reducible and the reducrtk is shown in Figure
91 (p. 138). In order to avoid confusion concerning the differantij-signals, we have
annotated some of the signals with to signify that we talk about signals internal to
the originalFm process, and by to signify that we talk about input/output to/from the
Pk process(es).

What can be seen from tRek is dependent upon the knowledge and the experience of
the reader, but at least it shows the whole environment of the \Bkuabne process.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 137

3

138

General Mn-procedure
Object orientation: Inheritance and virtuality

process FTh

T

©

S S S e S] 3]

1T

O

EDEP}
s
(0 O O OO

Figure 91: RTk reduced

3.9.3.7 Virtuality constraint

SDL gives the possibility to specify a virtuality constraint for the virtual entity. In fact
the default is that the default definition of the virtual also acts as the virtuality constraint.
A virtuality constraint is a type which every redefinition of the virtual must have as
mother part (on some generalization level). Informally speaking the virtuality constraint
is some properties that at least must be present. In our context of reducibility, we are
sorry to say that virtuality constraints do not help much. We cannot by a virtuality con-
straint specify that the redefined entity must be reducible, or that the encloser of the
virtuality shall have to be reducible for any legal redefinition. Reducibility, progress and
confluence are features that are “fragile” since it is simple to have just a few new pieces
of behavior ruin the property.

Still the virtuality constraint plays the same role as any mother part does in inheritance
as described in Section 3.9.2 (p. 134).

3.9.3.8 Concluding virtuality

We summarize our attitude towards analyzing types containing a virtual type.

1. Collect all parts not virtual in an entity and analyze it for reducibility.

2. If the remainder is reducible, reduce it and observe the reduced process to get some
intuition about the potentials of the system and the variability of the different possible
redefinitions.

3. If the remainder is not reducible, this means that the virtual parts have some second
generation requirements to fulfill in order for the container to be reducible. These
confluence requirements can be made explicit (but not in standard SDL).

4. Consider progress and confluence of the types containing a virtual type by figuring
out what requirements the virtual parts must fulfill to secure progress and confluence
of the enclosing type. These derived requirements can be made explicit as a (non-
SDL) virtuality constraint.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3
SDL Service

5. The (non-SDL) virtuality constraints can fairly easily be checked for every redefini-
tion of the virtual type. Thus the original analysis work was well worth the job.

3.9.4 Concluding object orientation

The object-oriented features of SDL-92 which serve well to support the design process,
give some support for our Mn-approach since reuse of types also means reuse of analysis
(wrt. reducibility).

The concept of a pure type is practical, because if the type can be proved reducible, the
reduction can be used in stead of the expansion of the type for all instances. More about
compositionality of reducibility can be found in Section 4.1 (p. 143).

Simple inheritance may also give some gain in Mn-procedure efficiency since it
amounts to reusing the mother part (or large parts of it).

We treat virtuality by conceptually transforming the system such that the virtual parts
are outside a “core” part which is checked for reducibility. If there are several virtual
parts, it is reason to believe that the core may not be reducible, or the reduction does not
really give much gain in perceived complexity.

Virtuality constraints expressible in SDL-92 cannot ensure that the property of reduc-
ibility is maintained, which of course is a disappointment. Virtuality constraints mean,
however, that redefinitions must reuse large parts of formerly analyzed types which
implies that much of the analysis for reducibility can also be reused.

All'in all, extensive use of object orientation will make the analysis for reducibility more
efficient through the use of reductions and of earlier analysis efforts provided such
efforts are properly recorded.

3.10 SDL Service

Services are light weight processes in SDL. They are communicating finite state
machines that share the same input port and that execute alternately i.e. only one service
of a process runs at any point in time.

That the services share the same process input port is of no relevance relative to our
basic model (see Section 2.1.2 (p. 42)) since we consider every channel/signalroute a
queue.

That the services execute alternately is not very important either, since we assume that
the transitions are atomic in our model. The only consequence is that we do not need
implicit fair merge components where the services output to the same channel/signal-
route since the transitions have no need to be merged with other transitions which could
have run concurrently.

We conclude that SDL services are very much like ordinary SDL processes.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 139

3

General Mn-procedure
Priorities

3.11 Priorities

140

Basic SDL gives neither priority to specific processes nor to specific channels or signals,
but the conceptriority input modifies the picture. There is also the question how even-
tual priority schemes would influence the Mn-approach.

3.11.1 Priority input

In principle the priority input feature is a way to permute the consumption of signals
similar to the effect of save. But the differences are more evident than the similarities.
Priority input is significant when there are more than one signal present in the input port
of a process and later signals are priority input while the head signal is not. For analysis,
however, most often we cannot know whether we have one or more signals in a queue.
The Mn-approach emphasizes the independence of signal receptions.

One could think that priority input would play a role in resolving sequence permuted sit-
uations on the next generation as the permuted sequences could have a priority order of
signals which would harmonize the result. Then the reader should bear in mind that the
Mn-procedure does not state that the signals are actually present at the same time, but
only that there is a certain sequence of signals on the different channels. At which point
in time the signals appear in the sequence is not part of the Mn-procedure.

Rather the contrary, if we have sequence permutation, this means that on one channel
the sequences of signals may differ from situation to situation. The signals have to be
sent in sequence and we have no guarantee that the receiving process cannot consume
them at once. Therefore we cannot ascertain that the second signal is given priority over
the first since when the first signal arrives, the second may not be known to the receiving
process at all!

The situation is of course different when we have a process which does feedback to itself
without delay. Our example process D can be seen as such a process with immediate
feedback. If we gave priority in all states to the internal signals (0,1), we would trivially
have that the process was confluent since all internal signals produced had to be handled
before the next external signal is consumed. Again if the feedback channel was with
delay, we are back to the more general situation again where nothing can be certain
about the concurrent appearance of different signals.

A special case of the immediate feedback situation is a process which is decomposed
into services and the services communicate via priority inputs (and there are no other
priority inputs). This will be very close to the SDL-88 [25] definition of services and as
noted above the process as a whole will be confluent.

3.11.2 Priority for internal signals in blocks

The immediate feedback situation can also be implemented on a higher level than for
each process. If an SDL system (or SDL block) is implemented on one processor (in one
operating system task) then it is reasonable to assume no delay on communication and
atomicity of each transition.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General Mn-procedure 3
Concluding Mn-procedure for SDL

If we also have a scheme of priority to the internal signals, we find ourselves in a situa-
tion very similar to the situation with services in Section 3.11.1 (p. 140). But the
situation is not identical as the processes of such a one-task block are still in principle
independent and share no input port. Therefore if several internal signals are output from
one transition to several different processes, their individual orders are not predeter-
mined. We must also enforce the invariant that the internal (prioritized) signals should
be consumed in the order they were output. If there is a central scheduler in the block,
this invariant can easily be implemented. The result would be a block which is reducible
by its concrete implementation.

We have in our special situations considered only possibilities where the signals are
given priority in all states of a process. We have not exploited the possibility to let a sig-
nal be prioritized in some states and not in others. In fact our special implementation
have given priority to specific (internal) channels rather than to signals.

3.11.3 Concluding priorities

Priorities seems more promising at first glance than after more careful study. It is clear
that priority input may often optimize the execution of a system, but the Mn-approach
analysis is not automatically made simpler.

Combined with global scheduling of signals, priorities may be used to facilitate achiev-
ing confluence and reducibility of a block.

3.12 Concluding Mn-procedure for SDL

In this chapter we have studied how the Mn-procedure must be modified to cope with
SDL systems which have more features than the simple process studied in Section 2. (p.
41). To our great satisfaction, the Mn-procedure can be modified through simple means
to cope with the most important mechanisms of SDL.

Firstly we established that the Mn-procedure performed well on systems with multiple
processes communicating through multiple channels. We found that the Mn-procedure
was approximately linear in effort with the number of processes since a non-confluence
pattern could only appear inside an individual process.

Secondly we found that ttreavemechanism was actually very practical to ensure con-
fluence. We had to make a distinction between totally stable states and semi-stable
states, and correspondingly between weak progress and strong progress. An interesting
result was that strong progress very often could be deduced from weak progress and
reducibility by studying the reduction.

Thirdly we introduced explicit non-determinism and the Mn-procedure had to work on
more complicated set structures. Still the extension made the Mn-approach more expres-
sive. We suggested extensions to SDL which also would make SDL specifications more
expressive.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 141

142

General Mn-procedure
Concluding Mn-procedure for SDL

Fairness in non-deterministic decisions makes it possible to determine progress without
introducing data. Our definition of fairness has been labelled extreme or probabilistic
fairness, and it is an imperative style of fairness. In a non-deterministic decision some
branches may be labelled (+) designating a positive probability to happen. We applied
this to the Alternating Bit Protocol example.

Spontaneous save was introduced to cope with race conditions which were explicitly
acceptable. Typically spontaneous save was used in connection with fair merge compo-
nents. The spontaneous save (or merge state facility) is only a syntactic reformulation
which makes it possible to express race conditions in cases where only one competitor
is actually known to be present. This new feature uses a well known SDL mechanism,
the save, to express in a finite way an infinite set of merge situations. By applying this
notation to the Brock-Ackerman anomaly we showed that the expressive powers are
adequate.

Fourthly we showed that timers could also be handled as special cases of non-determin-
ism. Still we realized the general shortcoming of SDL and our approach to cope with
real time constraints.

Fifthly we applied a simple program transformation scheme to convert SDL procedures
into a system of communicating processes such that procedures could be handled in the
same framework as we have already established.

Sixthly we showed that object orientation could give performance effects since reuse of
types also means reuse of reducibility analysis. We distinguished between inward use of
reduction, meaning reductions used in place of originals in subsequent analysis, and out-
ward use of reduction where the aim is to analyze a type separately and specify more
closely what assumptions it makes about its usage environment. We were disappointed
to realize (but hardly surprised) that it is not possible for an SDL virtuality constraint to
ensure reducibility of the redefined type (or its encloser).

In addition to the above points we also discussed infinite input streams, SDL services
and priorities, neither of which had much influence on the Mn-approach as such.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

4 The Mn-approach and for-
mal analysis

Experts

Experts have
their expert fun
ex cathedra
telling one

just how nothing
can be done

4. The Mn-approach and formal analysis

Once we have used the Mn approach to reduce a system or a part of a system, how can
this new form of the system be used for verification purposes?

4.1 Compositionality of reducibility

Having shown how reducibility of a system (or block) can be performed piecewise (Sec-
tion 3.3.6 (p. 93)), it becomes interesting to discuss how reducibility results of analyzing
components can be used for the analysis of the whole block. We would prefer that when
we have found a component to be reducible (on its own), the reduction can be used when
the enclosing block is to be analyzed for reducibility. This is indeed the case and this
section explains how and why.

4.1.1 Confluence and context

Reducibility is dependent upon the boundaries of the unit which is to be reduced. Even
though the Mn-procedure can be applied piecewise, this is not the same as asserting that
reducibility of a part is equivalent to reducibility of some enclosing unit. Any reduction

is relative to a set of external and internal channels. The distinction between what is
external and what is internal may be crucial to the property of reducibility since the
whole purpose of reducibility is to show independence of internal actions.

The importance of the distinction between internal and external is easily seen from the
blockuv shown in Figure 50 (p. 92). By itself process non-confluent since the out-

put onc4 may be permuted and when seen as external output this is sufficient to be non-
confluent. In the wider context of block the channel4a becomes internal and the pro-
cessv remedies the permutationsaafby separating the external output.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 143

144

The Mn-approach and formal analysis
Compositionality of reducibility

We may consider the position of a process relative to confluence of its enclosers. The
wider the context, the more sensitive the process is for input channels because external
input channels may become internal and thus require independence. On the other hand,
the wider the context the less sensitive the process is for output channels as external out-
put becomes internal and therefore subject to allowed permutations.

4.1.2 Defining: compositionality

Compositionalityneans in general that the result of the analysis of the components are
used in the analysis of the whole system.

Compositionality of reducibilitin an SDL system means that the result of the reducibil-

ity analysis of the components can be used in the analysis for reducibility of the whole
system. The result of reducibility analysis is a reduction, a reduced process. Thus com-
positionality of reducibility means that in order to analyze a full system it suffices to use
the reductions of the (reducible) components to replace the original components.

4.1.3 Proving progress

We argue that progress of the whole system can be found by analyzing a system con-
taining reductions of the original components.

Progress is basically the absence of eternal loops of consumption and production of
internal signals. When a component is proved to be progressive, it is without eternal
loops regardless of in which order the external input signals come. Therefore enclosing
this component in a block cannot make the component have an eternal loop inside itself.

Any eternal loop of the block must come from a loop which is at least partially external
to the mentioned component.

In such a situation the reduced version of the component is just as good as the original
since the signalling interfaces are identical.

4.1.4 Proving confluence

In this section we argue that confluence of the whole system can be found by analyzing
a system containing reductions of the original components.

The reader may already be convinced that our compositionality statement above is cor-
rect, but we shall go through the argument in greater detail.

For any system which is non-confluent, the non-confluence shows up in its individual
components. Therefore it is meaningful to state that a systarns non-confluent by
non-confluence in its componest

Assume that we have a systean consisting of subsystema1 andAA2 as shown in
Figure 92 (p. 145). Furthermosa1 contains a procegs We have established thret1
is reducible, and the reduction we nama@Reduced. AAASubst iS AAA WhereAALl is
replaced byz\A1Reduced.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

Compositionality of reducibility

4.1.4.1 IfAAAsubst is reducible, so iAAA
Is it possible that forAA, non-confluence can show upAf

system & o
a0
(]
-~ B ™" oz [
9 oy i
i : .,
Y)
Iant.erEmaJtD inputesemal o A4Tand output external to 84T and &,
Ao, 541 and & O, butintemal to HA4 butinternal to &40

Figure 92: Compositionality

If non-confluence can show upATelative toAAA, there must be a non-confluence pat-
tern inA consisting of a race-condition with at least one internal queue. We have
different cases:

1. The internal queue involved in the assumed non-confluence relatixg s also
internal relative taA1. Then the situation has been covered wheas analyzed rel-
ative toAA1. SinceAAl is reducible by assumption, there is no such non-confluence
pattern withinaA1.

2. Theinternal queue involved in the assumed non-confluence relative ivexternal
relative toaA1 described in Figure 92 (p. 145). This means that the pattern has not
been considered during the analysis relativean

The question with 2 above is whether the situation has been considered during the anal-
ysis ofAA1Reduced relative toAAA.

For the non-confluence pattern to be really interesting it has to be reachable which
means that there is an initial state of the whole sysex(which includes the initial

state ofa) with a sequence of appropriate&AA-external signals such that some execu-
tion of it will reach the assumed non-confluence pattern and from there two different sets
of stable states relative Aa@A can be reached.

1. Assume complete non-confluent state ofNy: = (S;%.X;$;0) reachable in
AAA. (Irrelevant other parts @&AA has been omitted in the complete state shown)

2. Assumen, reached by applying the external sigrafnto the initial state and per-
forming an appropriate sequence of internal transitions.

3. Assume that;, is the result of applying t, the signals..x.; and stabilizing.
Assume correspondingly thiat is the result of applying t, the signalsx.. and
stabilizing. We have thatjEL .

4. Then it is obvious that andL, are reachable inA1 only be projecting the execution
within AAA ontoAA1. The involved external signals relativeA@1 to reach.; is
E+xceXi¢ and to reachn, it IS E+xgxqed-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 145

The Mn-approach and formal analysis
Verifying refinement

5. ApplyingE to AA1Reduced Will bring it to some stat®. Then applying.ex.io will
bring it toL,; sinceL; is stable and the reduced process is identical to the original when
external signals have been applied and the result stabilized. ApglyiR@ to X
leads ta.,.

6. Then we have two different execution results frodepending on the permutation
of x.e andx;. Sincexi is internal relative taAA, this means thatis a non-confluence
pattern ofAA1Reduced relative toAAASubst.

7. If AAASubst has been shown to be confluent relativeAa, such a statg cannot
occur.

8. Thus the conclusion is that confluence can be established in a compositional way.

4.1.4.2 IfAAASubst is non-confluent, so iIAAA

This is trivial. If AAASubst has a non-confluence pattern, this must show up in either
AAlreduced or inAA2. If it shows up in the latter, it will of course also show up in
AA2 in AAA.

If the non-confluence pattern isA1lreduced, the same non-confluence pattern must
occur inAA1 of AAA sinceAALl has a path corresponding to every paivAireduced
due to the way the reduction algorithm works.

We must conclude that non-confluenceAdfASubst implies non-confluence &AA.
All together we have tha&AASubst is confluent iffAAA is confluent.

4.1.4.3 The reduction cAAASubst is the same as the reduction ARA
That we can usAAASubst as the base for reducidghA is also almost trivial.

We assume that we have foulhdA reducible by findingAAASubst reducible.

Assume that we want to perform the reduction algorithrAAA. Whenever there are
internal signals which are also internal signal8Afl we execute these. This is legal
because the reduction algorithm opens for executing any internal signal as pointed out
in Section 3.2.4 (p. 89). By this strategy the reductiofA will include elements of

the reduction oAA1 into AAlreduced and thus executing the result of that reduction
(namelyAAlreduced) must give the same effect.

4.1.5 Concluding compositionality of reducibility

Since both progress and confluence are compositional wrt. reducibility, reducibility is
also compositional wrt. reducibility.

In enclosing blocks, reduced versions of components may be used when analyzing
reducibility. The reductions can also be used in the reduction algorithm.

4.2 Verifying refinement

146

Refinement has become a buzzword in software engineering. The idea is that by giving
a description on a high abstraction level first and then giving corresponding descriptions
on lower abstraction levels afterwards, it should be possible by formal means to prove

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

SDL

Definition

The Mn-approach and formal analysis 4

Verifying refinement

that the descriptions actually correspond. If the increments can be made small, it is sup-
posedly possible to move from abstract to concrete solutions and keep the description
complete and consistent at all times.

As a practical way to design systems, we do not believe in this paradigm, as we describe
in more detail in Section 5.1.3 (p. 180). Still the idea of refinement is a very attractive
and practical concept. It is beyond doubt that there will be both abstract and more con-
crete descriptions of the same system, and there is a definite need to keep the
descriptions inter-consistent. In this section we shall give an example how the Mn-
approach can be used to support verification of refinement.

4.2.1 The Refinement model

We assume that we have an abstract description in SDL and a more concrete description
also defined in SDL. In general refinement may also be defined as a relation between
descriptions of different languages, but relating different languages is beyond our cur-
rent Mn-approach. To compare descriptions of different languages, it is necessary to
have a common semantic base to which both descriptions could be translated. It is pos-
sible to suggest that CFSMs (processes) could constitute such a common base. Here in
this thesis we shall limit ourselves to descriptions in SDL.

We definerefinemento mean the following. BR refining M, we will understand that

if an environmenE acts withR or M, any behavior oE with R should also appear in

E with M. By implementatiorwe shall mean the same as refinement. The two words
appear both in the literature and sometimes they may have different meaning, but here
we give them the same meaning. We summarize this definition in Figure 93 (p. 147).

Let R andM be two processes g¥&;Zg; Tr> and <§;;C;Zy; Ty> with the same
external interface shown here by assuming the same alphabet.

R is arefinemenof M iff
1. OnO(sO &) » m(s) U S, wherem: S; - S,

2. J(ed BO(sU &) » m(Lg(s;& g 9) O L,,(m(s);e; 2 g wherethem function
is extended to complete states and sets of complete states in the obvious way.
By implementatiorwe mean the same as refinement.

Figure 93: Refinement (implementation)

The idea is that any behavior of the implementation is also a behavior of the more
abstract description. This means that the implementation is always a restriction of the
abstract description. In practice this seems often too limited as implementations often
offer features which was not thought about in the abstract version. This is a practical and
methodological question and we shall cover this in more depth in Section 5.3.4 (p. 205).
In this section we take for granted that the two descriptions do talk about the same uni-
verse of discourse and that the descriptions are directly comparable wrt. which services
they provide.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 147

A

Behavioral
refinement

Interface
refinement

148

The Mn-approach and formal analysis
Verifying refinement

We are interested in a behavioral refinement, which means that we need to have a com-
mon representation of the two descriptions which we shall compare and we shall use the
process form as our canonical form and try and see if one process is a sub-automaton of
the other by comparing the processes transition by transition corresponding closely with
the definition given in Figure 93 (p. 147). This is illustrated in Figure 94 (p. 148), and

[e] [o]

L EEE—

refinement * T

[e] [o]

— 2] L »

Figure 94: Behavioral Refinement
described more closely in Section 4.2.2 (p. 149).

Behavioral refinement in its pure form requires that the abstract and the concrete
description have the same signal interface. It is typical, however, that more abstract
descriptions have interfaces of a higher granularity than the more concrete descriptions.
When the behavior is described in more detail, also the pieces of communication must
be detailed. When the interfaces of the abstract and the concrete descriptions differ, we
talk abouinterface refinemen©ur model of interface refinement is largely inspired by

the same concept of FOCUS [20] and it is schematically shown in Figure 95 (p. 148).

>| A i >
[e] [o] -

block C .
* refinement

[X] vl

Figure 95: Interface Refinement

The idea is that we add two more SDL procesBesidR, which transform the inter-
faces.T transforms from the abstract input interface to the concrete input interface, and
R transforms from the concrete output interface to the abstract output interface. We say

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

Verifying refinement

thatA is interface refined tD subject to the interface mapping&. This corresponds
to A being behaviorally refined 16 whereC consists off, D, R. This corresponds to
the U-simulation as defined in [35].

For our purpose it is equally applicable to combine the interface mappings with the
abstract descriptioA, and let the concrete descriptidrstand alone. This would corre-

spond to a U-simulation according to [35].

Composi- Refinement is compositional (see Section 4.1.2 (p. 144)). Assume that the abstract
tionality descriptionA appears in an enclosing blogl. If we substituteA by C whereC is a
behavioral refinement @&, the resulting block\C is a refinement ofA.

This is quite obvious. FirstixA andAC have the same interfaces since the interfaces
have not changed due to the internal substitutiénlyfC. Furthermore as every behav-
ior or C is also a behavior &, every behavior oAC must also be a behavior AA,

and that is the definition of refinement.

We may want to go one step further. AssumeAl#atonsists of abstract descriptions
Al, A2 etc. connected. Assume furthermore that for every abgtrdéioere is an inter-
face refinemenbDi with interface mapping$i andRi. Assume thabDD is the system
where evenAi is substituted by Bi. The question is whethBD is a refinement of AA.
This cannot be concluded in general. It is not even certaiDihat a valid system since
we do not know whether the interfaces match.

Our approach would be the following. Substitut@AeveryAi with the corresponding

Ci. Then we know that the resulting syst€@ is a refinement oAA. In CC there are

clusters ofTi’s andRi’s which help combine thBi’s. In DD these clusters are reduced

to mere channels. The question we ask ourselves is whether these clusters can really be
reduced to channels. A channel is some kind of identity process, what comes in, has to
come out. The question is whether all these clusters have the proper identity process as
a refinement. With the Mn-approach we would try to reduce the clusters and compare
the resulting process with the identity process. This would amount to finding out
whether the reduced cluster could possibly act as an identity process.

4.2.2 Mn-approach

We now summarize the Mn-approach to (interface) refinement.

We assume that we have SDL descriptidresxdD. We want to determine wheth&r
is (interface) refined tD.

Sub- 1. ReduceA andD to two process descriptions. If any one of them is not reducible, our
automaton Mn-approach is not the right thing to use, or the design is possibly wrong?

2. Specify the interface mappingisandR. Strictly speaking there is no real reason to
keep closely to the scheme of Figure 95 (p. I#&ndR may be any SDL processes
such that the interface of bloCkis identical to the interface &f Thus there is tech-
nically no obstacle t& receiving input fronT in addition toD.

3. Reduce block (consisting off,D,R). This is usually a simple tasklfandR are
mere transformations of signal formats.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 149

4 The Mn-approach and formal analysis

Verifying refinement

4. Compare the reducédand the reduce@ transition by transition (if possible). The
basic state mapping is built during the comparison (see below).

4.1 Map start symbol @k to start symbol o€.
4.2 Compare start transitionsAfandC.
4.3 Map the nextstates of the start transitions.

4.4 Take one of the basic state€ofvhich is not analyzed. Find the corresponding
state inA. For every input signal do:

» Compare the two corresponding transitions.

* Map the set of nextstates of tGdransition to the set of nextstates of the
A transition.

* Repeat this step until there are no more basic sta@svimich are not
analyzed.

5. If all transitions ofC has been analyzed and no critical discrepancy has been found,
then we may conclude thaAtis refined taC.

compare We still have to be more precise about what the comparison of two transitions boils
transitions down to. The following criteria should be sufficient. We compare the transitions by
going through the& transition in the order of execution.

1. Every output of th€ transition has a corresponding output inAheansition.
2. Every decision o€ has a corresponding decisionfof

3. Every answer to a decision@has a corresponding answer in the corresponding
decision inA.

4. Any answer to a fair decision with positive probability (+) should have a corre-
sponding answer with positive probability@n An exception to this is if the positive
probability is not needed 1@ to terminate a feedback loop.

5. It may be necessary to do some local semantics-preserving rewriting to cope with
tasks, timers and procedures.

Ad hoc Our technique will not be able to prove all proper refinements, but it catches interesting

adaptation ones and it applies the general Mn-approach. The final comparison between the pro-
cesses can obviously be improved and it is possible to utilize other formal methods to
prove refinement between two processes such as e.g. FOCUS if it is sufficiently impor-
tant. If we assume restrictions on the size of channels, variables etc. we turn into the pure
finite state machine situation and the model checking methods mentioned in Section
1.6.2.1 (p. 30) applies.

Typically the structure of decisions may vary betwa&emdC. The ad-hoc approach is

to separate the analysis in two where the finite behavior is analyzed first and then the
infinite behavior. In the analysis of the finite behavior a hierarchy of non-deterministic
decisions can be flattened to one non-deterministic decision with a set of alternatives. If
the analysis of finite behavior succeeds, the infinite behavidZsaoé considered iA.

If the infinite behaviors o€ are possible also i, we have correspondence between

the decision structures of this transition.

150 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

Verifying refinement

4.2.3 Example: the rejected or accepted signal

We want to give a very simple example which shows the principle behind our approach
to interface refinement. We could not resist the temptation to show that a quite reason-
able design is easily proven wrong during our search for reducibility. After having
corrected the flaw we give the proper concrete implementation and show the interface
refinement.

Our example is a component which takes some input and either accepts it or rejects it.
The abstract definition is given in Figure 96 (p. 151).

processA

[acc,rej]
=

[a]

Q

acc rej

Figure 96: The abstract process A

We want to implement this in a system which takes a number as input and decides
whether the number is above, below or between two given bounds. The input number
consists of a sequence of digitseerminated by a poimt. The system should of course
handle an unbounded stream of numbers. The system has two equally structured bound
checkers, one checks the upper bound and one checks the lower bound. Their results are
combined by the outputting process. The structure is given in Figure 97 (p. 151).

block D

[above,below]
[d,p] [above,
between,

below]

Figure 97: Structure of the implementation

ProcesdN compiles thaligits and when th@oint arrives, calculates the number and
passes it on tab andlb as shown in Figure 98 (p. 152).

The boundary check tyfgound just checks and returadove or below as specified
in Figure 99 (p. 152).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 151

A

152

The Mn-approach and formal analysis
Verifying refinement

processN

dcl m,n
integer

Figure 98: Process N: compiling the number

process typeBound
- dcl n, bounﬂj
integer;

t(n)

<=bound n >bound

below above

Figure 99: Bound: the bounds checker

Now finally we want to desigW, the verdict produce¥ should take one signal from
ub and one frontb. If it gets twoabove-signals, the verdict is that the number is above
the upper bound. ¥ gets twdbelow-signals, the verdict is that the number is below the
lower bound. If it gets onabove and onéelow, the number must be between the
bounds. This informal specification should lead to the definitiov gifven in Figure

100 (p. 153).

We follow our strategy outlined in Section 4.2.2 (p. 149) and try and see if thelblock
(Figure 97 (p. 151)) is reducible. Firstly it is obvious that it is progressive since there are
no feedback loops, and there are no internal data loops which are independent of exter-
nal signals. Secondly, then we should have a look at conflunab.andlb are

definitely confluent wrtD since they have only one input channel each. The potential
problem must be with.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

Verifying refinement

processV -

above below|

above below

| |
above below above

above betweesr betweer

Figure 100: Process V: the verdict, first attempt

No potential non-confluence patterns with basic $tat# give problems, but for states
Above or Below there is non-confluence! Our first thought may be that we have to do
with states which are unreachable, but alas, they are very reachable. The problem is that
V is not ensured that the inputs alternate betwdeandlb. Due to asynchrony and the
concurrent processing of numbers, it is quite possible to get a series of signalb from
before the first frontb. This will obviously lead to unreliable results! This example

gives us valuable experience:

» The solution which meets the eye may not be correct.

» When we have merge situations (i.e. more than one input channel and decisions based
on signals from more than one), confluence is an important criterion.

Here we shall have to restructure. We find that it is importanitican control which

signal it gets. To make it as simple as possible, we want to force it to alternate between
the channels. Still we need a way to distinguish between the channels, and in SDL there
is no sign of the channel in the signal. Therefore we must make suué tadlb send
different signal types. This can be done easily by leBiognd be parameterized wrt.
signalsabove andbelow. The modified version df is given in Figure 101 (p. 154).

In the modified version we usaveto be certain that we alternate between the upper
bound and the lower bound. We always start with the upper bound. Since we can be
fairly sure that the two bounds checkers execute at comparable speeds, this deliberate
sequencing is acceptable. If their execution times both varied, better throughput is
achieved by a version where either upper bound or lower bound could be taken first, but
that the second input always had to be the other.

That the systerD is confluent is now obvious and we may reduce the block. This is
automatic and result in the process definition found in Figure 102 (p. 154). We have
given the single basic state of the reduction the riéeme The reader should notice that

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 153

A

154

The Mn-approach and formal analysis
Verifying refinement

processV -
Ibabove,
baboye ;bbelow Ibbeﬁlo y

| |
ubabove ubabove
ubbeloy/ Ibabove Ib|be|ow Ibaboye Ibbelow, ubbeloy/
|
above ierror betweéﬂ below
| |
() (Frs)
Figure 101: Process V: the verdict, second attempt
processD dcl n, m.ub,
integer;
d(n) p
= true
m*10+n
ierror

Figure 102: The reduced process D

we have paid no attention to the initializatiombfandlb, which are the constant bound.
So far so good. The question now is whether this reduced pDagdsigure 102 (p.

154) is a refinement of the abstract procesd Figure 96 (p. 151)? We make a config-
uration as sketched in Figure 95 (p. 148) and try and reduce®ld@togress is no
problem sincd, D andR are each progressive and there is no feedback loop between
them. Confluence is also simple sificeD andR have only one input channel each.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

Verifying refinement

We suggest the definitions ®fandR in Figure 103 (p. 155) takes the signa and

|
between below

processT processR

above

rej acc rej

B

d(any)

-Ov

(= (=) (=)

Figure 103: Interface mappings T and R

produces a non-deterministic sequence of digits befone. tRetice that both the num-

ber of digits and their values are non-determinant. Notice also that the loop producing
digits are terminated by a fair decision with a positive probability altern&isenply
defines that the number should be between the bounds to be accepted.

The reduction o€ is shown in Figure 104 (p. 155). We compare it with the abstract pro-

dcl m,ub,lb
integer;

processC

ierror

Figure 104: The reduced process C

cess A of Figure 96 (p. 151) by the scheme in Section 4.2.2 (p. 149). The mapping of
states is simple as there is only one for each of the procdessekC. S maps taNew.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 155

The Mn-approach and formal analysis
Simplification

We need to apply some simple, manual arguments to compare the two transitions. An
expression comparing something which has been producedfrgmns very close to
any-valued itself. The implementation has introduced an extra alternative which ends in
internal error. This is not according to the refinement rules since all alternatives of the
implementation should find its counterpart in the abstract definition.

Therefore we have to conclude tBeis only conditionally interface refined frofwith
interface mapping® andR. The condition is (as usual) that the execution does not end
in an internal error. Actualbh andD are conditionally interface equivalent.

4.3 Simplification

156

In more general terms both Mn-reduction and refinement are examples of a wider class
of transformations which may be called simplifications or abstractions. The goal is to
find a system which has the same properties as the original in specific areas.

The original is not analyzed as such because the method used for analysis cannot handle
it. The reason for this is either that the original model is outside the range of the analysis
technique or that the original model is too complex.

An example of a model which is outside the range of the analysis method is when the
original model is infinite state while the method can only handle finite state.

An example of a model which is too complex is typically exhaustive search in a real
SDL system modeling a telephone switch.

4.3.1 Conceptual clarification

We shall make a few distinctions and separate between some subclasses of
simplifications.

1. Pure simplification
2. Abstraction

3. Projection

4. Optimization

We shall present these classes, but shall not go in great detail about this general area
which is an important field of research.

Our distinction between subclasses of simplification are more based on their use in the
software engineering development process than the theoretical differences. The overall
framework is depicted in Figure 105 (p. 157). The original system is simplified via a
simplification procedure into a simplified system. In the simplified system it is possible
to prove abstract properties relative to a purpose such that the corresponding concrete
properties are implied by the abstract ones.

The simplification purpose is crucial. The simplification procedure is dependent upon
the purpose and so are the abstract and concrete properties.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

Simplification

abstract property

concrete propert

Figure 105: Simplification framework

simplified system

simplificatiorf procedure

original system

4.3.2 Pure simplification

Pure simplification means that the simplified system covers all aspects of the original
system, it is just more clever built. The simplification purpose is universal: to cover all
(interesting) properties of the original. There should not be one single situation where
one would rather have the original than the simplified.

This does not mean that they have exactly the same properties, since the original is still
different from the simplification, but the difference is not beneficial in any known way.

This kind of simplification occurs when new research discovers new algorithms which
are better than the old ones. We mention this extreme kind of simplification since it rep-
resents one end of the simplification spectrum.

The Mn-reductions may lead to pure simplifications. It may become clear after a few
iterations using the Mn-approach that the distribution of a certain activity into several
sub-processes may not be needed or beneficial. Then the reduction could take the place
of the reduced unit also in the original.

4.3.3 Abstractions

The word abstraction is used in a number of different contexts. When abstraction is
intended to mean simplification we are often in more formal contexts. The simplifica-
tion procedure is represented by an abstraction mapping and the purpose is often to
preserve properties described in a certain language or such general properties as dead-
lock freedom [21].

The preferred engineering strategy is to define abstraction mappings and reason gener-
ally about their characteristics.

When a specific analysis problem is encountered, the abstraction mapping is applied,
and some abstract properties (faithful to the purpose) are proved. Then the characteris-
tics of the abstraction mapping leads to finding concrete properties which are satisfied
in the original system

The significance of the simplification is relative to the purpose, which often is wider
than the abstract properties. In this way the abstraction can be used for experimentation
on a wider basis than only predefined properties.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 157

158

The Mn-approach and formal analysis
Simplification

In approaches which combine different proof techniques [126; 127] there is a need to
divide the original system such that the different approaches can be applied to only one
aspect. Typically abstractions are made which abstracts to finite state situations, e.g. by
factoring out the induction aspects which generalizes over numbers.

In formal contexts the abstraction mappings are formally defined and the proofs can in
principle be performed formally. In practice, however, abstractions are made more
informally and it is not always so obvious what their characteristics are.

Since formal methods have little success with large programs, it is commonplace to
define a simpler system. The construction of the simpler system is meant to be an
abstraction wrt. the original purpose, but the truth is often that the simplification is done
manually by the verifiers mostly guided by what they are able to verify rather than what
the needs for verification are.

Refinement is the inverse of abstraction as presented in Section 4.2 (p. 146). The idea is
that the simplified (abstract) system is made first, and the refinement which corresponds
to the original (concrete) system is made afterwards. The abstraction purpose is that the
behavior of the refined system is also possible in the abstract system. This means that
universal properties of the abstract system should be preserved in the concrete, while
existential properties of the abstract system may not be preserved since there is behavior
in the abstraction which is absent in the implementation.

4.3.4 Projections

While we characterized abstractions by the focus on preservation of a wide class of
properties, projections are characterized by focus on the simplification procedure.

The simplification procedure is well established, but it may be more fuzzy what the
characteristics of the implicit abstraction mapping are.

We have suggested abstractions for data in Section 3.6 (p. 117) which is obviously prac-
tical for the simplification of the system, but the characteristics of the data abstractions
wrt. reducibility is not absolutely trivial.

Assume that we have applied the projection described in Section 3.6.1 (p. 117) to elim-
inate all explicit data. It is clear that the simplified system may be reducible while the
corresponding original is not. In Figure 106 (p. 159) we show extracts of a process
which consumes external inpaiind internal inpuit producing external outpuksy on

one output channeThe behavior is dependent upon a Boolean variallich is not
changed in the transitions shown here. The Mn-procedure shows that there is non-con-
fluence since regardless of whetbeas true or false, there is a difference between
executinge first ori first. Assume thab istrue, then executing first yieldsxy, andi

first yieldsyx. If b is false the situation is the opposite.

If the data variablé is abstracted, the decision becomes a non-deterministic decision
where either branch can be executed. This gives confluence since both exefirging
and executingfirst yields the setXy, yx}.

Thus reducibility imot preserved by the data abstraction. Still it is not without value to
perform the data abstraction, but our example shows that we need to be sober in our
generalizations.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

Simplification

(true) b (false) (true)

\ (false)

y y X

5

Figure 106: Non-confluence pattern eliminated by abstraction

Other simple abstraction procedures include elimination of “uninteresting” signal types
or parameters to signals.

This kind of abstraction, which we choose to call projection, because we deliberately
eliminate certain syntactical elements of the original system, has its great wart in
gestingproblems rather than proving the existence of certain properties.

Lam and Shankar [95] defined projections which they caihedjespecifications. They

were based on manually subdividing the state space of the processes. They also showed
how stepwise refinement of the image specifications could be applied to produce the
proper image specification strong enough to verify a given abstract property. In general
their image specifications would preserve safety and liveness properties of the original.

Seltveit [121] describedters, which are also projections (in our terms). Their main pur-
pose seems to be to present a complicated original system in a more manageable way to
the developers. This is also a purpose we have with our Mn-reductions. She also shows
that certain modifications made to the projections (filtered systems) can be faithfully
brought back to the original.

Braek [11; 12] has developed a projection technique to study interfaces between SDL
entities. The technique also includes simplification of both sides of the interface. The
technique will calculate a measure of how great the risk of complication is, given certain
signs of inconsistency. The idea is that the risk situations should be analyzed again in
the original. The risk index of [12] resembles our notion of a complexity profile based
on the Mn-procedure as presented in Section 5.2.2 (p. 193).

The Mn-approach is a projection in the tradition of Lam and Shankar, but the reduction
of the state space is produced automatically provided that the original system is conflu-
ent. We claim that any property expressible in terms of the reduced system is also
preserved in the original system limited to its stable states. This is basically a tautology
since a reduction is defined (Section 2.2.1.1 (p. 48)) as being equal to the original for the
stable states. Still it is what we want. From outside the system, the instable states cannot
be observed.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 159

Multi-gate

1.PId=

160

The Mn-approach and formal analysis
Simplification

4.3.5 Optimization

By optimization(here) we mean that the process of verification is optimized. More pre-
cisely: from a given a concrete property produce a simplification procedure which
makes a simplified system (on the fly) such that proving the property (or its derived
abstract correspondent) becomes simpler in the simplified version of the system.

The idea here is to focus on the actual property to be verified, and transform the system
relative to the concrete property. This is a meta-strategy used to optimize verification
and Holzmann [75] reports that using a partial order reduction method based on the
given LTL property, reduces the execution time and space by between 10% and 90%.
The idea is that for a given correctness criterion many execution sequences are indistin-
guishable and it is not necessary to visit more than one representative of each such class
of sequences.

4.3.6 Simplifying large numbers

Finally we want to touch upon a special kind of simplification which is very common in
systems in our domain (i.e. real SDL systems). Real systems are big. This means that the
description of the system is big — and that the executing system is big. In systems with
dynamic structure the size of the executing system may not be reflected in the size of the
system description. Our validation should have a complexity which is proportional to
the size of the description of the system and not the size of the executing system.

In SDL systems there are two constructs which create executing systems which are sig-
nificantly different (and larger) than the description.

1. Block sets.

2. Process creation and addressing by pointers)(PId

4.3.6.1 Block sets

Block sets are described by one symbol which covers a set of statically created block
instances. All channels connected to the block set represent sets of singular channels.
For the Mn-procedure block sets do not represent serious complication. Since the Mn-
procedure checks channels in a pairwise fashion, there is little complication related to
whether there are 20 rather than 2 block instances in a block set. The distinction is, how-
ever, that there are two rather than one instance. This means that what appears as one
channel as input to another block, is actually two channels, and their interaction should
be analyzed. During such analysis the signals should be annotated by some identity of
the SENDER or the channel on which they came.

The architecture is typically like Figure 107 (p. 161). The block set is connected to some
common parK by a channeC. The channeC is therefore what we could calhaulti-
channekince it contains a set of normal channels. The same holds for the dbamak|
therefore also for the gage We will therefore caly amulti-gate which means that it
actually contains a set of normal gates. We assume that every individual gate can be

Process Identifier, SDL data type which represent pointers to processes

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Indepen-
dence

Block set
representa-
tive

Block set
reduction

The Mn-approach and formal analysis 4

Simplification

block type BL B

X < p Dset(n)B | 4 > >

Figure 107: Block set architecture

identified such that the signals can be annotated by the identity of the individual gate.
For input, very often such identification can be the Pld of the SENDER of the signal on

g.

The next question is whether the communication via the bloddsséts such that it is
significant that there are seveBa in thebset. We find often that the different blocks

of the block set are independent. iBgependentve mean that the behaviors of one

block instance has no direct effect on the behavior of others. Even more precise we say
that a block set is independent if for every consumption of one external input in the
enclosing block type only one block of the block set need to be executing.

In an architecture as in Figure 107 (p. 161) this means that an ingutibte handled
by some block (say) in bset which communicates witk viaC. The eventual return
will pass through the same bloblonto the same gate of the multi-ggtdf the return
communication involves another block of the blockset, the block setiisdependent.

If reducibility has been established, independence is easily seen when performing the
reduction.

When independence of a block set is established, the functional behavior of the block
set can be determined from assuming only one block instance in the block set.

The reduction of a block (type) enclosing an independent block set consists of an
extended SDL description. Firstly there is the reduced block where only one block is
seen as representative for the whole block set. This system we cathgie reduced
systemSecondly there is a state-vector indexed by the individual identifiers of the
multi-gate which corresponds to block identifiers of the block instances. The state the
reduced total system is in, is depending on which individual gate the external input
comes via. Because of the independence and the confluence, the simple reduced system
will show the needed transitions. The interpretation of the full system reduction is that
any state operation (such as nextstate) is performed on the state-vector and any operation
on variables inside the blocks of the block sets must also be considered operations on an
element of such vectors indexed by a process identification.

This composed description is a shorthand for a reduction with many states and many
(similar) transitions. If each af blocks of a block set may endkrbasic states when
reducing, we hava*k stable states. The n may not even be known.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 161

A

Practitio-
ners’
induction

162

The Mn-approach and formal analysis
Simplification

We summarize our approach to block sets in a principle which wpreatitioners’
inductionwhich is based on very simple experiences:

1. Areal system is never such that a block set with largakes a significant functional
difference from the same set with rather small

2. The individual blocks in a block set behave independently. Therefore we can describe
the overall functionality with a simple system where the block set is represented by
one singular block.

3. If a block set is not independent, there is good indication that the block set should be
conceptually divided.

The experience behind what | have called “practitioners’ induction” was also probably
the reason why SDL-88 had no block set concept at all.

There are examples of systems conforming to the practitioners’ induction in Section 6.
(p. 229).

4.3.6.2 Process creation

Process creation and use of Pld addressing does not make problems for the Mn-proce-
dure to determine confluence. The Mn-procedure must be careful to annotate signals
with their SENDER which is implicit in SDL anyway.

In situations where we have process sets, the practitioners’ induction can be applied if
the processes are independent. We may consider each communication with a unique
external Pld as an external channel.

4.3.7 Integrating the Mn-approach with other methods

The Mn-approach is friendly towards other methods. This means that since the Mn-pro-
cedure delivers an SDL process description from an SDL block description, the nature
of the system does not change when having applied the Mn-approach. The system is still
an SDL system if we consider our suggested notational extensions as parts of SDL.

This means that any other method which is able to handle SDL, can also handle the
reduced system. The question is whether the analysis must be restricted when including
a reduction rather than the original.

We claim that since the reduction is observationally equivalent to the original, any anal-

ysis which does not address properties internal to the reduced sub-system may equally
well work on the modified system where the reduction has substituted the original sub-

system.

We should make the reader aware that this is not the same that every property express-
ible in the terms of the reduced is faithfully preserved from the reduction to the original.

A simple example is depicted in Figure 108 (p. 163). There is no doubt that the process
X is reducible and that the reduction will also include the declared vaniaflee

reduction is simply a process which consumasd produces, but does not change

at all. Thus it is simple to see thmat0 always. If we checked for the LTL formula say-

ing thatni is alway<0, we would get that it is valid for the reduction. For the original,
however, it is not difficult to see that there are states wiigsenotO.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

The expected behavior of the Mn-procedu

processX Q dcini
cl ni
ni=0 integer;
|
e i
i z
ni:=ni+1 ni:=ni-1

Figure 108: Original process
If we restrict ourselves either to only stable states in the original or to indicators which
are external to the reduced process, the original is faithful to the reduction.

Since some of the most popular methods to verify SDL systems have serious problems
to keep the state explosion under control, the Mn-approach should be a valuable contri-
bution to reducing the state space without losing the interesting aspects.

4.4 The expected behavior of the Mn-procedure

Here we should summarize how the Mn-procedure behaves with different kinds of
systems.

4.4.1 Studying Progress

Progress enters into our Mn-approach in two ways:
1. The Mn-procedure assumes (weak) progress.
2. The Mn-procedure itself should preferably terminate.

4.4.1.1 Progress of the system itself

The progress of the system itself was studied in Section 2.3 (p. 50), and we emphasize
that this thesis is not about termination or progress. Still for our Mn-procedure the estab-
lished progress of the process under analysis is important as we showed by the example
in Section 2.4.3.2 (p. 53). It is possible to find processes which the Mn-procedure will
evaluate to be confluent, but which contains a livelock. Thus the reduction is not a
proper reduction of the process as it may fail to recognize the livelock.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 163

Execution
path

164

The Mn-approach and formal analysis
The expected behavior of the Mn-procedure

Just as many formal methods we may resort to “partial correctness” [30] which has as
an assumption that the program (or program statement) covered terminates normally.
When progress is established, we talk about “total correctness”. In practice, however,
there is a big difference between a system which is in a livelock and a system which
reports an internal error. We shall cover these aspects closer in Section 5. (p. 177).

Since communicating finite state machines can be seen as rewrite systems, and progress
in our terms corresponds closely to termination of rewrite systems, we should seek
advice in the strong literature of rewrite systems to find the most appropriate means to
establish progress [37]. Our “signal ordering criterion” is in this tradition. We find a
well-ordering of the signal types (which corresponds to elements of the symbol universe
of rewrite systems) such that every transition produces signals of less value than they
consume. The implicit ordering thus becomes a reduction ordering which implies that
the system terminates.

To find such an signal ordering is simple and automatic if it exists. If there is no such
ordering, there are cycles in the directed graph that represents the attempted ordering.
Such loops may or may not imply that there is a livelock. If the loop includes external
signals as well as internal ones, we may have finite progress (Section 3.1.3 (p. 86)), but
not infinite progress. Finite progress is what is needed for the Mn-procedure. Finite
progress is achieved when the internal signals can be partially ordered.

The pure signal ordering criterion does not consider the basic state. By also considering
the basic state in the production of a reduction ordering for the process, more cases may
be covered.

Our approach to resolve loops constructively is to let fair decisions with helpful escapes
from the loops, or to let a timer do it as time itself can be certain to progress.

4.4.1.2 Progress of the Mn-procedure

Termination of the Mn-procedure was studied in Section 2.4.7 (p. 69). There are two dif-
ferent situations where the Mn-procedure does not terminate. Either it loops during the
execution within one generation, or the sequence of generations is infinite. In practice a
pragmatic constant limit to the length of an execution path within one generation and a
limit to the number of generations will be sufficient to terminate the Mn-procedure such
that few interesting confluent systems are considered impossible to prove confluent by
the Mn-procedure.

Through theory we should be able to give some indication to what these two numbers
should be.

Our proof of the correctness of the Mn-procedure (Section 2.4.6 (p. 65)) is not depen-
dent upon when a generation change takes place. We say that if a node of the Mn
transition system is evaluated to sequence permuted, there must be a generation change
sooner or later. This is not completely true since the criterion “external stuttering” mod-
ifies this. With our example proceBswe use exactly this in Table 4 (p. 64) where state

12-1 is sequence permuted, but we continue the execution in this generation and find
external stuttering already in state 12-1-1.

The disadvantage of changing generation is that we have to continue on the next gener-
ation from all conceivable basic states reachable from the origin of the generation
change. This will often mean that we must include situation which cannot occur in prac-

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

The expected behavior of the Mn-procedu

tice. The higher the generation the more unreachable situations must be covered. The
more unreachable situations which must be found confluent, the bigger chance that a
problematic, but fictitious situation will prevent the Mn-procedure from concluding
confluence.

On the other hand, another level within the same generation will also produce more sit-
uations which have to be confluent. The execution tree within one level of Mn is like
other execution trees — it grows exponentially. Going from one node onto the next level
will produce exactly the same number of new nodes as there are symbols jn the A
alphabet. But they may be more pleasant to handle by external stuttering or generation
change.

It is also possible to backtrack within the Mn-procedure. If the generation change turns
into non-confluence situations, a second try may execute one level more on the former
generation.

In the end a constant limit to the number of execution levels within one generation will
ensure that the Mn-procedure will continue and the game is not lost.

Sequence of If the signal ordering criterion holds, the number of generations is limited, too. This fol-
generations lows from the fact that the number of signal types preseny is lss than the number

in Ap_1. Since there is only a finite set of symbols iy we cannot have more genera-
tions than the number of symbols ig.A

If there is a loop, this occurs normally in a system through a cycle of channels and pro-
cesses. In a piecewise execution of Mn-procedure (see Section 3.3.4 (p. 91)) there will
be one new generation per process in the loop. If no decision (either way) has been
reached when the sequence of generations “returns” to where MO started, the question
is whether the alphabet,As smaller than 4 If it is not smaller, nothing can be gained

from continuing changing generations in a piecewise execution.

The picture is more complicated if the feedback patterns are more complicated than a
simple feedback loop. Still we advice to compare alphabets when the process involved
in MO is again involved in a higher generation Mn.

4.4.2 Studying Confluence and the Complexity of the Mn procedure

Here we present some thoughts on complexity of the procedure relative to what we may
expect.

Our aim is to determine confluence of a process which normally consists of a number of
interacting components which themselves are such systems of components.

Our approach is a practical one where we do not try to cover the worst case, but rather
an interesting set of common cases. There is no doubt that the Mn-procedure behavior
is very much dependent upon the architecture of the system under analysis.

In this section we shall look at some of the factors which influence the behavior and
needs of the Mn-procedure. We shall not go into detail about the complexity of the algo-
rithm in any mathematical way. It is not difficult to construct systems which are non-
confluent. Itis not difficult to construct cases where the Mn-procedure loops (as we have

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 165

166

The Mn-approach and formal analysis
The expected behavior of the Mn-procedure

seen in Section 2.4.7 (p. 69)). It is not difficult to construct system architectures which
makes the actual execution of the Mn-procedure complicated. Such architectures are
typically when all components communicate with all other components.

We have, however, shown in this thesis that there are interesting theoretical and practi-
cal cases which benefit from the Mn-approach, and we have provided arguments for
why it is reasonable that the Mn-approach will work in many cases.

4.4.2.1 The obvious challenger

Could we determine reducibility by other techniques than the Mn-procedure e.g. by exe-
cution from the initial state supplemented by some termination criterion?

To eliminate the internal signalling of a system of communicating finite state machines
appears to a newcomer to be a manageable problem. The obvious first thought is that
merely executing the system from the initial state until some (simple) criterion says that
there is no reason to execute beyond this point because “nothing new” will be found. In
other words after having produced a finite (and hopefully small) execution tree, it is pos-
sible to infer that confluence in this tree implies confluence in the whole, infinite
execution tree.

Unfortunately there is reason to believe that the obvious challenger is not a good choice.
We list a few reasons:

1. The expressiveness of communicating finite state machines is underestimated. It is
far more expressive than meets the eye. Actually a system of communicating finite
state machines with infinite buffers has the power of a Turing machine [13].

2. Itis reasonable to believe that a (simple) cut-off criterion cannot be found in general.
Related unsoluble problems which also seem simpler than they are include to deter-
mine whether a given complete state is reachable [48].

3. To execute from the initial state has the advantage of considering only reachable
states, but this is outweighed by the fact that such execution may go through similar
cases numerous times and fail to reach the problematic ones in proper time.

Our idea is that “nothing new” must mean that all reachable non-confluence patterns
have been checked. The plain execution strategy cannot give a limit to when all non-
confluence patterns which are reachable have been reached.

4. Even if they could guarantee when all reachable non-confluence patterns have been
found, it is probable that the time to reach it is prohibitively large.

It is probable that the criterion would have to check that a reached complete state is suf-
ficiently similar to one already encountered. It is difficult to specify what “sufficiently
similar” should mean, but equal state and some strong similarity between the signal
sequences seem reasonable. If the cycles produce internal signals, we have to consider
their consumption. In general this leads to a cycle of cycles. Futhermore these second
generation cycles may themselves produce internal signals etc. Our conclusion must be
that the complexity of the worst case is formidable.

4.4.2.2 The factors of Mn complexity

In this section we shall go through some of the factors concerning the complexity of the
execution of the Mn-procedure.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

The expected behavior of the Mn-procedu

Generation The execution of the Mn-procedure is a tree of executions of transition systems Mn on
structure different generations as shown in Figure 109 (p. 167). There is no requirement that the

The origin of a gen-
eration change

Mo

M
M

Figure 109: Tree of Mn-executions

tree is balanced in any way. In practice the opposite is the case. Some parts will be prob-
lematic and the tree complicated, while other parts will be trivial and the Mn tree
likewise. Since the generation structure is a tree, the total number of nodes increase
exponentially with the number of generations.

One Mn- One single Mn execution is illustrated in Figure 110 (p. 167). The origin is one node of

execution .
’k origin

- ~
’/\\

S “ & ;—initialsetofnodes
the alphabet /" o ‘\\

\ \ \
R

Figure 110: One Mn-execution

the generation above. In MO this is implicitly the initial basic state. From the origin, the
initial set of nodes has a basic state element and a signal element. The basic state elemen
is found by determining the set of basic states reachable from the origin through the exe-
cution of the former generation. In MO we use the set of basic states as we believe it is
reasonable that they are all reachable from the initial basic state. The signal element is
copied from the internal signals of the origin. In MO we use all possible pairs of one sig-
nal from one channel and another from another channel. External signals are not paired.
See the definition of Mn in Figure 37 (p. 60). The alphabet is dependent on the output
of the former generation. In MO the alphabet is the pairs of equal internal signals.

N

The growth of the tree is exponential and from every node where a new level is needed
the number of nodes on the next level is equal to the number of elements in the alphabet.
But the total size of the Mn-execution tree is very dependent upon the fact that the tree
is not balanced.

Worst case? From the reasoning above, the worst case execution seems to be double exponential:
first a tree of nodes in one Mn-execution and then a tree of Mn-executions. Now it is
time to remind ourselves that the changing of generatinstsad ofjoing another level
down in the current Mn-execution. The fact is that the size of the tree is comparable irre-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 167

Confluence
target

Piecewise
execution

168

The Mn-approach and formal analysis
The expected behavior of the Mn-procedure

spective of the choice between changing generations or taking a new level of the same
generation. To explain this, let us look more closely at what may happen in one node of
an Mn-execution.

If the evaluation is that another level of the same generation should appear, the next
nodes on this branch to be evaluated amounts to exactly one for each symbol of the
alphabet. If the evaluation indicates a generation change, the next nodes on this branch
to be evaluated are the set of initial nodes on the next generation. The number is smaller
than the set of basic states.

If we assume that we may perform our execution piecewise (see below), every Mn-exe-
cution takes place within one process. The set of basic states of a finite state machine is
often smaller than the set of signals, but in general we can only say that they are approx-
imately the same regarding complexity.

Further execution in the new generation will use an alphabet which is normally smaller
than the alphabet in the former generation. Thus to change generation will normally
slightly decrease the complexity of the execution since the number of states is probably
less than the number of alphabet symbols of the former alphabet, and the alphabet of the
new generation is smaller than the former. The order of complexity is the same.

From this we conclude that the overall execution of the Mn-procedure is comparable in
complexity with a plain MO execution, which is comparable with a plain execution of
the system from the initial state.

But execution from the initial state runs into state explosion problem very rapidly. Why
is the Mn-procedure considerably better? And the answer is twofold. Firstly our execu-
tion is directly targeted towards the solution of our confluence problem. Secondly we
are able to perform the execution piecewise in most cases.

Exactly as any reachability strategy may find what it looks for very rapidly, our Mn-pro-
cedure may find confluence along a branch almost at once. In practice the complicated
cases are very few compared to the number of potential non-confluence patterns.

Piecewise execution (Section 3.3.4 (p. 91)) means that we may execute the Mn-proce-
dure within one process at the time. This reduces the state universe from a cartesian
product to a plain set for every Mn-execution. In MO it is obvious that piecewise execu-
tion is possible, but also with higher generations it is highly probable, but it is dependent
upon the architecture of the system.

In Figure 111 (p. 169) we show which processes are involved in which generations. The
potential non-confluence pattern is in the leftmost process shown grey in MO. If a
sequence permuted node is encountered the next generation, which should resolve the
permutations of the output channel, takes place in the grey process of M1. The same
happens again in M2, while in M3 two new interesting things happen.

1. Two processes are connected to the outputting process of M2. If there are sequence
permutations on both of these, both connected processes must be considered on the
next generation, but they may be considered separately.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Nested
execution

Stabiliza-
tion

The Mn-approach and formal analysis 4

The expected behavior of the Mn-procedu

MO M1 *

<

M3 M2
Figure 111: Piecewise execution of Mn

2. The original MO process is involved again, now on M3. This is the time to check that
the alphabet has actually been smaller. Otherwise chances are that more generation
changes will not conclude the case. In M3 the initial state space of the leftmost pro-
cess is only the space reachable from the state where it all started in MO.

Conclusively piecewise execution of Mn makes the Mn-procedure approximately linear
wrt. the number of components of a system and the complexity is greatly dependent
upon the architecture of the system. The simpler the architecture, the simpler the Mn-
procedure execution.

Thus piecewise execution means that the Mn-procedure scales reasonably well, while
the opposite situation occurs for reachability analysis where the size of the system in
terms of independent components is extremely important.

Piecewise execution refers to the fact that components of the system which are on the
same aggregation level [56] can be handled one at a time. Nested execution refers to the
property that components on different aggregation levels can be handled separately.
This is obviously another important advantage of the Mn-procedure and a property
which is at the heart of the aim of the procedure.

The compositionality principle (Section 4.1 (p. 143)) combined with object orientation
in SDL-92 (Section 3.9 (p. 133)) make the Mn-procedure even more attractive from a
complexity point of view. As long as the systems are composed of reducible compo-

nents, large systems can eventually be analyzed with the Mn-procedure.

We have in the arguments above concentrated on the number of nodes. The Mn-proce-
dure also specifies that every node needs to be stabilized. This means a plain execution
sequence since the order in which eligible signals are executed does not matter. We
must, however, take into account that stabilization may involve several of the interacting
processes. Thus the stabilization is actually a tree structure which branches on the basic
states of the processes activated by the state to be stabilized. See also Section 3.3.4 (p.
91).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 169

Heuristics

Time and
storage

Non-
determin-
ism

Total Mn-
procedure
depth

170

The Mn-approach and formal analysis
The expected behavior of the Mn-procedure

The number of internal signals in a node is normally very small since we try explicitly
to try out only one internal signal at the time. Furthermore we do not always need to find
the sets of leaves explicitly. Whenever the two elements of the node are equal, we can
cut off the stabilization. Therefore stabilization is not very time or resource consuming,
but it adds a linear factor to each node.

The evaluation of nodes plays an important role in the Mn-procedure. It may be decisive
whether a generation change is performed or not for the success of the procedure. Back-
tracking means loss of time. Therefore the evaluation of the node, the potential alphabets
and state spaces could probably be made into smart heuristics. Since we would expect
the systems to be analyzed over and over again (after small modifications), such heuris-
tics could also take special aspects of the system into account.

Such heuristic on the evaluation of a node, can be used as a measurement of complexity
which is similar to the complexity profile in Section 5.2.2.2 (p. 197).

The Mn-procedure is basically a depth first algorithm. Since we prefer to conclude con-
fluence, there is no gain to go breadth first unless we suspect that we will not find
confluence. Depth first requires very little storage. Apart from the system representation
itself only the stack of nodes from the initial state is needed with the associated infor-
mation about every transition system (Mn) which is invoked on the stack. So the
minimal storage requirements are almost none.

The time consumption of the Mn-procedure is proportional to the number of nodes gen-
erated. To minimize the number of nodes generated, it is possible to include data
structures such that nodes which are sufficiently similar to earlier and analyzed nodes
can be recognized. The nodes of the Mn-procedure requires more information than plain
execution since in principle symbolic execution is performed. In theory of course the bit-
state hashing technique known from [73] could be applied if we settle for less than abso-
lute certainty of match. This is most probably not a good strategy with the Mn-procedure
since the number of nodes within one process should still be less than the number which
is manageable in large computers.

Non-determinism (including timers) in the system under analysis will make matters
worse in all respects. Non-determinism increases the number of simple nodes, and com-
plicates the evaluation. Data is in this respect equal to non-determinism because it
involves more alternatives (with guards). The guards may be resolved manually. Any
manual intervention will of course have detrimental effect on the overall performance.

The complexity in terms of time and possibly space (when optimizing time) is very
much due to the expected number of levels in the tree. There are two different
approaches to this issue:

1. What are the chances of succeeding to find confluence when the number of levels
increases?

2. Which structural elements normally set the limit to progress of the Mn-procedure?

The first approach is based on the assumption that the probability of succeeding decline
with the number of levels. This is probably true simply because more nodes must be con-
fluent. Changing generation also means that the system must have even greater degree
of orthogonality. Even more unreachable situations must be covered by the confluence.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach and formal analysis 4

Conditional reduction

But there is also a psychological dimension. Assuming that the designer has intended
the system to be confluent, the more levels the more complicated knowledge must have
been behind managing to make the system confluent. Unless the designer has guided his
specification by some well sort out invariants, the designer will normally be able to
overview only a very small number of levels of sequence permutation. More about this

in Section 5.2.2 (p. 193).

The second approach searches for the theoretical limits. There are two types of cycles
which indicates that the limit has been reached.

1. During one Mn-execution, if a basic state which is in a node on the execution stack
reappears in the current node;

2. When changing generations, if the component to execute this generation is the same
as a process which has executed earlier generations of the same potential non-conflu-
ence pattern (c.f. Figure 111 (p. 169)).

Neither of these indicators are certain indicators of failure. They do indicate, however,
that the Mn-procedure may be entering a loop.

4.5 Conditional reduction

It is not always the case that the whole system can be proven reducible through simple
automatic techniques. There may exist questions which cannot be solved by the Mn pro-
cedure itself. These are “proof obligations” and the reduction is “modulo” these proof
obligations. Typically we have proof obligations concerning:

e progress,
» unreachable non-confluence patterns,
» impossible transitions,

e resource restrictions.

4.5.1 Possible attitudes to proof obligations

The Mn-approach has three possible attitudes towards these proof obligations:

1. Prove the obligations by ad hoc techniques,

2. Assume the obligations valid,

3. Check for the obligations during runtime.

It is also possible that a combination of these attitudes represents the best alternative.

To prove the obligations valid, is definitely the most desirable attitude, but it may not be
practically feasible. It may be more feasible for small (but interesting) systems such as
our process D (Section 2.2.3 (p. 49)), the Alternating Bit Protocol (Section 3.5.3.1 (p.
100)), the Brock-Ackerman anomaly (Section 3.5.4.2 (p. 109)) or the Dagstuhl example
(Section 6. (p. 229)).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 171

Progress

Unreach-
able states

Impossible
transitions

172

The Mn-approach and formal analysis
Conditional reduction

To assume the obligations valid, is definitely the least desirable attitude. It may be advi-
sory to assume progress without having proven it such that the problems of the
confluence search (Mn-procedure) appear. This attitude may also be characterized as
“postponing” the proofs until the desired reducibility has been established. Often prob-
lems will arise more than one place such that getting preoccupied with one problem may
not be cost effective. Still we do not advise to leave too many assumptions unproven at
the end of an analysis.

To check for the problems at run-time is the practitioner’s attitude. If you cannot prove
something, check for it. Even if yamanprove something, check for it! Checking or
exception handling divides the execution of the system in two layers: the system execu-
tion layer and the monitoring layer (see also Section 5.3.5.2 (p. 207)). In practical
system engineering this is a very attractive approach. The verification results become
“modulo” the monitoring. Said differently, the reducibility is dependent upon the system
not escaping to the monitoring layer. Either the system behaves according to the reduc-
tion or it calls an exception and enters the monitoring layer. The verification is
conditional.

Since the conditional verification is not the most desirable, we may want to try and com-
bine the monitoring attitude with a recovery strategy. When an erroneous situation is
detected, a warning is issued to the monitoring layer, but the system execution is
instructed to try and recover as best as it can. As we pointed out in Section 4.4.2 (p. 165),
the save-approach to internal errors may well constitute a good recovery. The signal
should not have been here at all, the best thing to do is probably to save it to a state where
we have something sensible to do with it. In principle any recovery action could be suit-
able, but it has to be tuned to the problem at hand.

4.5.2 How do we typically check for the proof obligations?

Progress is not simple to check for. We may introduce timers at the monitoring layer.
The reason for not including them in the system execution layer may be that this would
complicate the system more than we want. The monitoring layer may also have access
to mechanisms which are beyond the system execution layer such as the supporting run-
time system.

Unreachable states cannot in general be proven unreachable. In particular cases, how-
ever, itis possible to do it. To check for reachability is sometimes possible. All complete
states can be checked for each component process. One problem with this is basically
the overhead in execution time which originates from checking every state reached.
Another problem is that the state which we want to check unreachable is divided
between independent components. The projection onto each component may be easily
reachable, but the combination is supposedly unreachable.

Impossible transitions are simpler to test for. They require no extra overhead as the test
is not invoked unless the transition which should be impossible is about to happen. The
reason for considering the transition impossible can usually be found locally. Explicit or
implicit invariants of the basic state accounts for this.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Default
transition

Exceptions

Save

Proofs

The Mn-approach and formal analysis 4

Conditional reduction

When the Mn-procedure encounters an impossible transition (exception call) during the
confluence search, this branch of the search is concluded with success. This means that
non-confluence cannot be concluded from this branch.

4.5.3 The impossible transitions

SDL is a language which by definition defines a total finite state machine. It is total in
the respect that for every basic state, any signal in the input signal set (alphabet) is
accepted. If the transition is not explicitly specified, a “default transition” is used which
means merely to consume the input signal. But, there are many transitions which the
designer knows are impossible, or equivalently: constitutes an internal error. To exam-
ine progress and confluence of impossible or erroneous transitions seems a waste of
time. We have the following choices:

1. to accept the default transitions,

2. to define a special exception construction for the internal errors which e.g. writes an
error message and terminates,

3. to consider the impossible transitions saves instead of consumptions,
4. to prove that the impossible transitions are really impossible and skip their analysis.

To accept the default transition is normally the worst alternative since the default tran-
sition is a very rudimentary recover action. We would expect it to produce non-
confluence patterns.

To define a special exception construction is often the approach in practice (Section
5.3.5 (p. 206)), but exception constructs have also been seriously discussed within the
ITU standardization body [112]. If this attitude is adopted then any execution of such a
transition during Mn-procedure should lead to the termination of that branch with suc-
cess. This means that the Mn-procedure recognizes that the exception mechanism takes
care of the case and for the Mn-approach this means that the case can be considered
impossible and safely discarded.

To consider the impossible transitisev/es is often a better approach than consump-
tion. The signal is not consumed, but left to some state where it is welcome, and where
its consumption is explicitly specified. Within the standard SDL this is probably the best
solution. A mixture of the two latter alternatives could be to give an error message to
some console, and use the save as the recovery.

To prove that a transition is impossible, means to prove that the state before it cannot
have that signal first in the input port. This is not so simple. Backwards execution is
made difficult by the fact that the tail of the input port is not known and this is what a
backward execution wants to know! We experience that the backward execution gets
into infinite loops from unreachable state to unreachable state. There is a need to detect
such loops and provide inductive arguments which is not so easily automated. Normally
a better strategy is to find a proper invariant which can be shown to hold for every tran-
sition. The problem with this is also that it is not so easily automated.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 173

A

Example:
Alternating
Bit Protocol

Impossible
transition
proof
through
invariant

174

The Mn-approach and formal analysis
Conditional reduction

Take theSender of the Alternating Bit Protocol (Figure 57 (p. 101)) and try and prove
that the internal signaB0 or B1 cannot appear in staBend0. We shall see how our
four different approaches to the consumption of BO and B1 in SendO turn out.

1. BO andB1 are merely consumed 8end0. Surprisingly enough it turns out that the
ABP system appears to be confluent still, but showing it is quite involved and far too
voluminous to be presented here. The complexity of the confluence proof reflects our
surprise that it is actually the case. This strategy is even more interesting in the variant
of the Alternating Bit Protocol which uses timers in Figure 81 (p. 123). This means
that the ABPT could handle situations where the timer occasionally expires too early.

2. TheB0O andBL1 transitions inSend0 are considered internal errors and an exception
will be invoked This means that the confluence is relative to the internal error. We do
not prove that the signals cannot occusandO, but we are certain to catch them.
(See Section 4.5 (p. 171))

3. We savé80 andB1 in SendO. It is trivial to prove confluence sin@&ender cannot
have any non-confluence patterns since either the signals of the external channel are
saved (inVaitO andWaitl) or the signals of the internal channel are save8dimd0
andSend1l). Performing the reduction will result in the system shown in Figure 61
(p- 105) and this reduction shows that there will nevé&er B1 in Send0 because
if there was, we would have a reachable semi-stable state incB@smayB1s since
only external signals exit froend0. Any reachable semi-stable state would have
to show up in the reduction as pointed out in Section 3.4.4 (p. 96).

4. We try and prove that transitioffSend0,B0) and (Send0,B1) are impossibleTo
prove that the transitions of consumiBg andB1 in SendO are impossible, we can
prove that the signaB0 andB1 cannot appear i8endO. This is done through an
invariant. In this case shown below the proof is not so difficult, but finding the invari-
ant is not automatic.

Alternating Bit Protocol example invariant:

1. WhenSender is inSendo or Send1 there are no more internal signals in the whole
system.

2. Whensender is inWait0 or waitl there is exactlpneinternal signal in the system.
This is the invariant which should be considered for every transition in the system.
Initially:

1. Initially it holds trivially since the start transitionsSander andreceiver do not pro-
duce any signals argtndo is entered bgender.

Sender:

2. (Send0,e) Assuming O internal signals before transition, it produces exactly one, leav-
ing 1 internal signal.

3. (Send0,B0) Not applicable since we are assuming O internal signals.

4. (wait0,B1) Assuming 1 internal signal before transition, it consumes one and produces
one, leaving 1 internal signal.

5. (wait0,B0) Here there are two cases, in both cases we assume 1 internal signal at start
which is consumed:

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Conclusion

The Mn-approach and formal analysis 4

Conditional reduction

5.1 Produces 1 internal signabj and remains iwaito requiring 1 internal signal.
This is OK.

5.2 EXxits tosend1 without producing anything. that leaves 0 internal signals and
this is OK for statesends.

6. Thesend1l andwaitl transitions are symmetrical to tBendo andwaito transitions
and thus they preserve the invariant.

Receiver:

7. We know thasender must be invaito or wait1 because otherwise there is no internal
signal present for thReeceiver to consume. All transitions of tiReceiver consumes
an internal signal and produces another. The invariant holds.

8. Thus we have proved thatsando andsend1 there are no internal signals and thus
receivingso or B1 is definitely an error.

Conclusively it seems that the easiest and strongest approach, at least in this case, is to
describe the impossible transitions as saves. The reduction shows that the transitions are
actually impossible. This holds because all the internal signals are saved in the state. The
most practical solution is probably to combine the exception approach and the save-
approach. If the designer really thinks that the transition is impossible, the implementa-
tion could issue a warning and then perform a save as recovery.

4.5.4 Bounded resources — Mn on a finite system

An implementation of an SDL system in real life has to have several limitations com-
pared with the ideal world of SDL[11; 12]. In our context the limitations on the number

of processes and signals are of major importance. The number of processes is covered
in more detail in Section 4.3.6 (p. 160).

Assume that there is a fixed maximum number of signals for each channel. The number
needs not be the same for all channels, but for each channel it is fixed. The monitoring
system checks that the limit is kept and calls an exception if the number exceeds the
limit. This means that there is a finite set of complete states. The queues of internal sig-
nals are no longer of any length. This implies furthermore t@atffices in theory. The

Mn-procedure collapses to an MO execution where the execution is cut off whenever the
initial internal queue has reached its limit. If we can keep the channel signal number lim-
its small, this may be an attractive approach.

In a situation where the channels are bounded, and data can be handled symbolically,
the system is finite state. This means that in principle confluence can be decided by
exhaustive simulation. It depends on the chosen size of the channel limits and on the
communication structure of the system whether this strategy is applicable. If exhaustive
simulation seems too laborious, we may of course apply random simulation and achieve
a certain statistical significance for our confluence conclusion.The big advantage with
this approach is that there will be no problem with unreachable non-confluence patterns
since only reachable states are examined.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 175

4 The Mn-approach and formal analysis

Conditional reduction

176 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

5 The Mn-approach in practi-
cal engineering

Grook to Stimulate Gratitude (in sour rationalists)

As things so
very often are,
intelligence
won't get you far.

So be glad

you've got more sense
than you've got
intelligence.

5. The Mn-approach in practical engineering

The examples given earlier in the thesis are fairly small and theoretical systems. How
can the Mn approach be adapted to more practical engineering environments?

Systems are made and modified by humans. This fact is often overlooked in connection
with validation and verification. The issue should not be for the proof theorist to assert
“correct” or “not correct” for a given system, but to assist in improving the system qual-
ity. Instead of applying immensely complicated verification techniques on a bad
program, the program should be made simpler such that an automatic verification tech-
nique could be applied.

In this chapter we develop a reference model for the nature of real, reactive systems in
Section 5.1 (p. 178) and we apply this to evaluate how the Mn-approach would work for
real, reactive systems. summarized in Section 5.6 (p. 223) and to develop a method for
system engineering which emphasizes the integrated use of the Mn-approach in Section
5.3 (p. 199) which we call “confluent design”. In Section 5.2 (p. 192) we describe our
expectations for applying the Mn-approach to real systems. We make a simple estima-
tion model for the execution of the Mn-procedure and develop a concept of perceived
complexity reduction. In Section 5.4 (p. 217) we report from a small case study of apply-
ing the Mn-approach to a part of a real system at Siemens AS. In Section 5.5 (p. 222)
we discuss how Mn-tools should be built.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 177

5

The Mn-approach in practical engineering
The Nature of Real Reactive Systems

5.1 The Nature of Real Reactive Systems

178

Here we postulate what real systems are like, how they are made and how they are per-
ceived. Our aim is to find out whether there is an interesting class of real systems which
could be analyzed by the Mn-approach. We conclude that there is such a class of
systems.

5.1.1 What is a real, reactive system?

A real systenis being used, or will be used. A real system is implemented on some hard-
ware and actually executed. A real system could be sold on the market.

Systems which are not real systems, but which still may be very interesting, are systems
for education, systems for joy and play and non-implemented systems i.e. systems
which have been specified, but not implemented. Typically such systems have been
abstracted considerably (Section 4.3.3 (p. 157)) and a practitioner may not feel certain
that the system reflects the problems of a corresponding real system.

A reactive systens a system where the immediate behavior is directly dependent upon
the most recent stimuli received. The system reacts to the stimuli and outputs corre-
sponding signals to the environment. The key characteristic is that a reactive system is
preoccupied with behavior which is caused by the consumption of input signals.

That a system is reactive is also very much a matter of how we decide to perceive the
system. The same system may be perceived as reactive when studying the signalling and
the reactions, and as a (static) database system when focusing on data structures and the
storage of data.

A personal computer system with its windows and mouse has definite reactive charac-
teristics, but it may also be considered a data storage system, a mathematical modeling
system, a typographic tool, or a video editing machine, depending on its use.

5.1.2 What is typical for real, reactive systems?

Having defined the notion of a real, reactive system in Section 5.1.1 (p. 178), we con-
tinue to characterize properties which seem to correlate in practice with real, reactive
systems.

The Mn-approach is defined to cope with systems specified in SDL. SDL systems are
reactive as they are based on finite state machines and signal interaction. Thus we could
limit ourselves to finding typical characteristics of real SDL systems. As pointed out in
Section 1.2.2 (p. 3), SDL has been used extensively in the telecom area (for which it was
developed) and telecom systems are perhaps the most typical reactive systems for which
the Mn-approach is useful.

5.1.2.1 Size

Telecom systems are big. Telephone switches used to be some of the largest pieces of
software ever made. Now rumors are that the newest windowing systems are even big-
ger, but they are also reactive systems even though they are hardly specified in SDL.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5

The Nature of Real Reactive Syster

The size of computer systems can be measured in a number of ways. The number of
independent components is one metric, while the total number of lines is another. It is
not very important for our purpose to go in great detail about what metric we use to mea-
sure size, because we want to emphasize that size is not synonymous with complexity.

Still the pure size of a computer system usually creates problems for automatic verifica-
tion techniques.

5.1.2.2 Independent components

It is also typical for a reactive system that it contains a set of concurrent devices which
are operated in true parallel. The personal computer has its mouse and its keyboard for
input, together with telephone lines and computer network. Some machines may even
have video and audio input and output. The interaction between these independent
devices and the management of their cooperation give rise to many challenges.

Real, reactive systems are composed of independent, but interacting components. Even
though they may be interacting such that the graph of channels forms a connected graph,
this does not mean that every external input activates all the components. Normally only
a small portion of the components are involved when an input is handled.

In a system of concurrent and independent components, the flow of signals, which actu-
ally determines the flow of control in reactive systems, is very important. While many
approaches to system analysis focuses mainly on static (data) structures [36; 29], our
Mn-approach concentrates on behavior.

5.1.2.3 Nesting

By “nesting” we mean that system structure concepts may have a recursive definition.

In SDL blocks may contain blocks, and in the end a block contains processes. In State-
Charts [54] states contain states. Thus the structure of a system becomes a tree structure
(or a directed acyclic graph). Such structures are well suited for optimization of travers-
als. Compositional reasoning becomes very attractive [132].

Whether real reactive systems are nested structures depends on the principles used to
describe them. SDL systems and systems described by StateCharts are often nested
because the languages allows and encourage it, while systems described by OMT [118]
and implemented directly in C++ [130] will be less nested because OMT and C++ is less
oriented towards nesting.

5.1.2.4 Data

A system of communicating finite state machines have the power of a Turing machine
[13; 23] which is sufficient to be able to describe systems where progress (termination)
is not provable. Therefore from a theoretical point of view there is no need for data vari-
ables of the SDL processes to describe systems where the Mn-approach will meet
problems.

For a practitioner, the data variables add flexibility and expressive power which make
the descriptions more compact and easier to understand. But data variables will also
more easily create specifications which are more difficult to handle by automatic veri-
fication means.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 179

180

The Mn-approach in practical engineering
The Nature of Real Reactive Systems

Real reactive systems will normally include a considerable amount of data variables, but
only in few parts of the systems there will be complicated algorithms or complicated
administration of data. In many cases the data-intensive parts of the reactive systems
have been isolated either as subsystems or in operators. Subsystems may be described
in data-intensive notations such as database languages while operators are often defined
in programming languages such as C.

5.1.2.5 Heterogeneous

We cannot expect to use one kind of methodology for all parts. The combination of
methods must be exploited.

We may find systems where data play fairly isolated and minor parts, but seldom sys-
tems where data variables are absolutely absent. We may find systems where the Mn-
approach can apply to almost all of the system, but rarely a system where the Mn-
approach is all you need.

5.1.2.6 Real Time

Real systems operate in real time. Transitions do have duration and even the mere con-
sumption of signals (or even the save operation) takes time.

We call a system a real-time system when the actual duration of time or the actual points
in time are significant. SDL only provides timers to cope with real time. Timers is an
imperative attitude towards time. We would also like to have means to describe con-
straints on time or in general statements about time associated with the specification.

Real systems’ descriptions have real-time constraints mainly in comments and informal
auxiliary constructs.

5.1.3 How are real systems made?

Here we want to characterize how real systems are made related to how the Mn approach
can be effectively used in system engineering.

In Section 5.1.2 (p. 178) we characterized real, reactive systems from a static point of
view. We characterized systems as theand not how thegievelop We characterized

the way theyunctionedand not how they wermescribedIn this section we shall

describe the dynamic, development dimension and in Section 5.1.4 (p. 185) we shall
evaluate the representation dimension [90] (how systems are described relative to how
they actually appear).

5.1.3.1 System analysis — the use of different descriptions

In this section we shall point out a few properties which are related to the early phases
of a system development and to the fact that a system is described in many different
ways. In Section 5.1.4 (p. 185) we shall go into how different description forms are
related to how well they are understood.

System development methods which are based on formal methods, like FOCUS [20]
and VDM [87] tend to hypothesize that it is possible to develop systems by describing
an abstract system first, verify this as far as possible, and then refine this description in
small steps into a perfect implementation. This is a very naive understanding of how sys-

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Make more
precise

The Mn-approach in practical engineering 5

The Nature of Real Reactive Syster

tem development is performed. Even if they in footnotes agree that this one-way street
paradigm is hardly likely to succeed and that “iterations” are needed, the impression left
is still that every “iteration” or modification is something which is due to imperfection

of the actual system development.

Our basic reference model is different. The earliest phases is not characterized by
abstract and formal specifications. The earliest descriptions are vague and without much
detail, but they contain important concepts and give indications of what the system
should look like in the end. In our SISU Integrated Methodology (TIMe) [12; 58] we
recognize the dialectics of practical refinement. From the initial descriptions there is
both a need for more precise descriptions and a need for more detailed descriptions (Fig-
ure 112 (p. 181)). These two needs require different means, and they are definitely
different, but they are interdependent. Still it helps to keep them apart as it clarifies why
the pure top-down approach is doomed to fail, and that its modification cannot be under-
stood as “iterations”.

@ make more precise

The Whole p» The Precise

make more detailed make more detailed

The Details ~ make more precise ' N€ Precise Details

Diale s

Figure 112: The Whole, The Precise and The Details

To make more precise descriptions can be divided in three subtasks: to formalize, to nar-
row and to supplement.

To formalize means to transform the description from an informal one to a formal one.
This is non-trivial in itself. It involves the definition of concepts and work on interpre-
tation of phrases.

During formalization it becomes clear that the original informal description was wider
than intended since it implicitly supposed a “friendly” interpretation. Since formal nota-
tions normally do not have the necessary informal interpretation context, it is necessary
to supply the description with definitions which narrow the interpretation possibilities.

It is also common that formalization discloses that there are interpretations which
nobody had thought existed. Narrowing cuts away those interpretations which are
incompatible with the overall purpose of the description.

Formalization and narrowing may also discover that there are “holes” in the description.
Aspects of the system has not been covered by the informal description. It is possible to
label this “underspecification” by saying that uncovered aspects means that all interpre-
tations of this aspect are within the description and what we need is narrowing. This is,
however, not the way it is perceived by the developer who is trying to make the descrip-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 181

Make more
detailed

Distillery

182

The Mn-approach in practical engineering
The Nature of Real Reactive Systems

tion more precise. He distinguishes easily between concepts which are present, but too
wide, and concepts which are needed, but non-existent. The non-existent concepts must
be supplemented.

It is conceivable to perform this branch of the development (“make more precise”) with-
out performing the other branch (“make more detailed”), but it may not be optimal. If
the precision branch has been carried out, the result is a formal description on the same
level of detail that the original informal description had. Then we are at the point where
the formal methodologies want to start.

To make more detailed can also be divided in three subtasks: to decompose, to break
down and to reveal.

To decompose means to find which structural components the system is comprised of.
This is in itself not a trivial task. It is not obvious what structural parts a system is com-
prised of, one cannot merely look at the system and see it. The components are defined
through the purpose of the whole system and by the way the system is described. The
decomposition principles of SDL and StateCharts lead to different components. Further-
more there may be several alternative decompositions within the same conceptual
framework.

While trying to reach the definition of components, the breaking down of behavior pat-
terns and communication may become an issue. Behavior and structure are dually
related. A certain behavior may require a certain structure, and a certain structure may
limit the behaviors possible. Still to divide the substance of the system is not the same
as dividing the behavior. Decomposition is timeless, while breaking down involves
timely behavior and sequencing of communication. The practitioner will very often per-
form decomposition and breaking down in parallel.

While decomposing and breaking down, structural and behavioral details are defined.
This development can be compared with applying a magnifying glass even though the
designer himself is making reality as he progresses. When we find more details, we also
discover that new aspects become relevant. With higher granularity, some details were
too small and insignificant to be included, while now they may be as significant as the
details. Still these new aspects are not necessarily obvious “parts” of the already
described systems. We say that we reveal underlying aspects.

As the precision branch could be performed without the detailing branch, symmetrically
the opposite can also happen. Then we are left with a detailed informal description.

Having performed both the precision and the detailing branches, we have a detailed for-
mal description. Recognizing that the two branches may happen in parallel, that they
influence each other and that performing one branch before the other may not be the
most fruitful approach, we must have some means to assert that the precise and detailed
result is a good enough result.

It is reasonable to believe that the precise and detailed description is not perfect. If the
two development branches have been performed in parallel, the by-products “precise
whole” and “detailed whole” may not be present. A distillery purifies the source. In this
respect it means to work from the detailed and precise description and the original infor-
mal specification to form the precise whole and possibly the detailed whole.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Iteration?

The Main
Description

The Mn-approach in practical engineering 5

The Nature of Real Reactive Syster

Between the precise whole and the precise details there should be a formal refinement
relation which should in principle be asserted. The informal description of the details
can be used as comments to the formal ones, and as informal starting points of the mak-
ing of the next level of abstraction. In Figure 113 (p. 183) we summarize the distillery

A abstraction

level
| | |
QQ@TO” -
] distill prove regfinement
details details
OO — 0 OO O
precision

time>

Precision = formalize, make more narrow, supplement
Details = decompose, break down, reveal

Figure 113: Distillery

development strategy.

Metrics of complexity and aesthetics of the description should also be used to make the
descriptions proper for the next phase of description. In this final task, the description is
again modified with the evaluation metrics and the need to make a proper refinement
relation as inputs.

That the distillery approach represent a kind of iteration is not correct. Iteration means
something which is repeated. Here we have not described repetition, but a set of tasks
which interact and mutually influence each other. That the mutual influence also implies
some loops is obvious, but it is not the main point.

The major difference in thinking is that our approach accepts as fruitful the intermediate
descriptions which will not be maintained. Corrective measures are an integrated part of
the development process.

5.1.3.2 System design — the dynamics of system development

A system description consists of a number of different documents which are made in dif-
ferent notations. This is recognized by all methods. Sometimes the multitude of
notations become a nuisance for the designer and we find in practice that the different
notations do not have the same weight. Very often there is one fairly complete notation
which is the main notation, and the descriptions in this notation become the main docu-
ments. Traditionally the main description has been the program itself. Subsequent
maintenance and corrections are made directly on the program and the design and spec:
ifications quickly become archaic and partly incorrect. Fortunately the advent of system

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 183

Continuous
develop-
ment

Concurrent
develop-
ment

Plans and
reality

User error
reports

184

The Mn-approach in practical engineering
The Nature of Real Reactive Systems

development techniques with code generation such as SDL-oriented methodologies [80;
44; 59] and OMT-oriented ones [118] have shifted the weight from implementation ori-
entation to design orientation.

Real systems are never finished. They are maintained before they are delivered. Design
and development of a piece of software is a very incremental process. Corrections and
improvements are combined with new features. Changes take place all over the system
to achieve a new purpose. This means that reachability of a certain system state is not
very robust. Some work has been done to analyze the effects of many small changes (rip-
ple effect) [139] such that the need for a total validation analysis can be avoided. The
fact is, of course, that a total validation is not performed for every change request
because validation efforts are often very time consuming and expensive.

Design development is highly concurrent. Large systems can only be made by large
organizations in the time frame available. Several parts of the total system are developed
in parallel, but the different parts are not necessarily at the same level of maturity. Some
parts turn out to be more complicated while other parts are simple.

Projects are always late. Either they turn out to be late in real time, or they become late
in working time which means that overtime and extra resources have to be applied. The
predictability of development progress is a major concern of technology managers.

5.1.3.3 System validation — how to believe they work

When a system is going to be delivered, it is necessary to try and assert that the system
works according to the expectations. We focus in this dissertation on verification as a
means for asserting correctness in systems, but we also have realized that real systems
are normally not verified in any formal sense of the word.

How is the system and its description validated? How do the developers reach the con-
clusion that the system and its descriptions are correct and appropriate?

- User error reports The system is shipped once it runs at all. First it is shipped to in-
house people, then to beta-sites and then to regular customers. They all report errors
which they find when they are using the system.

- Systematic testing he system is systematically tested before it is shipped. The test-
ing can either be relative to a test specification, or it may be relative to the experience
of the testers. In the first variant all different outcomes of a test have been given pre-
determined verdicts while in the latter variant the verdict is given in parallel with the
test by the experienced tester.

- Formal proofs The system is proved correct relative to a formal specification. Any
transformation of the system description is based on formally defined transformation
rules.

- WalkthroughsThe system is validated by human examination of the system
description.

Too often it seems that the in-house validation is not as thorough as the customer wants.
The “hotter” the features of the system, the more anxious the companies are to ship prod-
ucts to a market, and the more tolerant the users are with system defects. The concept of
“beta-sites” resembles the painting of a fence in “Tom Sawyer” by Charles Dickens.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Systematic
Testing

Formal
proofs

Walk-
throughs

Syntactic
form

The Mn-approach in practical engineering 5

The Nature of Real Reactive Syster

Tom Sawyer needed to paint a fence, but by persuading his friends that painting was far
from boring, he managed to make his friends do the penalty paint job for him. Beta-sites
are likewise “friends” of the software company believing that it is very beneficial for
them to perform extensive testing of an immature product.

Traditionally testing was the only means by which the company asserted the correctness
and usefulness of their products. Testing will probably always be an important source of
validation and the art of testing has become more scientific [52; 105; 24].

In real life testing is not done optimally. Even though serious companies may have very
systematic ways to perform testing with all kinds of recording and special test teams etc.,
the truth is often that testing is limited to the time available in the end before delivery.
When the time is up, companies may resort to the “user error reports” category.

Very few systems have yet been formally verified, but their numbers increase. Espe-
cially in very technical problems, it is possible to state adequate and formal requirements
which can be verified through automatic or semi-automatic means. WE refer to [10] for
a collection of formal methods applications in industrial settings.

Inrecent years it has become more popular to try and perform some validation integrated
with the development. In the rigid step-oriented development methods, such as VDM
[87] and CleanRoom [39; 110] advocate the necessity to assert the step transitions
through validation.

Since formal verification lacks tools and practical feasibility, the most cost-effective
way to perform validation seem to be by walkthroughs [63]. There are a number of well
structured ways to perform thorough analysis through the use of reading teams and peer
designer scrutiny [50; 140; 51].

5.1.4 How are systems described and how are they understood?

In this section we present a framework for describing system descriptions and for under-
standing how descriptions are being understood. In Section 5.1.3 (p. 180) we
concentrated on the synthesis of system descriptions and how they evolve, but here we
look at the fact that systems are not made in isolation. Systems are developed in teams
and there is a necessity that the team members understand what other development engi
neers are expressing. Just as it is important that a description expresses the intent of the
designer, it is also important that the description is intelligible for others.

We shall go through a number of dimensions of descriptions which we find significant
and give examples how languages, methodologies and system descriptions can be
placed in this framework.

5.1.4.1 The language dimension

A good language is not good just because it is expressive wrt. a given domain, a good
language is good for a number of purposes.

How does the language describe the core of the problem? How is the syntax suitable for
supporting the understanding of the core of the problem?

- Is the syntaxgraphical?

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 185

Evolution-
ary aspects

Topology

186

The Mn-approach in practical engineering
The Nature of Real Reactive Systems

- Can the core ideas &etcheduch that the remainder can be built upon it without
much changes?

- How much is the understanding dependent ugaiaral languagadentifiers (or
excessive commenting)?

Modern system analysis and development methods use a graphical syntax at least for the
early phases. SDL[78] and MSC[86], StateCharts[54] and OOA[29], OMT[118] and
UML[Rumbaugh, 1996 #272] are all very graphical. Graphics seems to improve the
structural overview, but decreases the compactness such that a description becomes
more easily overcrowded.

Whether the languages are “sketchy” is more difficult to assess. Some of the common
analysis notations could be said to be merely sketchy as they cannot be code-generated
to an executing system. SDL — on the other hand — is a language which performs reason-
ably well as a notation for sketches as well as it may develop the sketches into a
consistent and complete SDL description.

The need for natural language identifiers and comments is dependent upon the topic as
well as the language. Informal notations, and notations with very few basic building
blocks normally need auxiliary information in the form of natural languages. More for-
mal notations as SDL and StateCharts are not so dependent upon natural language
supplements.

Very mathematical notation is again dependent upon commenting when it is used for
system description.

The evolutionary aspects of a language is related to how changes in the descriptions are
carried out. What impact does a change have in the description? Is there a reasonable
correspondence between the perceived significance of a change and the amount of
change needed? The evolutionary aspects of a language is also dependent upon the
design of the system, but languages have different ways to cope with changes.

- Pure modificationthe system is changed in a number of places. No trace of the
former system can be found. The changes are not marked.

- Specializingthe evolution amounts to specialization of an existing concept.

- Similarity. the change is a new concept which is similar to an already existing one.
- Parameterizationthe change depends on parameterization of an existing concept.
- Granularity. the change demands more detail to the description.

While some languages like SDL and common third generation programming languages
like C++[41; 130] have strong structuring mechanism for both substance and behavior,
other languages work best on small systems or with large pieces of paper. Object orien-
tation is commonplace in system analysis today while the more formally inclined
notations like VDM, Focus and Z[64] have put less emphasis on structuring
mechanisms.

The topology of the description relates to the geometrical structure or the referential
structure of the description. How would a reader browse around in the description?

- Locality: how much can be understood from looking locally, and how much is depen-
dent upon changing view frequently?

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5

The Nature of Real Reactive Syster

- History dependencdow important for the understanding is the execution history?

- Structure intuitiondoes the description structure correspond to the substance and
behavior structures?

- Extrinsic relations how does the language express relations between objects on the
same level, peer-to-peer relations?

- Intrinsic relations how does the language cope with relations which are intrinsic to
the understanding of systems, the MAGIC relations? (See below and [56])

Languages based on explicit states are fairly history independent as the current state rep-
resents the execution history. Such languages include SDL and StateCharts. Languages
with independent and asynchronously communicating components such as SDL can be
understood fairly locally while some object-oriented notations seem to motivate for
descriptions where the execution context change very rapidly, and it is necessary to fol-
low the slings and arrows of the execution. Auxiliary invariants are needed to facilitate
local reasoning. The structure of an SDL system description is very similar to the struc-
ture of the running system. Again very dynamic descriptions in object-oriented
languages may have the effect that the structure of the actual system only vaguely
resembles the structure of the description. Complexities of the actual system may be
well hidden within pointer structures that are hard to spot in the description. Also formal
notations tend to hide complexities in aesthetically pleasing and compact formulas.

How are the peer-to-peer relations described? Are there explicit relations such as asso-
ciations in UML[113], or pointers? If there are pointers, are they unqualified like in C,
or qualified like in Simula?

The intrinsic MAGIC relations between processes are:

- Meta-relation when one process modifies the description of another. This kind of
relation is not normally found in programming languages, but it is found in
LISP[137]. This kind of relation is becoming more interesting as modification of sys-
tems (reconfiguration etc.) must take place during continuous execution because alll
stops of the systems (such as telephone switches) cause great economic loss and sect
rity risks.

- Aggregate relationwhich is the plain “consists-of” relation. It comes in many dis-
guises and is present in some form or another in most system description languages.

- Generation relationwhich in this context means that one process generates other
processes. Object-oriented languages have this as one of the most important relations
and mechanisms. In SDL processes may create other processes, but higher level con-
structs block cannot create other blocks.

- ldentity relation when processes are similar. Object orientation defines inheritance
which is a variant of this relation. The identity relation also covers virtuality (poly-
morphism) and overloading of operators. To express similarity is very important to
limit the description and validation efforts during maintenance.

- Conceptsto distinguish between singular processes, process sets and process types.
Older languages like SDL-88[25] had problems with the distinction, and this can also
be seen in more modern entity-relation oriented notations like OOA[29].

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 187

5

Semantic
form

Communi-

cation

The
program-
mer

The
specifier

The team

The
observer

188

The Mn-approach in practical engineering
The Nature of Real Reactive Systems

How a description is understood is dependent upon the appearance of the description
and the expressiveness of the language, but it is also very much dependent upon the
defined semantics of the language.

- Declarative the language appears as a set of predicates which is supposed to be true.
- Imperative the language appears as sequences of instructions to machines.

- Mixed the language is an interleaving of declarations (invariants) and imperatives.

- Formal semantics basthe language is based on a formal semantics.

Declarative languages are typically the more formal notations (which then definitely
have a formal semantics base), such as Z, VDM and Focus. Imperative languages are
those which resembles programming languages such as SDL. Mixed languages are
found also in the programming world such as Abel and Eiffel[101]. Also more prag-
matic system description languages such as SDL and MSC may have a formal semantics
bases[79; 98; 82; 109; 117; 68].

How does the language describe communication between processes?

- Communication strategig the communication asynchronous or synchronous or may
both strategies be applied.

- Communication means communication performed through signals, shared vari-
ables or remote procedures?

Languages often choose a specific communication strategy with associated means.
CSPJ[71] uses synchronous handshaking as was also adopted by Ada. CCS[103] also
describes synchronous communication which seems to be the preferred model for for-
mal notations. SDL and MSC describes asynchronous communication with signals, but
SDL can also use remote procedures to simulate synchronous communication.

5.1.4.2 The user dimension

Users of the descriptions come in different categories. We must expect the users to have
different competence and different interests and different inclination.

The programmer focuses eaquencingnd loops. He specifiesperativelythe com-
munication and the variable assignments. He has an imperative approach to time and
timers as well.

The specifier likes axioms amavariantsto describe the situations in a system. He gen-
eralizes with quantifiers and uses symbols of foreign alphabets. Instead of loops, he
understands repetition lbgcursion and instead of sequencing he understands behavior
as afunctionfrom input to output.

The designer team is interested in#&trfacesare described properly. Furthermore the
independencef the different components is important.

The observer wants to understand, more than to influence by creating. He is mainly
interested in theansparencyf the description. As a manager he may also be interested
in assertingprogressin the development of the description.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Deceptive
profile

The Mn-approach in practical engineering 5

The Nature of Real Reactive Syster

5.1.4.3 The problem dimension
How well is the problem understood before the design starts?

- The technical problenthe problem is well understood, and the work is mainly to for-
malize the problem and to implement it.

- The explorative problenthe problem is reasonably well understood, but there are
aspects which need to be discussed and clarified.

- The vague problenthe problem is not well understood, there may be differences of
opinion and conflicting interests. There is a definite need for improved insight.

5.1.4.4 Comprehension profiles

To give a picture of how comprehension is achieved we define a set of ideal comprehen-
sion profiles: the deceptive profile, the aha profile, the steady profile and the 90%
syndrome profile. These profiles are intended to describe types of understanding devel-
opment for an individual. A set of comprehension profiles make up a comprehension
body. We want to use the comprehension profiles to formulate how understanding
changes over time and to relate this to the language, user and problem dimensions.

The generic comprehension profile in Figure 114 (p. 189) shows that understanding may
be perceived differently by the person than what is really the case. For the person the
sum of the proper understanding and the misunderstanding makes up his perception of
understanding since he has no way to assert his misunderstanding.

proper understanding

/ﬁOerceived understanding
-

'\ time

full knowledge

misunderstanding

Figure 114: Generic Comprehension Profile

Thedeceptive profil€Figure 115 (p. 190)) is characterized by the fact that the person
believes that he understands considerably more than what is actually the case. The effect
of this may be that he acts with too much self confidence, or that the system gets to be
delayed, or that it is eventually implemented in an improper way.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 189

The Mn-approach in practical engineering
The Nature of Real Reactive Systems

A

r

\j

Figure 115: Deceptive profile

Aha profile The aha-profile (Figure 116 (p. 190)) is characterized by a sharp rise in understanding

Steady
profile

190

at some unforeseen point in time (the aha-experience). The problem with the aha-profile

A

— >

Figure 116: Aha-profile

\j

is the unpredictability of the aha-experience. If a comprehension body consists of
mainly aha-profiles, the participants will have very varied comprehension levels which
will imply much overhead with discussion and conflict. Still the true aha-profile is pos-
itive as the aha-experience is very inspiring and encouraging for the remainder of the
study effort. The more predictable the aha-experience is in time, the more the aha-profile
resembles the steady profile (see below).

There is also sometimes a possibility of a “false aha-profile” where the person wrongly
believes he has had the aha-experience, but in fact there is a sharp decline in understand-
ing and massive misunderstanding. This is the worst case of mismatch between the
perceived understanding and the actual one. If the false aha-profile exists in a team it
will most surely exist in combination with true aha-profiles and the conflicts and discus-
sions will be even more confusing.

The steady profile (Figure 117 (p. 191)) is characterized by a steady and predictable rise
in understanding. The rise is not necessarily linear, but the clue is that the development
is predictable from a fairly meager prediction base. The amount of misunderstanding is
small and spurious. The steady profile gives rise to no surprises, but sometimes an
increased understanding is hoped for in the project. The project leader of a project where
the profile body is full of steady profiles may hope that he has a body of aha-profiles
right before the burst of aha-experiences.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5

The Nature of Real Reactive Syster

Figure 117: Steady profile

90% syn- The 90% syndrome profile (Figure 118 (p. 191)) is characterized with a quick rise to
drome 90% of full understanding, but the latter important 10% understanding takes far more
profile time than expected. The problem with the 90% syndrome profile is that it may be mis-

A

—

Figure 118: 90% syndrome profile

interpreted as the steady profile with a pleasantly short time frame. Not enough effort is
put into covering the last 10%. A project with a body full of 90% syndrome profiles may
spend an enormous amount of time not believing the last 10% are really there.

5.1.4.5 The system development dimensions and the comprehension profiles

The comprehension profiles are correlated with a number of other dimensions. Individ-
ual differences play an important role, but also our development dimensions language,
user and problem are correlated with what comprehension profiles one could expect to
find in a project.

Deceptive profiles are most frequent where there is a mismatch between the problem,
the user and the language. A problem which is vague, a user which is an observer, should
not be offered a language approach which focuses on declarative, formal and textual
documents. Conversely a problem which is technical, a user which is a specifier should
be using a language which has a formal semantics base and is capable describing the
intricate aspects of the problem.

Aha-profiles are e.g. found in projects with premature use of formal techniques. Formal
techniques are characterized with focus on languages with a formal semantics base, and
where formal proofs are the major approach to validation. Formal techniques seem to
require a certain state of mind to understand, and this happens to different people to dif-
ferent times. The problem is well understood (a technical problem). That helps in
establishing the positive context for reaching the aha-experience.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 191

The Mn-approach in practical engineering
The Mn-procedure on Real Systems

False aha-profiles occur almost always in situations where there is a pressure to achieve
the aha-experience. A programmer in a project with a majority of specifiers may feel
compelled to admitting that he does understand the issue, even though he does not.

Steady profiles are the safest ones. They occur in traditional programming and in spec-
ification work using imperative languages like SDL and simple notations like MSC.
They give little surprises, but sometimes the project leaders want faster progress in the
development.

90% syndrome profiles may occur when a project estimates the problem to be technical.
while in fact it is explorative (or even vague). The misinterpretation leads to inadequate
resources for the last, but important 10%. Sometimes the last 10% understanding takes
a lot of resources of validation. When the first 90% were reached quickly it is easy to
ship a product before it has been adequately validated. The poor customers keep report-
ing errors for a prolonged time.

We try and summarize system development in Table 9 (p. 192) which shows three ideal
types, the formal technique, the programmer’s approach and the sketchy attitude. The

Table 9: System development ideal types

formal technique programmers sketchy attitude
approach
languages Mathematics, Z, | SDL, MSC, C++, | OOA, OMT, UML

VDM, Focus Simula, Java
semantic form declarative imperative mixed
user specifiers programmers, team observers, team
problem technical explorative vague
validation proofs systematic testing| walkthroughs

comprehension | aha, false aha steady, 90% aha, deceptive

table shows “ideal types” which means that in reality there are few cases exactly as the
ones in the table, but we believe that these “ideal types” represents centers of gravity in
clusters of system development approaches. In a given project it may be wise to adopt a
sketchy attitude in the earliest part of the project and a programmer’s approach later. If
the problem turns out to have aspects of pure technical character, a formal technique
could very well be applicable.

5.2 The Mn-procedure on Real Systems

192

5.2.1 The two facets of Mn

One should be aware of the two quite different faces of Mn:
1. As a way to make reductions, which in turn may be used

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

General

The Mn-approach in practical engineering 5

The Mn-procedure on Real Systen

- for analysis of enclosing levels (Section 4.1 (p. 143)),

- inside other techniques (Section 5.3.8.5 (p. 217)),

- as an aid to understanding (Section 5.3.6 (p. 209)).
2. A technique to reveal engineering problems and errors

- potential errors (Section 5.3.7.3 (p. 214)),

- complexities (Section 5.2.2 (p. 193)).

It should be noted that Mn was created mostly to serve the first purpose. Still in practice,
wanting Mn-tools, the second purpose is equally important. For engineers who want to
use the Mn-approach, there is less risk to use it to find problems than to find reducibility.
This follows from the fact that to find reducibility, all intricate as well as trivial problems
encountered must be solved either automatically or manually.

5.2.2 Complexity expectations

We discussed the theoretical complexity in Section 4.4.2 (p. 165). Here we want to con-
sider the practical complexity which we should expect in real systems if they are as we
have supposed in Section 5.1 (p. 178).

Complexity come in three variants:

- Complexity of the Mn-procedure

- Complexity of the system under analysis

- Complexity of the reduced process

These three variations are not independent, but not perfectly correlated either.

5.2.2.1 Complexity of the Mn-procedure in Real Systems

Since the Mn-procedure executes transitions which are the same transitions as those of
the system under analysis, it is reasonable to predict that the complexity of the Mn-pro-
cedure is comparable with the complexity of the system. We have also shown in Section
4.4.2.2 (p. 166) that the execution of the Mn-procedure is comparable with an exhaus-
tive execution of the system itself. Since it is not obvious from just looking at the system
under analysis how complex it is, we shall use the presumed correspondence to assert
the complexity of the system in Section 5.2.2.2 (p. 197).

Here we want to discuss how the complexity of the Mn-procedure relates to the typical
characteristics of a real time system as described in Section 5.1.2 (p. 178). Size is impor-
tant for the analysis. The Mn-procedure is not extremely dependent upon the size of the
system as it scales well. As long as the different components of the system are relatively
independent, the size is not a limiting factor by itself. Large size is also be counterbal-
anced by nesting where each block can be proved reducible on its own. Complicated
data expressions and especially if the behavior is dependent upon decisions where such
complicated data expressions are used, may increase the complexity of the Mn-proce-
dure considerably since all kinds of non-determinism adds another dimension to the Mn-
procedure. Restructuring of the data involved or abstractions (c.f. Section 4.3.3 (p. 157))
may be necessary to be able to perform the analysis. That a system is heterogeneous doe:

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 193

Number of
generations

Number of
execution
levels

194

The Mn-approach in practical engineering
The Mn-procedure on Real Systems

not really affect the Mn-procedure as it works only on communicating finite state
machines. Other models and description techniques will have to use other verification
techniques as well. A partial analysis or a conditional analysis may be the solution. Tim-
ers are also a source of non-determinism and complicates the Mn-procedure.

As pointed out in Section 4.4.2.2 (p. 166) the overall complexity of the Mn-procedure

is very much dependent upon the expected number of execution levels (either levels
within the same generation or in several generations). We pointed out that the expected
number may be dependent upon both psychology and system architecture. Itis our belief
that the psychology of the designer is more limiting than the system architecture.

Let us first look at what the reasonable maximum number of generations may be. We
recall from Section 4.4.2.2 (p. 166) that the number of generations can be expected to
correlate with the communication structure of the system since we expect to perform the
Mn-procedure piecewise.

Let us therefore assume that we have a fairly simple system architecture where there is
basically a sequence of processes. Let us assume that on a certain potential non-conflu-
ence pattern in the first process we detect a sequence permutation on the channel onto
the second process. Let us also assume that the designer is conscious about this sequence
permutation possibility. He knows that he may compensate for this sequence permuta-
tion in the second process. Otherwise he can make sure that the sequence permutation
does not become worse. This will normally mean that the signals involved in the
sequence permutation of the first process are independent in the second process. To
introduce more sequence permutation among these signals in the second process would
most probably go beyond the designers capacity to handle mentally. If we assume that
the designer does leave the original signal permutation alone in the second process, this
goes on to the third, and the same argument can be put forwards for that process. But
sooner rather than later the designer must seek to compensate the sequence permutation.
The farther the compensation is from the origin of the sequencing problem, the more
probable it is that new complications enter the scene, or the designer loses control of the
sequence permutation.

Let us summarize. We think that a designer cannot voluntarily introduce more than one
sequence permutation without compensation and not lose control of the logic. It is pos-
sible to have some distance between the introduction and the compensation, but this is
usually not longer than one or two processes. Since the communication structure corre-
sponds closely with the generations in a piecewise execution of the Mn-procedure, we
conclude that the number of generations for real systems will not exceed 3 or 4 and still
be successful wrt. reducibility.

In already existing systems where the Mn-approach has not been used as guidelines, we
expect to find that the introduction of sequence permutation is not intended, and that the
compensation is either unplanned or due to some hidden invariant.

Let us now turn to the execution levels within a generation. The criterion for continuing
to execute in one generation is normally the state different criterion. This means that
from a potential non-confluence pattern, the two branches lead to a pair where the basic
states are different. Still the two complete states of the node are supposedly equal in
some sense since we want to prove confluence. We may also assume that stabilization
is all right. Usually the state different node is a situation where there are signal sequence

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Conclusion

Complexity
estimate

The Mn-approach in practical engineering 5

The Mn-procedure on Real Systen

differences as well as the basic state difference. The basic state difference compensates
the signal difference. Very often to change generation is not so attractive because the
next generation alphabet is easily non-parallel (Section 2.4.5.2 (p. 61)) due to the differ-
ence in basic states.

The Mn-procedure fans out quickly on continued execution within a generation, and we
are looking for the reversal of the state differencewmrybranch. If more complica-

tions are introduced during such an execution, the designer is sure to lose his overview.
Therefore for every signal in the alphabet, either the state difference is reversed or it is
kept. If it is kept, the states are possibly changed, and there is another chance on the next
level. Again we do not believe that the designer is able to have a conscious attitude to
more than a very small number of such levels (i.e. state transitions).

Sometimes external stuttering resolves such a state different situation. The stuttering
cycle is expected to be very short, often only one signal.

Conclusively our educated guess will be that the number of levels of one generation
could normally not exceed the 3 or 4 without obvious chances that the designer has lost
control. Altogether, we would expect the total depth of the execution from one potential
non-confluence pattern not to exceed 5.

From what we have said above, we could make the following very rough estimate
model:

. The number of processesis

. The number of basic states per process is on the awrage

. The number of external signals per process is on the awerage

. The number of internal input channels per process is on the acerage
. The number of internal signal types per channel is on the average

o O B~ W DN P

. Non-determinance factorns The non-determinance factor is how many more nodes
there are on the next level of execution due to non-determinism. E.g. if every transi-
tion contains a non-deterministic decision which branches in two possibilities, the
factor is 2.

7. The non-conformity factor s The non-conformity factor measure the number of
nodes which need another level of Mn-procedure compared with the total number of
nodes on this level.

The number of potential non-confluence patteris(i*s*(e*c*i + i*i*c*(c-1)/2)). The
numbere*c*i is the number of potential non-confluence patterns involving an external
signal and*i*c*(c-1)/2 is the number of non-confluence patterns involving two internal
channelst is also the number of nodes on the first level. The number of nodes needing
another execution level i, and the result of another execution level from these nodes
will result in(t*f*n*i*c) new nodes. The level factor is trasf*n*i*c. If we accept 5 lev-

els as the maximum we get the following total numiet*(1+a+a?+a3+a?).

We have here applied the assumption (c.f. Section 4.4.2.2 (p. 166)) that a new execution
level within a generation or a new generation give approximately the same final result.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 195

196

The Mn-approach in practical engineering
The Mn-procedure on Real Systems

The estimate will be even better if we instead of using averages for parasneters
used actual values for each process and then calculated the number of potential non-con-
fluence patternsas a sum of the individual values for each process.

In Table 10 (p. 196) there are some examples of what the estimates turn out to be:

Table 10: Mn-procedure complexity estimates

Example p S e c [n f t T
process D 1 3 1 1 2 1.0 0B 6 14
block ABP 2 3 1 1 2 1.5 0.3 12 49
block Tk 5 12| 1 1.2 1.2 1.2 0.2 10 15
imaginary system1 20 10 2 25 7 112 0.2 25K 10M
imaginary system2 20 20 2 16 7 112 02 158K 1M
imaginary system3 20 20 2 3 5 112 02 42K 10 M
real system 1 7 5 3 3 8 1.2 041 9.2K 1M

We see that the number of channels to each process is very important for the total num-
ber of nodes. The number of internal signals per channel is likewise extremely decisive
for the estimated number of nodes. If we assume that it takes 10 ms to produce and
resolve a node, it takes almost 3 hours to resolve the Real System 1 in Table 10 (p. 196).
The Mn-procedure is, however, easily distributed since the analysis of every potential
non-confluence pattern is independent. Put 3 machines to work, and it is done in 1 hour.

We also notice that in this model there is no gain by compositional application of the
Mn-procedure unless there is reuse of block types within the total system.

The estimate is also an estimate of the execution of the Mn-procedure if the channels
had been bounded to maximum 5 signals, and the execution was only MO execution.

We conclude:

1. For small systems the estimate is not very good. It is better to take the actual values
for each process and estimate from there by adding the individual estimates.

2. The complexity of the Mn-procedure is estimated to be mostly dependent upon the
number of channels into each process and the number of internal signals on each
channel.

3. The non-conformity factor is also very decisive and it is hard to estimate without
proper empirical data. Changing it from 0.1 to 0.05 in the Real System 1, makes the
estimate decline by a factor of 10. It is typical that real systems have much smaller
non-conformity factor than theoretically interesting examples such as the Alternating
Bit Protocol or the Brock-Ackermann example.

4. The numbers of nodes are large, but not necessarily devastating.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5

The Mn-procedure on Real Systen

5.2.2.2 Complexity of the system under analysis

Having developed the estimation model in Section 5.2.2.1 (p. 193), we can now work
the opposite way. From starting the Mn-procedure analysis we may estimate the com-
plexity of the system.

Our basis for complexity estimation is simply the set of initial nodesptiiled 2.

The main categories are just the categories of the evaluation known from Section 2.4.4.2
(p. 57).

1. ConfluenceWe suspect that a very large majority of the nodes will fall in this cate-
gory. If all nodes fall in this category our system is “commutative” and directly
reducible as discussed in [92].

2. Non-confluenceThis is the most critical verdict. Either there is a design error, or we
need to apply other techniques to prove that this node is unreachable.

3. Sequence permutatiohhere is a sequencing problem on an internal channel leading
out of the process under consideration. It is necessary that subsequent processes com
pensate for the sequencing problem. It is likely that a generation change is needed to
establish confluence. The possible exception is when external stuttering can be used
as confluence criterion.

4. State differentThere is a difference between the two basic states in complete state
pair of the node. Compensation can be achieved by continuing on this generation.

Complementing these four main categories there are some subcategories related to the
fact that a real system is not as simple as the basic systems handled in Section 2. (p. 41)

5. Omitted We run into default transitions when determining Z0. In general we consider
execution of default transitions harmful and consider that an exception. This is why
we consider this situation confluent, but exceptional, and it should be reported and
preferably mended.

6. Double-sided errarWe assume that the system contains error exceptions. If both
paths from the potential non-confluence pattern to the elements of the pair in the node
of Z0 go through such error exceptions, we consider the node confluent even though
the error exceptions may not be equal. The system is certain to end in an error when
the potential non-confluence pattern is reached. If we are able to prove reducibility,
and the reduction contains no error exits, we can conclude that the double-sided error
could not occur.

7. Single-sided errorf only one of the two paths leading to the node under analysis
goes through an error transition, we have a single-sided error. This is not as “attrac-
tive” as the double-sided error. Still we consider single-sided errors also confluent
and the reducibility will be conditional (see Section 4.5 (p. 171)). If there is a need
for a recovery for such single-sided errors, we advice tsaseas the recovery. A
given error transition of course may turn up in a large number of different nodes.

8. Warning A warning is a situation where either one or both sides of the node record
internal warnings. Still the situation is not considered fatal by the designers, and the
monitoring system is not taking over, which means that the internal recovery is con-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 197

198

The Mn-approach in practical engineering
The Mn-procedure on Real Systems

sidered satisfactory. We shall consider these situations like normal situations, but we
do not require that both sides of the node issue the exact same internal warning. A
one-sided warning is more worrying than a double-sided warning.

9. Save problemsSave is the only legal way to permute signals in SDL and therefore
practical. But save offer new problems. The save problem is when one path of the
complete state pair in the node ends in a save, and the other contains two consump-
tions and no save. We characterize this as sequence permutation (or possibly state
different). The save problem nodes are considered harmful and changes should be
made if possible.

10 Non-determinism problenNon-determinism is a source of complexity, but not nec-
essarily a source of error. Relative to the Mn-procedure an added difficulty is that it
becomes more problematic to distinguish between state different and sequence per-
muted situations since each element of the pair is comprised of several complete
states. We characterize such a node by the term “non-determinism problem”.

Each node of gcan be characterized by these categories. Some nodes may even fall in
several categories. It is possible to produce a normaiaaglexity profilewhich will

give an overview of the process and an indication of the workload of Mn-procedure to
cover this process wrt. reducibility by using the data of the profile as input to the esti-
mation model of Section 5.2.2.1 (p. 193).

The estimated total number of nodes could be used@mplexity indexbut since the
estimation model does not distinguish between more than the main categories, it may
pay off to create an index which is tuned to the application domain of the system under
analysis. We feel that a linear combination of the categories probably gives a good
indication.

5.2.2.3 Complexity of the reduced process

Even when the system is reducible, the reduced process may not appear very simple.
Here we want to discuss when reduction does not seem to reduce perceived complexity.

Perceived complexity is definitely important when the reduction is intended to be used
for improved understanding as discussed in Section 5.3.6 (p. 209). Perceived complexity
may not be very important if the reduced process is only used as a preprocessor for other
methods Section 5.3.8.5 (p. 217).

We have to develop a more precise notion of what we shall understand by “perceived
complexity” of a process (CFSM). We could try and evaluate the process according to
the criteria laid down in [11], but those criteria are not very absolute. We believe a better
strategy is to try and measure how much the process has been reduced. The idea is that
if the process has not been very much reduced, chances are that the result is not per-
ceived as less complex.

Since a finite state machine consists mainly of states and transitions, we concentrate on
these aspects. Furthermore we add criteria for non-determinism.

1. Compute the ratigg between the number of basic states of the reduction and sum of
the numbers of states of the processes of the original unreduced system.

2. Compute the ratig between the number of transitions of the reduction and the sum
of the number of transitions of processes of the original system.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5
Mn Methodology

3. Compute the ratigy between the number of decisions in the reduction and totally in
the original system.

The reader may be puzzled about why we apply the sum rather than the product to com-
bine numbers of the original system. The combined process where no reduction has been
performed would have figures equaling the product of the numbers. Our intention, how-
ever, is to capture “perceived complexity” or “the complexity which meets the eye”. We
feel that it is not until one starts to simulate the execution that the sense of the product
turns up. What meets the eye is the sum.

Let us in Table 11 (p. 199) see how the reduction manages in our toy examples.

Table 11: Perceived complexity reduction

example s e rq
process D 1/3=0.33 1/9=0.11 00=1
system ABP 2/6=0.33| 2/10=0.2| 0/4=0
system T1 2/6 = 0.33 5/10=0.5 00=1
system T2 2/7=0.29 | 4/12=033 0/0=1

We shall not make too vivid conclusions from the figures in Table 11 (p. 199), but for
very successful reductions the ratios may be quite small. We consider the ratios very
small if they are less than 0.5. If the ratios are higher than 1, the reduction is not very
successful in terms of reducing the perceived complexity.

A dissatisfactory perceived complexity may also indicate that the system under analysis
is not a very good unit. It is possible that reconsidering the boundaries of the block might
result in a more satisfactory reduction.

5.3 Mn Methodology

Traditionally verification is a process which takes plafterthe designers believe they

have a correct program. They experience, however, that correctness is hard to achieve.
Verification leads to necessary changes even though the verification techniques are not
necessarily targeted to improve the design. Their major aim is to determine the assumed
correctness of the specification. Very often formal verification techniques must work on
abstractions rather than the real system because “implementation details” confuse the
verification issue. There is of course some danger that abstractions do not closely corre-
spond to the real system, or that the removed details are more significant than
anticipated (see also Section 4.3.3 (p. 157)).

The methodological impact of verification has, however, been recognized for many
years. Early formal verification inspired by Hoare logic [69; 32] led to methodological
programming guidelines such as “gotoless programming”. Furthermore the experience
from projects involving considerable amounts of formal verification is that much
improvement is gained by the insight needed by the verification effort [108; 127].

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 199

200

The Mn-approach in practical engineering
Mn Methodology

Our Mn-approach is in the tradition of “gotoless programming”. We believe that a suit-
able design improves the quality of the design as well as the chances of succeeding with
the Mn-approach to verification and validation. If we should make a slogan to describe
our general approach it must be “confluent design”. A major point is that if the verifica-
tion fails to decide the quality of the system under analysis, the blame is not put on the
verification method or the abstraction, but on the design. The reasons for Mn-procedure
failure are analyzed and the designer should have to defend the adequacy his
specification.

5.3.1 The Mn-approach assumptions: “confluent design”

“Confluent design” is based on some assumptions of how good quality design looks.
Our assumptions are based on the descriptions of the nature of real reactive systems in
Section 5.1 (p. 178) and the reasons for complexity described in Section 5.2.2 (p. 193).

5.3.1.1 Race conditions

Race conditions are usually harmful if they imply non-confluence. Non-confluence
means that the haphazard order of signals is significant for the final result of the system.
We believe this to be harmful because a system should have a purpose. This purpose is
not haphazard, but definite. Still this does not mean that the signal output from the sys-
tem has to be deterministically inferred from the input signals. We accept that there may
be sources of non-determinism, such as alternatives induced by decisions and timers.
We do not, however, normally accept that the relative speeds of the processes should
introduce non-determinance.

This is a methodological standpoint and not entirely inferred from the difficulties of the
Mn-procedure. Our attitude is that at least non-determinism should be explicitly stated
and thus explicitly wanted. Race conditions represent a form of “hidden non-determin-
ism”. Even when we explicitly specify a state asexge state, it is still not certain that

the in principle possible alternatives are actually possible.

For the expressiveness of our approach it is important that we can also express race con-
ditions which are considered appropriate such as in specifying the Brock-Ackerman
example (Section 3.5.4.2 (p. 109)) and the RPC-Memory example (Section 6.3.1 (p.
239)).

Accepting race conditions as appropriate should not be common. Acceptable race con-
ditions should be expressed explicitly by therge state mechanism (Section 3.5.4 (p.
106)).

5.3.1.2 Reducibility

SDL blocks should normally be reducible. The block concept of SDL may be used for
a number of purposes [11 p 208], but they all emphasize that a block is a unit which can
be conceptually understood by itself. This is not sufficient to require that they should be
reducible, but it indicates that reducibility should be probable.

Our standpoint that SDL blocks should be reducible is again a methodological stand-
point which will make it simpler to analyze (by the Mn-procedure) SDL systems and
hopefully also to achieve an understanding of the system.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5
Mn Methodology

5.3.1.3 Complexity

It is our assumption that complexities in the establishing of reducibility reflects com-
plexities in the system as such. We have not as much discussed the complexities of
establishing progress, but we have given some insight into the presumed psychology
behind making non-confluent systems in Section 5.2.2.1 (p. 193).

We believe that our complexity profile presented in Section 5.2.2.2 (p. 197) gives a good
approximation to real complexity and that the quality of the software will be improved
if the values on the complexity index is decreased.

5.3.1.4 Data

Data represents a major problem for our technique. It is important that data algorithms
are structured such that they do not interfere with the Mn-procedure as such. Our
assumption is that it is possible to package data in ways which make it possible to make
good use of the Mn-approach.

This is according to how we perceive the nature of data in Section 5.1.2.4 (p. 179) and
the ways data can be handled as discussed in Section 3.6 (p. 117).

5.3.1.5 Time constraints

Even though real, reactive systems are also usually real time systems, it is not necessar-
ily such that time constraints play an extremely important role in the design work.

One reason for this is that the worst case scenario is often easily spotted. An implemen-
tation of this scenario is then tested and if the time constraints are not satisfied,
optimization alternatives include hardware alterations as well as common software
optimization.

A second reason is that practitioners will normally use surveillance timers instead of or
in addition to intricate reasoning about response times.

We assume in the following that for a large and interesting class of real, reactive systems
we can assume that reasoning with time constraints is not necessary.

5.3.2 How to ensure Progress?

As mentioned several times in this thesis, progress is important for the Mn-approach,
but it is not the main theme of this thesis. Therefore our suggestions regarding progress
are tentative and should be supplemented with other techniques.

5.3.2.1 System structure for progress

The system structure is the topology of the system as a whole. How are the components
connected and what signals pass through the channels? How is the nesting structure and
how are the object-oriented features used?

Progress is violated by feedback loops which never terminate. The possible existence of
feedback loops is therefore interesting. A system structure where the channels form a
dense web of bidirectional connections is susceptible to many feedback loops. On the
other hand a sequence of processes connected by unidirectional channels form a struc-
ture which is virtually without feedback loops. The problem with complicated, web-like

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 201

Decisions

Timers

202

The Mn-approach in practical engineering
Mn Methodology

system structures is that the feedback loops may be difficult to isolate and they may be
so involved in each other that the total number of feedback possibilities becomes very
large.

Therefore the Mn-approach wants simple architectures where feedback loops are easily
isolated. We realize that for a practitioner’s verification, we shall have to settle for less
than formal proofs of termination. This means that it is even more essential that the feed-
back loops are well isolated and simple to perceive.

5.3.2.2 Process behavior for progress

The actual feedback loops can be found by trying to apply the signal ordering criterion
presented in Section 2.6.4.1 (p. 80). A by-product of the search for the signal ordering
criterion is a directed graph where the cycles indicate possible feedback loops. Having
isolated the feedback loops, we need proper means to ensure the termination of the feed-
back loops.

Very often termination of a loop is dependent upon a decision where a data expression
finally reaches a specific value. Sometimes this is trivial to ensure like for a counting
variable running from some very low number to a finite and constant higher bound.
Other times it may be very intricate to prove that the data decision is actually going to
be reached. In such situations we suggest to abstract the data from the decision by intro-
ducing a fair decision (see Section 3.5.3.2 (p. 103)) where the exit branch has positive
probability.

For a practitioner, it is common to resort to timers in order to ensure progress. In an
implementation there may be two kinds of timers, timers which are integrated in the sys-
tem and described in SDL, and timers which are used only for surveillance and which
resides in a monitoring layer.

The integrated timers (see Section 3.7 (p. 119)) induce non-determinism which compli-
cates the Mn-procedure and sometimes timers make the specification more diffuse and
less comprehensible. On the other hand they are part of the SDL specification and their
expiration is considered normal rather than exceptional. The important distinction is that

the expiration of the integrated timers cause merely internal recovery actions, while the

expiration of monitor timers triggers actions external to the SDL system.

The alternative approach is to have the monitoring layer introduce timers which are
intended exclusively to monitor progress. Whenever the timer expires, this is considered
an exception and the monitoring layer will perform recovery actions which are external
to the SDL system. The advantage of this kind of ensuring progress is that it does not
affect the SDL system itself. The progress is determined conditionally and so will reduc-
ibility be. Either the system acts according to the reduction or an exception is called by
a monitoring timer.

To choose one of these two timer strategies, it is important to have an idea of how nor-
mal the timer expiration is. If the designer believes the timer will expire sometimes, the
integrated strategy should be used. If the designer believes that the timer will never
expire, the monitoring strategy is applicable if it is available. We refer to Section 5.3.5
(p- 206) for more discussion on a layered approach.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Multi-lane
process

The Mn-approach in practical engineering 5
Mn Methodology

A special kind of monitoring timer could be a timer which monitors#wes. In order
to ensure strong progress, it would be interesting that the saved signals are not saved for-
ever. Therefore a monitor timer associated with each save could be practical.

5.3.3 How to ensure Confluence?

Confluence is our business! Confluence is what the Mn-procedure detects, and conflu-
ence is what makes race conditions harmless. We also believe that a confluent system is
more transparent than those which are non-confluent.

5.3.3.1 System structure for confluence

We should make all merge situations explicit. This means that we prefer that channels
go all the way to a process (or block) rather than merging with another channel on the
way. When there is a merger of input channels, an implicit merge component must be
inserted for the Mn-procedure. A basic fair merge component results in sequence per-
mutation such that the actual process receiving signals from such a fair merge
component should compensate for the sequencing problem.

In general a web-like system structure will have more input channels into each compo-
nent process than more linear structures. Since we know from Section 5.2.2 (p. 193) that
the number of input channels is very deciding for the complexity of the Mn-procedure,
our advice would be that one should look into whether the communication structure
could be simplified such that the number of input channels decreases.

To decrease the number of channels is not necessarily to the benefit of confluence, since
increasing the number of output channels actually makes it simpler to achieve conflu-
ence (see Section 4.1.1 (p. 143)). For an internal channel, it is both output and input
channel. Therefore it is not obvious whether confluence becomes more difficult or less
difficult to determine if an internal channel is removed (or added). As a rule of thumb a
channel should be used for each individual communication dialog [11].

The structure is also easily analyzed by Mn-procedure if many of the processes are either
multi-lane processes or channel-state mapped processes. These Mn-friendly categories
of processes are described in Section 5.3.3.2 (p. 203).

The designer should also be careful with using the same signal types in many different
places in the system. Especially if the same signal type may appear on several different
channels into one process, this means that the SDL process cannot actively distinguish
between signals of the two channels. Very often it is desirable to control the sequencing
of the channels by saving all signals of all but one channel. There are of course situation
where this concern does not apply.

5.3.3.2 Process behavior for confluence

Since the Mn-procedure works quite well in a piecewise manner, it is likely that good
structure within the processes is more important for confluence than the structure of
communication lines in the system.

First we define two categories of processes which are confluent by definition.

A laneis a tuple of the one input and zero or more output channels of a process.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 203

The Mn-approach in practical engineering
Mn Methodology

A process is aulti-lane procesd it is possible to find a set of lanes such that:
1. There are no overlap between the channels of different lanes of the process.

2. Each transition of a process defines flow on exactly one lane, meaning that the input
is from the lane’s input channel and its output merely onto the lane’s output channels.

3. What happens next on a lane L on input | is not affected by any intermediate transi-
tions on other lanes than L.

That such multi-lane processes are always confluent, is simple. All initial nodes will be
confluent since the independence between the lanes is strong both with respect to signals
and states.

It is actually the case that a lane is a specialization of an SDL service. An SDL service
has its own state space and their sets of input signals must be disjunct. Our lane concept
has in addition that also the sets of output signals must be disjunct and that the signals
must be on different channels as well. Our third criterion corresponds to the services
having their own state space.

In practice multi-lane processes come in even more specialized classes. Either the whole
process has only one state, or every lane except one is defined through an asterisk state
which means that their underlying service state space has only one state.

Having identified a process as a multi-lane process, it is reasonable to consider whether
the process should have been divided in several services or subprocesses.

Channel- A channel-state mapped procass process where:
State

g For each state, only inputs from one channel is acceptable. For all other inputs, we
mappe

either definesaveor internal error.

Conversely this means that for every input channel there are specific states in which
input from this channel is legal. Input from this channel at other times will result in inter-
nal errors osaves.

It is obvious that a non-confluence pattern cannot occur in such processes because the
legal input is restricted to only one channel at all points in time.

We need not be so restricted as the channel-state mapped processes, but to use save and
internal error to restrict the race conditions is a good idea.

Save The simplest way to control sequencing is tosge This will normally make it easier
to establish confluence. Strong progress may be more difficult to prove, but weak
progress is sufficient for using the Mn-procedure to establish confluence.

Internal Conceptually to apply saveis a way to describe that the signal may well appear at this

errors point, but the process is not ready to consume it until later, in a more suitable basic state.
Sometimes the designer want to express that a certain signal is not welcome at all in this
state, in fact its appearance should have been impossible. In SDL this cannot be
expressed. SDL defines default transitions for every transition which has been left out.
In practice internal errors are warned through raising an exception in some way and then
a recovery is performed. If there is a monitoring layer, it is reasonable that this layer
takes over and resumes operation of the SDL layer at a proper complete state. Possibly
a complete initialization and restart is the only proper action.

204 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5
Mn Methodology

Seen from the SDL layer, an internal error is something that should not have happened,
but we are happy to have caughtit. Confluence is often made conditional to the existence
of internal errors.

5.3.4 How to simplify Refinement verification?

Practitioners will claim that they perform refinement, but in practice the practitioners
concept of refinement does not fully comply with our more formal notion presented in
Section 4.2 (p. 146). The reason can be found in the way systems are actually made as
described in Section 5.1.3 (p. 180).

5.3.4.1 The distillery and refinement

There are several reasons why refinement is not simple to prove in practice. If the
abstract description is informal and the implementation (normally) formal, there is not
much we can do until we have distilled a formal, abstract description as well.

Even a formal abstract description may not correspond to the implementation. The rea-
son can be found in the subactivities of supplementing and revealing. The abstract
description has been made at a time where the understanding of the problem domain was
less complete and where not all features of the product had been settled. When the
description is being made more precise and more detailed, it is also supplemented and
new aspects revealed.

Some of this achieved knowledge can be described inside the interface mappings, but
not necessarily all of it. The final distillery is very much to make the abstract description
cover a comparable area as the implementation.

5.3.4.2 Using interface mappings

That the refinement mappings can be made in SDL as pointed out in Section 4.2.1 (p.
147), makes it possible to perform formal refinement verification even for practitioners.
The main problems with the refinement verification will be concerned with the data
expressions and decision structures. It is probable that not all mapping and comparisons
can be done automatically.

We may assume that the abstract descriptions will often have non-deterministic deci-
sions where the implementation has decisions with data expressions. In general data
expressions will often appear only in the implementation as they are abstracted in the
abstract description.

Making the interface mappings may in some cases also reveal new problems and pro-
vide new understanding. Left out situations are highlighted by having to actually specify
the interface mappings.

5.3.4.3 Object orientation and refinement

Inheritance resembles refinement. There is an important difference, however, because
we do not want the implementation to add more behavior to the abstraction such as the
specialization does wrt. the general type. Inheritance can be used to describe an uncon-
ditional refinement relation only when the specialization merely specifies redefinitions.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 205

The Mn-approach in practical engineering
Mn Methodology

With this restriction on specialization, we can see that the compositionality of refine-
ment corresponds closely to the default constraints on inheritance in SDL-92 as
illustrated in Figure 119 (p. 206). SDL has as default virtuality constraint that the redef-

block type A block type Cinherits A

Virtual B | ite-| | redefined B

—»

Figure 119: Refinement and Inheritance

inition shall be a specialization of the default virtual. Let us assume the invariant that
inheritance is restricted such that it means refinement. In Figure 119 (p. 206) this means
that the redefined B (in C) is a refinement of the virtual B (of A). According to the com-
positionality of refinement (Section 4.2.1 (p. 147)) we get that the encloser of the
refinement, here C, is a refinement of the encloser of the refined, here A. This means
that the invariant is kept at the enclosing level.

We conclude that if all inheritance relations involve only redefinitions, and if redefini-
tions of virtuals are specializations of the virtual, we have that it is sufficient for the
refinement on the top level that there is refinement on all bottom level redefinitions.

Examples of this approach can be found several times in Section 6. (p. 229).

5.3.5 The benefits of a layered approach

In [56] there is a thorough discussion of hierarchies in system description and program-
ming. Here we shall only point out what hierarchies we take advantage of in our Mn-
approach. We will discuss virtual machine layers, monitor layers, refinement levels,
nesting trees and inheritance structures.

In general we can say that these kinds of hierarchies support more effective analysis and
more transparent results.

5.3.5.1 Virtual machine layers

A virtual' machine is a an entity which acts externally as a machine meaning that it
offers a set of services to the outside. This model corresponds well with our model for
interface refinement illustrated in Figure 95 (p. 148).

Typically a series of virtual machines are used to describe protocols in the well-known
ISO OSI model. Each virtual machine is a protocol layer. As shown by the Alternating
Bit Protocol (see Section 3.5.3 (p. 100)), reduction of a protocol can result in a very sim-
ple description. In fact in an OSI model we know that the lower level protocol is
supposed to be understood as a simple signal on the upper level. If we want to show how
a plain signal on the upper level is made into a protocol on a lower level we use an adap-
tation shown in Figure 120 (p. 207) of the general approach to interface refinement. In
such a protocol layer setting we have all reason to believe that reducibility of the proto-

1. Do not confuse the use of “virtual” in connection with “virtual machines” with “virtuality” in object
orientation.

206 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5
Mn Methodology

[high level signals] " Identity i [high level sig:nals]
|

block Protocol .
* refinement

ldentity

Translation InvTranslatg

[(low level signals) [(low level signals)]

Figure 120: Protocol layers

col should hold as this is the overall purpose of protocols. We may be prepared to settle
for conditional reductions as pointed out in Section 4.5 (p. 171) as the protocol may
return errors instead of the wanted high level signal.

5.3.5.2 Monitor layers

We have pointed out a number of times in this thesis that our results may be conditioned
by the normal execution of the processes (e.g. in Section 5.3.3.2 (p. 203)). The idea is
that either the system fails, or it behaves normally and our verification results hold. The
verification results which we want to get are usually progress, reducibility and
refinement.

For practitioners, however, there is a very important distinction which must be made
here. There is a very big difference betwassumingrror-free execution arkthowing

that all errors will be caught. If we just assume normal execution, we say absolutely not-
ing about what happens if the execution for some reason is not normal. Practitioners
often find that they spend more time on the exceptions than on the normal execution.
Stronger than assuming error-free execution is to prove that undesired behavior is
impossible. Practitioners will often consider this only slightly better than assuming
error-freedom since their experience tells them firstly that proving is very difficult, and
secondly that the sources of errors are often beyond the language semantics.

The Mn-approach is a practitioners’ approach, and therefore the catching of errors is of
major importance. Again there is a distinction. Either the system itself may discover an
error situation or there is an external monitoring system which detects the fault. The Mn-
approach is based mainly on the system finding the errors itself, such as calling an
exception on impossible transitions. We do not, however, spend much time in this thesis
on proper recovery. Our assumption is that there is an exception handling system which
performs the proper recovery and brings the system itself back on track. Our only
attempts at recovery is to usaveas recovery on impossible transitions. There is of
course full freedom to cover error situations completely within the description of the
system, but this means only that error handling is a part of the application and the char-
acteristic as an error is not significant outside the system.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 207

208

The Mn-approach in practical engineering
Mn Methodology

We also suggest certain external monitoring features such as monitoring the speed of
transitions to ensure progress. Even though such monitoring is definitely external to the
system, it must interact with the system to be able to monitor it. For instance if the mon-
itor tries to control whether a loop takes too long, it must know when it starts, and also
if it terminates.

We summarize: in the Mn-approach the verification results concerning progress, reduc-
ibility and refinement may be conditioned by the detection of internal errors. To be
conditioned by internal errors means that either errors are caught or the system will act
according to the verification results.

The classification of execution situations is shown in Figure 121 (p. 208). The main Mn-

Executi{
Assumed error-free Monitored Undesirable behavior

/ woved impossible
Self-detected Externally monitored

Recovered Unrecovered
Figure 121: Monitoring of executions
approach is shown by the fat lines as unrecovered, self-detected, monitored executions.

The monitor layer may itself be described as an SDL system, but this is irrelevant for
this discussion. It only means that we could apply the very same arguments on the next
layer.

5.3.5.3 Refinement levels

The identification of refinement levels help the structuring of the system and the
improving of the relations between the early descriptions and the subsequent design
descriptions. As explained in Section 5.3.4 (p. 205) proper effect of refinement between
early analysis documents and later design documents is dependent upon sufficient dis-
tilling of the abstract layer. If the early descriptions are too informal or incomplete the
refinement relation will be hard to establish.

Also within the design phase, it may be fruitful to establish refinement levels to ensure
that the development progresses in reliable steps. In the Mn-approach, however, we do
not advocate that every development step is characterized by making another descrip-
tion which is a refinement of the former one. As the distillery approach emphasizes
(Section 5.1.3 (p. 180)), to get a good grip on the iterations and on the combination of
different approaches may be of greater value. An important aspect of the Mn-approach
is also that we advocate a continuous use of verification techniques to correct the ongo-
ing system engineering.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5
Mn Methodology

5.3.5.4 Nesting trees

An SDL system is normally a very distributed system and its description is as distributed
as the system it describes. This property makes it possible to have a large number of dif-
ferent designers work in parallel with an SDL description. This again creates challenges
concerning the consistency between the elements, and there is often a need for liaison
activities between different subdevelopments within a project.

That SDL has a nested conceptual structure makes the liaison efforts slightly easier.
Liaison efforts can take place on a variety of concepts since the total system is a tree of
concepts. The Mn-approach supports strongly this distributed property. It is our attitude
that reducibility and refinement can be proved within any conceptual entity of the
system.

Compositionality as described in Section 4.1 (p. 143) and Section 4.2.1 (p. 147) ensures
that results of lower levels of the concept hierarchy can be composed to results on higher
levels. This means that analysis work done in one area of the project is not performed
again when higher level results are sought.

5.3.5.5 Inheritance structures

Inheritance structures using object orientation represent layering of concepts which may
be orthogonal to the other layering concepts covered in this section. As we have seen
(Section 5.3.4.3 (p. 205)) inheritance may coincide with refinement, but it has values in
itself even when it does not coincide with refinement. As shown in Section 3.9 (p. 133)
inheritance and the Mn-approach work well together for mutual benefits.

5.3.6 Mn supporting understanding and reuse

Earlier in this section on Mn methodology we have concentrated on how the Mn-
approach can help such that the system descriptions are such that the system has a numr
ber of desirable properties.We have described how the Mn-approach helps the system
descriptions in making the best future system.

In this subsection we shall have a look at how the Mn-approach can be used to improve
the way the descriptions can be used for the best future sgistestopment-uture
development and maintenance are dependent upon the proper understanding of the sys
tem and the possibility to retrieve the suitable parts to maintain. Normally a well
structured system which is good for itself has the best chances of being good also for
maintenance, but there may be ways to improve it in the direction of understanding and
ease of retrieval.

5.3.6.1 Understanding

Let us takainderstandindirst. The scenario is that a new project member should make
himself familiar with a reasonably large part of the system. What would be the preferred
strategy? The common strategy is to give him a few very informal and very high level
descriptions of the whole system, and then — rather abruptly — leave him with the source
code (i.e. SDL description) of the block in which he will be assigned to do maintenance.
The new project member would like to be able to rely on the top-level information he
gets. He wants to consider the description he gets as a correct specification of the system
which is correct. Then he wants to have similar specifications on every level of the sys-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 209

210

The Mn-approach in practical engineering
Mn Methodology

tem down to the level on which he shall work. The common approach to project member
initialization at the best yieldsahaprofile as defined in Section 5.1.4.4 (p. 189), but

too frequently appears dsceptiveorfalse ahaprofiles. What we want issteadypro-

file where the education of the new project member is fairly predictable. To obtain
confidence in the student, there is a need for descriptions on every level weiictble
andtransparent How can this be achieved?

The common approach to facilitating understanding of a piece of software is to supply
it with either an informal description (comments), or a formal specification. The infor-
mal description has the major disadvantage that it cannot always be trusted. Furthermore
it is not precise enough to give the answer to all those technical questions which may be
asked on this level. The formal specification is normally written in another language
than the system description itself. Often a “formal specification” is declarative while the
system description is imperative (prescriptive). This requires that the newcomer must be
able to handle also this supplementary language as well as the system description lan-
guage. Furthermore to ensure that the formal specification is reliable it is necessary to
prove that there is consistency between the formal specification and the system descrip-
tion. When this requires more than what can be done automatically we experience the
same as with informal comments — that the specification is not reliable.

The general experience as discussed in Section 5.1.3.2 (p. 183) is that there is one main
description which is reliable, while all other descriptions are less reliable when they are
not automatically derived from the main description. This does not necessarily mean
that all descriptions but the main one should be abandoned. Alternative descriptions play
important roles during the system development as they form orthogonal views to the
description of the system which should be used formally to correct the main description.
After they have played this important role, their update during continued development

is unfortunately often neglected and the description becomes unreliable.

Many practitioners will claim that even when the formal specifications are reliable and
consistent with the system description, they are often not very transparent. Therefore the
formal specification is often also abstracted so much that important system description
details disappear.

All of this contributes to the confusion of the new project member.

The Mn-approach is that reductions are the best specifications. The advantages are:
» The system designer needs only knowledge of one language.

* The specification can be automatically deduced from the full system description.

» All relevant details are present, with the possible exception of data abstraction.
We illustrate the difference in approach in Figure 122 (p. 211).

5.3.6.2 Reuse

Ease of understanding corresponds well with the needs encountered in a reuse situation.
Assume now that the engineer works with a problem and wants to know whether there
are existing types which could help solve the problem. How could he most effectively
retrieve and utilize such a set of components from the rest of the system or a library?

There are three interrelated questions involved here:

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Making
candidates

The Mn-approach in practical engineering 5
Mn Methodology

Common approach Mn-approach
an idea an idea
bm\ conffents *w\fo#nal spec.
comments system descr. formal spec. — system descie—
donsistent?

maintenance maintgnance

system descr. system descr.

? ? formal spec.
Figure 122: Reliable and transparent specifications
1. How can suitable candidates for reuse be made?
2. How can suitable candidates be found?
3. How can a suitable candidate be used?

To reap the most benefit from the Mn-approach a candidate for reuse should be proved
reducible and the reduction should be generated. We may also consider reducibility an
indicator of quality in itself.

When a component has been proved reducible and the reduction has been produced,
what more is needed to make the component suitable for reuse?

In practice it is not sufficient to have a reduction in order to be reusable. Reusable com-
ponents must be retrievable and transparent as well as having good quality. Here are
some of the information that should be made available in the reuse repository.

1. Nameof the component

. Necessary contextf the component. What is its encloser?

. Informal descriptionComments to the components.

. Functional descriptioras SDL process. Reduction of the full component.

. Confluence robustnests it strongly confluent? (see Section 3.9.1 (p. 133))
. Structure If the component is a block, the first level block description.

. Complexity profileas defined in Section 5.2.2.2 (p. 197). Complexity index.
. Quality assurancdigures such as test results and walkthrough minutes.

© 00 N OO 0o B~ WN

. Auxiliary descriptions such as MSCs, test suites, invariants etc.
10 Full descriptionof the component.
11 Pointers to implementatiotesigns.

The name will be used for unique identification. The necessary context must be given
since reusable components are not always self-contained. There may be need for other
types available where it is supposed to reappear. The informal description is used for
human recognition and for early screening in a large repository. The functional descrip-

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 211

Finding
candidates

212

The Mn-approach in practical engineering
Mn Methodology

tion is the formal specification of the component as a process. Confluence robustness is
practical because it tells whether we may expect to find non-confluence patterns in this
component when it is used in a larger context. The structure is an indication of how the
component is distributed. The complexity profile is a metric of the component and
should tell in a few words how difficult this component should be to maintain and to
build upon. Other quality assurance figures may also be compiled. The auxiliary
descriptions may have been used for test purposes, or during design. Pointers to these
specifications help give a total picture of the component. Naturally there is a need for
the full description in SDL of the component, and pointers to implementation designs
are also helpful.

Finding candidates for reuse is in itself a difficult question on which much literature has
been and will be produced. It is the general question of finding something in a structure
of potentially similar matters. There are two main strategies, either initiate a search or
look in a structure. From a formal point of view the two strategies are not very different
as searching also means to look in a structure. The difference is the use of human power.

Let us first discuss the search strategy. Firstly we have the problem of describing the
search criterion, what am | looking for? Secondly there is the problem of defining when
an item in the component database is close enough to be selected as a candidate. To
describe behavior in a searchable way is a challenge in itself. Furthermore, when you
have specified the behavior that well, there is a chance that the bulk of the work has been
done anyway. In theory following the Mn-approach we have the following:

1. All items in the component base have a process description as its specification. This
means that all items are comparable in form.

2. The search criterion is specified as a process.

3. The match criterion is that the search criterion is a refinement of the database com-
ponent. The Mn-approach to establishing refinement presented in Section 4.2.2 (p.
149) leaves some room to define “closeness” by how much the item lacked for the
establishment of refinement. A component which is “close”, but not perfect, could
possibly be extended by specialization to a component which satisfies the
requirement.

This application of the Mn-approach is very theoretical since we would never apply
searching techniques if it were not for the fact that the amount of items in the database
is fairly large. Then performing a refinement for each comparison should be prohibitive
wrt. time even though it is in principle automatic. A hybrid approach is probably to be
preferred. A coarse search is performed using structured comments as found in the list
of attributes to a reusable component suggested above. Thereafter a finer filtering is
done according to the suggested Mn-approach. We should also be aware that behavior
functionality seldom is the only valid criterion which is sought by the designer. Other
relevant criteria are distribution, robustness, testability, access to component designer,
age, etc.

Automatic search in large libraries of suitable components is not the common situation
at this point in history. Most libraries are rather small and provided that they are fairly

well organized the designer himself acts as a search engine. He has not specified the
search criterion in any great detail, it appears mainly as an idea in his head. From tra-

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Using
candidates

The Mn-approach in practical engineering 5
Mn Methodology

versing the structures in the item database which are supposedly logically established,
the match criterion is that the designer recognizes something that resembles what he
needs.

The question concerning this strategy is how the item base is best structured. Our simple
answer is that the object-oriented structures should be well suited as item base traversal
structures. As a people’s library is divided according to a taxonomy, object orientation

classifies concept the same way. The advantage of object orientation is that the classifi-
cation scheme is reflected in the actual descriptions and not only in their documentation.

If the candidate is according to our requirements described above, the Mn-approach can
use the reduction of the candidate for subsequent analysis according to the composition-
ality of reducibility proved in Section 4.1 (p. 143).

We should also be aware that reusing a component in object orientation means two
slightly different things as pointed out in Section 3.9 (p. 133). The simplest way to reuse
a component is to make an instance of it. Then the external definition given by the pro-
cess specification (the reduction) should be about all what is needed.

The more advanced form of reuse is when the designer creates a new concept which is
inherited from the reused component. To ascertain that the candidate is applicable will
normally need a closer look at the real component and not only at the reduction. Still if
the Mn-approach has been applied to all nested levels, we should need only to go one
step down at the time and relate to the reduced version on that new level.

5.3.7 Mn-development

How can we achieve systems which are well structured according to the criteria?

We have discussed how the ideal Mn-friendly system specification should look, to give
good structure to the system and to pave the ground for maintenance and further devel-
opment. Now we want to sketch how the Mn-approach could be integrated into the
development processes as a core principle.

5.3.7.1 Mn awareness

For each unit of the system consider whether the Mn assumptions “Confluent design”
(Section 5.3.1 (p. 200)) are supposed to hold. If they are not meant to hold, the Mn-
approach should not be applied. We repeat the assumptioosfifent desigmere:

1. Race conditions are considered harmful if they imply non-confluence.
2. SDL blocks should normally be reducible.

3. The complexity of the Mn-procedure applied to a unit reflects the complexity of the
unit.

4. Data can be abstracted or they can be packaged in ways which isolate the data prob-
lems from the problems of concurrency and communication.

5. Time constraints can be abstracted or easily tested.

Even with a general positive attitude to the Mn-approach there may be units which do
not fit with the Mn assumptions.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 213

214

The Mn-approach in practical engineering
Mn Methodology

An Mn-oriented development strategy will make Mn awareness a part of the project plan
and the result of the Mn awareness process part of the project requirements.

5.3.7.2 Top-down Mn

By “top-down” we mean that descriptions on high structure levels are made before
descriptions on lower structure levels. The Mn-approach is essentially a bottom-up tech-
nique as it is described. Applying it top-down amounts mainly to perform the distillery
approach as presented in Section 5.1.3.1 (p. 180) one step and then carefully check the
step such that the distilled whole (the abstraction) refines to the precise and detailed sys-
tem description. This careful checking is simply done using the bottom-up techniques.

The Mn-approach gives little assistance to the creation of the implementation. Since the
process definition on purpose has eliminated all signs of internal communication, it is
virtually impossible to produce a full system from the reduction. What is imaginable is
that the total process definiti@mda structure definition which has come from other
sources together could have enough information to suggest the process definitions of the
components sketched in the structure definition. Something of this kind has been done
for an finite state machine based model consistent with CCS in [111].

5.3.7.3 Bottom-up Mn

By “bottom-up” we mean that we use Mn to analyze blocks which have already been
made. We may also build up a “profile” of the component which tells more about the
component than whether it is reducible or not.

This is the most normal way to apply the Mn-approach, and we shall go through the Mn-
strategy, which is basically a bottom-up strategy, in Section 5.3.8 (p. 214).

5.3.8 Mn-strategy

A strategyis more an “algorithm” which should be followed by the developers. The
sequencing of the individual tasks is presented and countermeasures for non-conform-
ance situations in the system description are described.

5.3.8.1 Progress

We consider progress first. Since termination may be impossible to assert, we may want
to settle for less.

1. Build a signal orderingWe assume that the signal ordering criterion (c.f. Section
2.6.4.1 (p. 80)) is alImost met. We will find loops and we will find needs to annotate
the signals (by channel names).

2. Consider every loom the signal ordering graph. Termination of the loops should be
one of the following (see also Section 2.3 (p. 50)):

- a data decision eventually exits

- a fair decision eventually exits

- atimer expires and the loop terminates
Each of the loops should be documented.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5
Mn Methodology

3. Make sure that there is no data loogide a process. This may in principle be impos-
sible to assert, but then an abstraction with a terminating loop should be applied.

4. Consider possible abstractiotssimplify the progress establishment. Here typically
abstraction of data is applicable (see also Section 4.3.3 (p. 157)).

5. Strong progresshould then be considered. Normally we settle for weak progress, but
there may be reasons to try and prove strong progress. Often weak progress and
reducibility make it possible to assert strong progress from the reduction (Section
3.4.4 (p. 96)).

5.3.8.2 Confluence

Establishing confluence is the heart of “confluent design”. By establishing confluence
after having established (weak) progress, we can conclude reducibility. Even without
having established progress, the search for confluence may be of value. Either potential
problems may be found, or the reducibility can be made conditional to assuming
progress.

We also produce complexity metrics as by-products of our confluence search.

1. Categorizethe components according to a very rough scheme (see also Section
5.3.3.2 (p. 203)):

- One-input-channgbrocess (The process has only one input channel and therefore
it cannot show any non-confluence.)

- Multi-lane procesgThe process is actually a collection of “lanes” with one input
and disjoint output. The clue is that the outputs are never merged.)

- Channel-state mappegmocess (The process is such that for each basic state there
is only one channel from which it accepts input.)

- Mergeprocess (The process have potential non-confluence patterns which must be
considered more closely.)

The idea here is obviously that it is possible to perform this categorization very swiftly
and manually. The three first categories are all trivially confluent, while the last category
is the only one that requires additional analysis.

2. Make acomplexity profileof each merge process (see Section 5.2.2.2 (p. 197))

3. Order the merge processes accordingdonaplexity index

The complexity index gives weights to the different classes of the complexity profile.
4. Take the most complex processes first and continue in the order of the complexity.

5. For each process proceed to analyze and possibly modify the critical points according
to the following succession:

5.1 Clarify the non-confluent situations
5.2 Continue M on the “state different” cases
5.3 Perform generation change on the “sequence permuted” cases

5.4 Try and see if external stuttering (Section 2.4.5.2 (p. 61)) could be used on the
generation changed cases which turned into non-confluence

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 215

216

The Mn-approach in practical engineering
Mn Methodology

5.5 Analyze the auxiliary category situations

If confluence cannot be obtained this should be properly documented. A case which
shows that there is actually an error should be produced.

5.3.8.3 Restructuring

When problems have been encountered, there should be redesign and correcting such
that the problems disappear. Most often the problems and complexities originate from
trying to do too much at the same time! And the cure is to restrict the behavior such that
only one course of action takes place at any point in time. Said differently, “merge pro-
cesses” should be made into one of the other, more confluence-friendly categories.
Technically this means to ap@gveor internal errors such that the sequence of actions
are forced into a more restrictive pattern.

The reason for trying to do more than one thing at the time is that forcing an order of
actions will delay the action which came first, but which was unwanted. This is true, but
chances are that the effect in practice is negligible. Let us assume strong progress such
that saving does not imply any chance of semi-stable states (where internal signals
reside in save-queue while there are no other internal signals in the system). This means
that even though the save implies a delay, the signals which are to be consumed are
somewhere in the system already, possibly only nanoseconds away. Since we assume
this is a real-time system, it has to be configured to cope with this kind of delay anyway,
or else it should have given the signals involved opposite priorities. In a real-time system
it is usually not much to gain by performing a service sometimes faster.

This kind of restructuring was what we applied to the example in Section 4.2.3 (p. 151).
The proces¥ tries in Figure 100 (p. 153) to cope with any ordering of signals from the
two bounds checking processes. This was proved to be non-confluent. In Figure 101 (p.
154)saves were introduced such thatvould check upper bounds checker before lower
bounds checker, and keep alternating. This does give a short delay every time the lower
bounds checker finishes before the upper one, but it is reasonable to believe that the
delay is minute. It is even possible to cope with accepting the lower bound checker sig-
nal first, but thereafter wait for the upper bounds signal. This third versidnvoild

still involve saves, and the chances of delay would be even less since delay will only
happen if the difference between the bounds checking is longer than a trandttion in

We should also note that action ordering through use of savaaidesnsform the con-
current system into a sequential one. Take the example sstéiffigure 97 (p. 151).
Even when all four processes are action ordétgdy andlb are one-input-channel pro-
cesses, and is a channel-state-mapped process, all the processes will be basically
active if the external input keep coming.

5.3.8.4 lteration

When remedies have been applied, typically the block could change so much that there
is a need for a total iteration of the Mn-approach applied to this block. Return to the
progress step. The earlier conclusions on progress may have been upset by introduction
of more channels and more saves.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Outwards

Inwards

The Mn-approach in practical engineering 5

Experience from an industrial case stuc

5.3.8.5 More or less Mn

The Mn-approach works well with all other methods. The Mn-procedure can either
serve as a “preprocessor” for other methods like Supertrace[73] or, the other way, use
other methods as aids for its own success. These outwards and inwards uses of other
techniques can also freely be mixed.

Use Mn as an aid to reduce larger systems such that common methods like Supertrace
(or its commercial counterparts[40; 136]) can be used where otherwise they would suf-
fer from state explosion. One problem is that the Mn-procedure should be used without
abstraction since the reduction should be a precise reduction of the original component.

It is also feasible that reductions could play a constructive role when walkthroughs[50;
140; 51; 63] are used as the main source of validation. Using formal reduction as a part
of walkthroughs could mean that the work could more easily be divided. One team could
scrutinize the full structure where some reductions replace original subcomponents.
Other teams may in parallel walk through the reduced components. Here it is important
to realize that reducibility means neither that the description is correct nor that every sig-
nificant aspect of the original component can also be found in the reduction. The
correctness of a component can only be found in its interplay with other components.
Non-functional characteristics like distribution, timing and implementation specific
details is more easily discovered in a separate effort.

Inwards use from the Mn-approach means to utilize other techniques to solve the neces-
sary problems encountered during Mn-procedure execution. These problems are
normally:

1. Progress establishment
2. Reachability (or rather non-reachability) establishment.

The other techniques work to solve the “proof obligations” which the Mn-procedure has
left in its conditional reduction (Section 4.5 (p. 171)).

5.4 Experience from an industrial case study

The Mn-approach has as its major aim to constitute a bridge between the practical world
of system engineering and the theoretical world of program verification. In this thesis
we have almost exclusively referred to experiences with the Mn-approach on examples
taken from the world of theoretical computer science. Our references to the world of
software engineering are based mainly on the experiences of the author as a system engi
neering consultant and as a researcher in engineering methodology.

The reason why strong empirical data cannot be presented in favor of the Mn-approach
is due to the ever returning dilemma: the industry does not want to use a method without
good evidence and a proper tool, real empirical data cannot be achieved unless the
method is applied to real problems. Furthermore the Mn-approach has undergone
improvements all along and will find its final shape only through practical application
and the emergence of supporting tools.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 217

218

The Mn-approach in practical engineering
Experience from an industrial case study

5.4.1 The experimental tool

Still we are not entirely without empirical data. We have also programmed a tool. The
experimental tool was programmed in C++ [41; 130] in 1995 and helped discover some
of the general behavior of the Mn-procedure. The programming work necessary to
maintain the tool was considered too resource demanding compared with the further
development of the approach. The tool was not integrated with an existing SDL tool and
therefore too much extra effort had to be placed in making basic software. See also Sec-
tion 5.5 (p. 222) for more on Mn-tool building.

5.4.2 The practical case

Having declined the possibility to be supported by a tool in our practical experiments we
had to lower our ambitions wrt. establishing reducibility of a proper system. Our goal
became to see if applying the Mn-approach manually within a short period of time could
give valuable feedback to the designers of the system.

We agreed with a department of Siemens AS., a branch of the Siemens corporation in
Norway, to look into a part of a large piece of software which they had been produced
recently. To find a system with reasonable chance of giving interesting results, the
author had spoken with some of the designers to find a system where control and con-
currency was more central than data management.

A system was chosen which was within a domain where the author had worked as a con-
sultant for the company earlier. The author had not looked into the SDL descriptions of
this subsystem before. The author does not have any specialist knowledge of the appli-
cation domain other than through the work done for Siemens AS as a consultant on MSC
methodology [59; 61; 60]. This background is of interest to this case study because it
explains that the analysis, which was fragmentary and incomplete, was guided only by
general knowledge of SDL systems and of the Mn-approach and not by knowledge of
the application domain or the system itself.

The analysis took place on June 13. 1996 at Siemens AS in Oslo, Norway. The analysis
was performed on paper by the author using pre-made schemes to facilitate the record-
ing of the Mn-procedure. The analysis took about 5 hours, followed by 1 hour discussion
with the designers of the system to present the tentative results of the study and to hear
their reactions. Since the system description could not be removed from the premises,
no proper reanalysis could be done after the discussion with the designers.

Since the size of the system was considerable relative to a short, manual analysis, we did
not consider progress at all, but concentrated on finding problematic situations regard-
ing confluence.

5.4.3 Main findings

The main findings of our experiment analysis were:

1. It was possible by manual analysis within very short time to find non-confluent situ-
ations which was considered harmful also by the designers themselves.

2. The system structure was fairly complicated, and was considered susceptible to con-
fluence problems.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5

Experience from an industrial case stuc

3. The complexity profiles of the processes were extremely biased towards the catego-
ries confluent, one-sided error and double-sided error.

4. We found several processes tarndti-laneprocesses anthannel-state mapped
processes. (See Section 5.3.3.2 (p. 203) for a definition of multi-lane processes and
channel-state mapped processes.)

5. Data guards played a significant role, and data abstraction would have simplified the
manual analysis.

6. The found problems were found with extremely shallow execution trees.

Even though we found non-confluent situations, we do not argue strongly that they con-
stituted errors. Some of the non-confluent situations found were argued by the designers
to be non-reachable even though this was not simple to prove. Other non-confluent sit-
uations was argued to be “in practice” non-reachable because they were dependent upon
especially unfavorable timing. At least one situation was theoretically possible and con-
sidered harmful also by the designers.

The system structure was particularly complex concerning the merging channels, which
implies implicit fair merge components in an Mn-approach. There were very many
loops in the structure. How many of these structural loops that were also behavioral
loops, we do not know since progress analysis was not undertaken.

The complexity profiles found were encouraging with respect to the expected applica-
bility of the Mn-procedure on real systems. Hardly any complicated situations with
sequence permutation and state difference were encountered. A reason for this was that
the preferred simple process categories of multi-lane processes and channel-state
mapped processes were found. In fact this empirical study triggered the definition of
these concepts!

We found the problematic situations with extremely shallow execution trees. This meant
in practice that already the initial state sgtald almost the whole story which indicates

that our complexity profile is very informative.

5.4.4 Some analysis details

The structure of the system analyzed is shown in Figure 123 (p. 220). There was no indi-
cation in the system definition that reducibility should be excluded for any of the
subcomponents. Neither was there any indication that reducibility was desirable. As can
be seen easily from Figure 123 (p. 220), the feedback possibilities are almost endless
since there are two-way channels almost everywhere. The two-way channels are mainly
used for protocols where the acknowledgment of the reception is used. This should indi-
cate that even though the structure opens for very intricate loop structures, the
behavioral structures are considerably simpler.

We found that very few procedures had states. Such procedures could then either be
abstracted (i.e. eliminated for the sake of the Mn-analysis) or considered as expanded
parts of a transition. The procedures were used mainly for rather trivial data
initialization.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 219

5

220

The Mn-approach in practical engineering
Experience from an industrial case study

-

eeds = =

_‘/

Figure 123: Structure of the system of the case

We found that very many transitions were omitted in the SDL description. The designers
told us that the underlying run-time system (corresponds to our monitoring layer) would
consider them internal errors.

We found genuine multi-lane processes, but their multi-lane nature was not made
explicit by comments or structuring as SDL services.

There was a distinction between internal errors captured by the underlying support sys-
tem and errors found and recovered within the system. Several transitions issued
“SysWarning”. The distinction between the two were not obvious, but a reasonable
guess was that the omitted transitions were considered absolutely impossible while the
SysWarning transitions were considered possible, somewhat harmful, but recoverable.
This distinction is reflected in our complexity profile categories presented in Section
5.2.2.2 (p. 197).

We found that the non-determinism introduced by the data decisions was considerable.
We had no time to consider whether the use of data could be decreased, or whether this
was attractive to do. Neither did we consider data abstraction before we started the anal-
ysis. Itis certain that data abstraction would have simplified the manual analysis, but we
do not know how simple it would be to find a proper abstraction.

Our analysis was almost entirely ory Mvel only. And on the Mexecution we very
seldom tried more than finding initial state sgt&hich means establishing the com-
plexity profile. The state different situations we found turned out to be non-confluent by
stabilization such that there was no reason to continue on MO. We tried an M1 execution
once and the incomplete execution seemed to indicate that confluence would be found.
During this execution we found that actual confluence would be dependent upon a large
number of variants all being pairwise equal. The variants were due to arithmetic expres-
sions which were not trivial to compare.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5

Experience from an industrial case stuc

From the confluence search in the Mn-procedure we were able to detect similarities
inside the processes which were not explicitly indicated through e.g. calling a common
procedure. The similarities were needed for the benefit of confluence, but it was not very
robust since the description was not structured to ensure the similarity.

5.4.5 The advice we offered

From our five hours analysis, we felt that we could offer some advice to the designers.
They listened to the advice and accepted the arguments without feeling compelled to
rush to change the already finished system which was tested to be all right.

We summarize the advice we gave to the designers:
1. Consider the system structure with the aim to eliminate channel merger.

This is just a technicality which can be done almost automatically, but which should be
followed by some consideration of the communication patterns. This is according to our
position in Section 5.3.3.1 (p. 203) where we argued that merge situations should always
be explicit.

2. Review the system structure to see if the large numbers of channels could be
decreased without really changing the goals of the communication.

Our worries were mainly concerned with some of the processes which received signals
from very many channels. This is a source of complexity in our estimation model (Sec-
tion 5.2.2.1 (p. 193)) and correspondingly it is our standpoint that it is also a source of

complexity to the system. It would be a good exercise to assert whether this complexity
is reflected in the complexity of the problem itself, or is added by accident.

3. Eliminate the found sources of non-confluence.

This of course is at the core of the “confluent design” presented in Section 5.3.8 (p. 214).
There was especially one case where there was a possibility of problems with a retrans-
mission in case of missing acknowledgment. Whether this was a real problem would be
dependent upon the assumptions made about the lossy transmission and about timing
constraints of the system. The implicit assumption of the existing description was that
repeated retransmissions would not be interrupted by late acknowledgments.

4. Make explicit the nature of multi-lane processes and channel-state mapped processes.

This piece of advice was not expressed in these terms to the designers as the experience
from the case study helped define these categories (see Section 5.3.3.2 (p. 203)). The
experience showed that Mn-awareness of such “trivial” processes would help both for
the design and the subsequent validation of the processes. We found processes which
could have been divided into services, but this possibility was turned down due to
expected tool problems.

5. Make more explicit the difference between omitted (erroneous) transitions and warn-
ing transitions.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 221

5 The Mn-approach in practical engineering

Mn tools

The distinction between an erroneous transition and a warning transition is the distinc-
tion between a situation where the monitoring layer should take over and a situation
where the internal recovery is normally considered sufficient. The Mn-approach appre-
ciates a layered approach to execution surveillance as described in Section 5.3.5 (p.
206).

5.5 Mn tools

As indicated by the complexity estimates in Table 10 (p. 196), it is hard to cover even a
moderately sized system without an automatic tool. The examples of this thesis are all
extremely small (but not uninteresting).

The main problem is that there are so many cases and each case may have a reasonably
large number of branches. The size of the endeavor and not the intricacy limits the sys-
tems which can be handled manually.

This is not to say that manual analysis according to the Mn-approach is without value.

In situations which are small, like our examples in this thesis, or in cases where our pri-
mary goal is to find problematic spots in the system, like in our case study presented in
Section 5.4 (p. 217), manual analysis can perfectly well do the job.

Still automatic assistance will always be a welcomed improvement. The more assistance
the tool can give, the better, and we shall discuss what we may expect of an Mn-tool.

It is reasonable to take an existing SDL tool as base. It has the ability to simulate the
SDL system provided proper input. Validators execute the system exhaustively or ran-
domly to detect undesirable situations. There are also tools where the user may define
the starting situation, and this is in fact what we need for an Mn-tool.

If we for one moment assume that there is no data and no non-determinism in the sys-
tem, to simulate a system transition is identical to performing a step of the Mn-
procedure. An initializing module will set up all potential non-confluence patterns and
start executing. The two branches of the Mn-node resembles exhaustive simulation, but
it needs not be absolutely exhaustive since our basic assumption about confluent sub-
trees makes it possible to choose the most suitable execution order of the internal
signals. Following every new Mn-node produced there is the evaluation which must be
programmed, but this is trivial. This constitutes the most basic Mn-tool.

When we add non-determinism, there is a need to include the more complex data struc-
tures into the tool. Since these structures are well specified (Figure 55 (p. 99)), it should
be a fairly simple step.

The most important additional tool module should now be the symbolic execution of
data. The challenges of this module are plentiful. While the simplest version could more
or less just substitute the expression for the variable in an assignment and keep doing
this without any simplification, more advanced tools would also try and perform some
simplification. Simplifying arithmetic is a full research area in itself and not a part of
this thesis. Even with a very rudimentary symbolic execution and the simplification left
to the designer, the tool would get valuable added power.

222 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5

The Mn-method and the Nature of Real Reactive syst

When we add symbolic execution the necessary size of each node increases and com-
pression techniques become more attractive. Smart data structures are not a part of this
thesis, but there is definitely some speed gain in keeping Mn-nodes in a database during
the Mn-procedure. If there is not enough room to keep it all in memory, virtual memory
or a caching strategy should also give considerable effect. Random traversal or bitstate
hashing like for Supertrace, find no use in the plain Mn-procedure.

It is also possible to add heuristics which could optimize the execution of the Mn-pro-
cedure. Since we may choose which internal signals to execute first, and which potential
non-confluence patterns to try first, there should be room for some quick evaluation to
guide the choices. We may also use heuristics to judge when a generation change should
take place and when external stuttering could do the job.

Finally the Mn-tool should as a by-product produce the complexity profile for each
component.

We conclude that an Mn-tool should be built on top of an existing SDL tool. Symbolic
execution must be added as a special module. Heuristics and other “smartmanship” may
be applied at will.

5.6 The Mn-method and the Nature of Real Reactive systems

Based on our conjectures of real, reactive systems in Section 5.1 (p. 178), how does the
Mn method presented in Section 5.3 (p. 199) (possibly with the help of tools as sug-
gested in Section 5.5 (p. 222)) correspond to the nature of real, reactive systems and their
development and conceivability?

5.6.1 Mn-method applied to typical real, reactive systems?

We present here our opinions about how the Mn-method match the characteristics of
real, reactive systems. We consider how the Mn-method might change the outlook of
systems, and whether the Mn-approach could be successfully applied as validation tech-
nique to existing real, reactive systems.

5.6.1.1 Size

The Mn-method will probably have marginal effect on size. We do make advice to see
if the communication structure could be made simpler in Section 5.3.3.1 (p. 203). The
main problem is probably to decrease the number of possible loop situations as pointed
out in Section 5.3.2.1 (p. 201). Sometimes multi-lane processes (see Section 5.3.3.2 (p.
203)) could be split into separate processes with their own communication structure.
This would increase the number of processes, but still simplify the communication
structure.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 223

224

The Mn-approach in practical engineering
The Mn-method and the Nature of Real Reactive systems

5.6.1.2 Independent components

Independence among the components of the system has two contrasting effects relative
to the Mn-procedure. When components are very independent, confluence is easily
established, but on the other hand, the perceived complexity of the reduction as defined
in Section 5.2.2.3 (p. 198) is very poor. Dependent components imply greater problems
in establishing reducibility, but the potential benefits from the reduction is better.

Therefore the Mn-method does not favor any extreme. The point is rather that indepen-
dent behavior should be described in independent entities. There is not much to gain by
collapsing independent behavior into fewer processes.

5.6.1.3 Nesting

Nesting is definitely encouraged by the Mn-method (see Section 5.3.5.4 (p. 209)) since
the compositionality of reducibility (c.f. Section 4.1 (p. 143)) makes it possible to ana-
lyze a nested entity in steps. The inner ones are analyzed first, and then the enclosing
ones based on the reductions of the earlier analysis.

Confluent design emphasizes that each entity (block type) should preferably be conflu-
ent, and this is most easily achieved if each block type corresponds to a clear cut concept
in the problem domain.

5.6.1.4 Data

Real reactive systems do have data! The question is whether the data can be organized
in a way which is manageable by the Mn-method.

The Mn-method does not have much to offer in the realm of data variables. The answer
is simply symbolic execution and the subject is not covered much in this thesis. The
important thing is to evaluate whether the data of the system can be handled by symbolic
execution.

For our purposes we concentrate on systems where:
1. Data is often non-decisive or passive. The complexities of data is rarely encountered.
2. There are few complicated algorithms. These may be handled manually.

3. The data algorithms may be isolated in specific operators such that other aspects such
as flow control and concurrency may be analyzed without the interference of data
variable complexities.

In short, we concentrate on systems where symbolic execution of data does not pose
unsurmountable obstacles.

If the system is not according to the above criteria, the developer is urged to consider a
restructuring of the module in order to separate the data-intensive parts out into opera-
tors or subsystems.

5.6.1.5 Heterogeneous

Real reactive systems are typically heterogeneous as pointed out in Section 5.1.2.5 (p.
180). The Mn-method is a method mainly for the parts where the control structures and
the communication is focused.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Main
Description

Continuous
develop-
ment

The Mn-approach in practical engineering 5

The Mn-method and the Nature of Real Reactive syst

If the purpose of an analysis is more directed towards data or algorithms it may very well
come in handy that the control parts are reducible such that their reductions can be used
in the data-intensive analysis.

5.6.1.6 Real Time

The Mn-method does not offer much concerning real time. On the contrary we admit
that confluence becomes a more complicated subject when duration has to be consid-
ered, too. The subject of timed confluence is for future research.

Please confer Section 3.7 (p. 119) for the discussion of timers.

5.6.2 The Mn-method in making real, reactive systems

Having discussed in Section 5.6.1 (p. 223) how real reactive systems correspond with
systems made by or validated by the Mn-method, we shall in this section discuss how
the Mn-method corresponds to how systems are actually made.

5.6.2.1 System analysis — the use of different descriptions

The Mn-method is not primarily a method for the early phases. The significance of the
Mn-method is related to the formal (SDL) descriptions. Relating to the “distillery” strat-
egy sketched in Section 5.1.3.1 (p. 180), the Mn-method is mainly concerned with the
refinement relation between the precise whole and the precise and detailed system.

The refinement could be checked through our refinement technique pointed out in Sec-
tion 5.3.5.3 (p. 208).

5.6.2.2 System design — the dynamics of system development

The Mn-method supports the dynamics of system development as it is described in Sec-
tion 5.1.3.2 (p. 183) well, as the main feature with the Mn-method is that a system can
be piecewise analyzed through reductions.

Many real, reactive systems use SDL and MSC in the design phase. More and more
companies apply automatic code generation from SDL and the intermediate C or C++
code is not even kept. SDL appears as the main description and this is very much in
accordance with the Mn-method.

With continuous development it is important that validation efforts can be:
1. done separately for different parts of the system,

2. can be reused when only minor changes have been made.

The Mn-method assists to achieve this. Since the Mn-method encourages that each sub-
part also should be reducible, this helps to set conceptual and technical boundaries
which constitute natural areas for separate analysis. As we have argued in many places
in this thesis, looking at the reduction of a component helps understand and clarify the
component even without comparing it with explicit specifications.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 225

Concurrent
develop-
ment

Plans and
reality

226

The Mn-approach in practical engineering
The Mn-method and the Nature of Real Reactive systems

The Mn-procedure is more robust towards reachability than the common reachability
techniques. In principle it is possible to isolate the effect of a minor change to analysis
which is centered around the changes. This is also the principle behind determining the
“ripple effect” of a change as described in [139].

Even though the Mn-procedure is such that less than a process component in theory
needs to be re-analyzed, a practical limitation is to reanalyze the whole process compo-
nent when there are changes to it. This also means that all parts of Mn-procedures which
have involved this process in some generation must be re-analyzed. This may still be
less than the full analysis.

The Mn-procedure is very distributed, and if the development of different parts of the
system can be distributed, the analysis for reducibility can be distributed, too. Enclosing
blocks may be analyzed once their components have been finished (and preferably
reduced).

This makes it easier to apply validation technigqiieing the system development and
not only afterwards.

The Mn-method does not assure that the project plan is kept, but it makes a contribution
to the effective fragmentation of the system in a way which supports fragmented
validation.

This should increase the flexibility of the development of the total system and increase
the reliability of progress reports.

5.6.2.3 Systems validation — how to believe they work

The Mn-method is not a way to skip testing or the scrutiny of walkthroughs, but the Mn-
method reductions offer a way to experience the system with “new eyes”.

The Mn-method increases the awareness of the purpose of each individual component.
Furthermore the reduction may reveal complexities and effects that are thoroughly hid-
den in the original system. The positive effect of walkthroughs are often due to the fact
that experienced engineers can “smell” trouble. There may not be any explicit specifi-
cation to compare with. Reductions can be used as supporters of such “monolithic” (see
Section 1.6.1.2 (p. 27)) walkthroughs.

Walkthroughs may also be used inside the Mn-procedure as informal means to assert
progress, or unreachability of a non-confluence pattern. The confluence and reducibility
will then be conditioned by these walkthroughs.

The Mn-approach has strong resemblance to systematic testing as what we are actually
doing in the Mn-procedure is to test all potential non-confluence patterns. The complex-
ity profile (c.f. Section 5.2.2.2 (p. 197)) can also be interpreted as a way to indicate
where testing should be applied, and as such it constitutes a systematic approach to
testing.

The Mn-approach aims at facilitating formal proofs through the use of reductions inside
other techniques.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The Mn-approach in practical engineering 5

The Mn-method and the Nature of Real Reactive syst

5.6.3 The Mn-approach to support description and understanding

If the Mn-method has been applied, can we assume that systems will be described in new
ways, and that they are understood differently and possibly more effectively?

5.6.3.1 The language dimension

We have presented the Mn-approach as an approach for SDL, but the main ideas should
be applicable also for other languages where asynchronous communication is the key
issue. Still we should list some of the features of SDL which fit well with the Mn-
method:

1. SDL is graphical, and the reductions can also be gragédical This increases the
structural overview of the behavior.

2. With a top-down application of the Mn-method as sketched in Section 5.3.7.2 (p.
214), we may say thaketche®f the total behavior is compared with final design
which is reduced. The comparison of the early sketches and the later reduced design
should be done informally as there is little chance that the correspondence is 100%.

3. The Mn-approach is a validation techniques wknolnks locally This corresponds
well with SDL where the reasoning is done locally as well.

4. The Mn-approach fits reasonably well with MAGIC relations of SDL. The meta-
relation is not present. The aggregate relation is represented by nesting which we
have covered in Section 5.6.1.3 (p. 224). The generation relation representing
dynamic process creation is not particularly well suited for the Mn-approach since
reductions may be difficult to define. The identity relation is well taken care of by the
handling of object orientation (Section 3.9 (p. 133)) which also covers the concept
relation.

5. More than most validation techniques the Mn-approach offdra@erativestyle
(SDL) also for what may be called specifications (namely the reductions).

5.6.3.2 The user dimension

In Section 5.1.4.2 (p. 188) we defined the user dimension categorizing users in four cat-
egories: programmer, specifier, team and observer. The Mn-method puts focus on the
programmeras the important user. The Mn-method aims at making the programmer an
eager validator, too. Theamis also well supported by the Mn-method since distinct
interfaces and well defined entities are emphasizedoi$ervemay also find comfort

in systems made through the Mn-method as the entities have reductions which can be
studied in place of the original.

Thespecifiermay not have much gain from the Mn-method, but on the other hand he
probably does not lose much either. There will still be a need for alternative descriptions
(i.e. specifications) which should be tested for consistency with the main model.

5.6.3.3 The problem dimension

The Mn-method is not sensitive to which class of problems it handles. In Section 5.1.4.3
(p- 189) we classified the problem in three classes: technical, explorative and vague. The
Mn-method as such works on fairly formal descriptions, but the approach emphasizes

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 227

5 The Mn-approach in practical engineering

Concluding Practical Use of the Mn-approach

the aspect of understanding. The tension between high level sketches and low level
implementation-like design can be informally resolved through reductions of the low
level entities. This does require a certain degree of completeness of the low levels.

A monolithic approach like the Mn-approach may serve better than others on explor-
ative problems since part of the game is to fumble around for improved understanding
and not to compare formal descriptions. On the other hand when understanding is low,
orthogonal approaches may cover the problem area better than only one monolithic
approach.

5.6.3.4 Comprehension profiles

The Mn-method aims at contributing to a more smooth system development where val-
idation is naturally integrated with the ongoing development. Concept awareness and
constant surveillance of complexity are clues to place the Mn-method in the context of
comprehension profiles as presented in Section 5.1.4.4 (p. 189).

The focus on concept awareness and the smooth application of validation techniques
should prevent occurrence of ttheceptive profileThe risk of deception lies in the
designer concluding reducibility on false grounds. It is necessary to apply Mn tools for
certain determination of confluence.

Since reductions may reveal hidden properties of the original system, this may appear
asaha-experienceand lead to a (positive) aha-profile. The aha-experience should not
be planned for, but it is definitely a positive experience when it happens.

The smooth application of validation techniques ranges from informal studies of
progress and race conditions, through complexity profiles, to reducibility determined by
Mn-tools. All together this should make it possible to assess the system components
such that th®0% syndrome profilshould be avoided.

All'in all we believe that the Mn-method should contribute $teady profilan the sys-
tem development. The idea is that no big surprises should happen or should be planned
to happen. The understanding should grow with the system.

5.7 Concluding Practical Use of the Mn-approach

We have in this chapter discussed the match between the Mn-approach and real, reactive
systems. We have found that the Mn-approach should fit well to support the improve-
ment of quality in reactive systems.

We developed a reference model for real, reactive systems and compared this with an
imaginary development using the Mn-method based upon the Mn-approach. The Mn-
method “confluent design” was synthesized from experience and from the findings of
the rudimentary industrial case study. We emphasized that the Mn-method had to be
supported by an Mn-tool.

We presented simple estimates of complexity of the execution of the Mn-procedure, and
argued that this complexity correlates with the complexity of the system itself.

228 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

6 The RPC-Memory Specifi-
cation Problem

The Road to Wisdom

The road to wisdom? — Well it’s plain
and simple to express:

Err

and err

and err again

but less

and less

and less.

6. The RPC-Memory Specification Problem

The RPC-Memory Specification Problem was posed by Manfred Broy and Leslie Lam-

portin 1994 and a conference was held in Dagstuhl, Germany in September 1994 which
saw a number of different solutions to the specification problem.The problem specifica-

tion and a number of solutions can be found in [125].

The problem appears to be a good test-bench for a validation technique. The specifica-
tion problem reveals certain shortcomings of our SDL notation and triggers the
suggestion for a few extensions to SDL in order to let the language handle a class of
interesting cases which it did not quite handle before.

Our aim is mainly to use this problem as a test case for our Mn-approach. We present
here also the development history towards the final description and not only the last ver-
sions of the descriptions.

6.1 Preliminary definitions

Componentmteract with one another using a procedure-calling interface. Actually we
shall in this document use a signal interface.citleof an interaction procedure is mod-

eled by the sending of a signal (with parameters), ancetben of the procedure as

another asynchronous signal. To representdise of an exceptiowe simply use dif-

ferent types of return signals. That a procedure call paradigm is assumed means that a
caller is inactive after issuing a call until receiving the corresponding return. This invari-
ant cannot be enforced in the SDL specification, but it is used once in the analysis.

A component may contain multipiEocesseshat can concurrently issue procedure
calls. The return will contain the identity of the process which sent the corresponding
procedure call.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 229

6

The RPC-Memory Specification Problem
The (unreliable) Memory and the Reliable Memory

system type General

signal call, return (PId); [
signal norrmalreturn inherits return;
Compenent signal excepreturn inherits return;
[call] A
block type Cornponent e
[normalreturn, exceareturn)
-
£

Figure 124: Component

In Figure 124 (p. 230) we can see a simple sketch of an SDL concept which describes a
component of the RPC-Memory example. This component reacts to calls, and returns
either normally or exceptionally. Components which are initiators (rather than receiv-
ers) of calls have a similar, but symmetrical interface.

For our purpose theomponent may also be seen as a process type when we want to
give it a direct behavioral description.

6.2 The (unreliable) Memory and the Reliable Memory

230

The first problem is to specify a memory component. A memory component receives
read orwrite requests which observe or update the individual entities of the memory.

In its basic version the memory is not totally reliable meaning that whether a write or
read operation is successful cannot be guaranteed. The write operation tries “on its own”
an indeterministic number of times to write on the memory before it gives up and returns
aMemFailure. These tries are independent and subject to interleaving with similar
attempts onto the same memory location from other processes.

6.2.1 Problem 1a)

The problem is to specify the (unreliable) memory and the reliable memory.

6.2.1.1 Memory (unreliable)

We first define the structure of the (unreliaiégmory component in Figure 125 (p.

231). For readers unfamiliar with SDL, we note that the dashed arronMenCom-
mHandler to wa denotes dynamic process creation. The dashed arrows outside the
frame designates existing gates which were defined in Figure 124 (p. 230). In Figure 125
(p- 231) the gates get additional signaltypes.

The memory structure as shown in Figure 125 (p. 231) is derived due to the need to
model the repeated tries to write onto the memory locations. There \gritedgent

for eachwrite call and thaNriteAgent then takes care of the repeated callslémn

which is the real owner of the memory. TWeiteAgent decides when to give up. The

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6

The (unreliable) Memory and the Reliable Memo

system type MernoryStructure inherits General

signa readifernlocs) inherits call;
hErnary signal write(hemLocs, Mem'als) inherits call;
signa writeck inherits normalreturn;

signa readok (Werntals) inherits normalreturh;
signa Backrd inherits exceptreturn;

signa MermFail inherits exceptreturn;
signalist retreac=reacok moarg, mermfail
signalist retuwrite=writeck badarg,remnfal

block type Memory inherits Component

signal Ivread inherits Read adding (PId); [~
Malsoadding a Pld parameter for other signals inatincluded hergy™
signallist Mretread=Nread Ok Miadarg, Mrernfall;
signallist Myetwrite=hwriteCk Moadarg, Monemnfal

uriua virtua
hern Wite Agent

Myean hWretrea Iréad,
I | r:?_
R omim
M [Mwrite] 1 Handler — EI'-
v _ iretreacd),
lihketwrite [P etirite retwrite]]

Figure 125: Memory structure

MemCommHandler handles all calls and returns. It determines whether the call has
bad arguments and then rai@zglArg exceptions. Remember that there may be multi-
ple calls active in thlemory concurrently. Therefore the internal signals have added
a parameter which is a pointer to the originator of the call. This is used blethe
CommHandler when it conveys return signals.

Having shown the memory structure we want to define the behaiéerabry by
defining the processes. In Figure 126 (p. 232) we start dyldémeCommHandler.

TheMemCommHandler adds to the signal the ex®al found as th&ENDER which

is predefined function in SDL, and sends it onto the interior di@ory block. For

read there is no problem as the request is merely transferred betime the owner of

the memory array. Wittvrite we choose to have a special agent to keep track of the
repeated attempts to alter the memory location. This agent is created for each call by the
create symbolva. Thewrite request is then transferred to this agent. When the other

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 231

6

232

The RPC-Memory Specification Problem

The (unreliable) Memory and the Reliable Memory

process MemCommHandler

- ddd [oc MemLlocs;
dd val Memials;
dd orig Pld;
Iad[ln:-:]
[tru =]
[fal==]

; write
readOK ua, [METEs @ erig

=) =D

Figure 126: MemCommHandler

interior parts of thd&emory have finished their work, the result is returned through the
MemCommHandler. By the PId parameter of the returning sigfdgémCommHan-
dler knows where to relay the return signal.

Notice that bad arguments can be detected already by this process by the Boolean
expression&\R(loc) andAW(loc,val) and the proper exception signal is sent immedi-
ately back to the caller, while for memory fadémFail) and for success we shall have
to wait for the internal communication Bfemory.

In Figure 127 (p. 233) we show tiériteAgent.

When theWriteAgent is created it will wait in statEirst. There it will receive the
Mwrite signal which it relays ontiblem and then it waits in staiRepeat. In state
Repeat anotheMwrite signal should be absolutely impossible, but the other returns
should be handledAwriteOK is simply relayed to thBlemCommHandler.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6

The (unreliable) Memory and the Reliable Memo

virtual process type \Wite Agent

Go) (=

dcl loc MemlLocs;
dcl wa Membals;
dcl oxig Plid;

|
fulw nte

[
holwn & o E b write oo
i ¥ > wal ong) [onig
I=agn g 1error
hdw rite Ok
[orig] via w
[[hiretwri €] %
v
[htitd rite] [[e twrite]]

Figure 127: WriteAgent

The interesting feature is the handling of the memory failures. When&ideaFail
returns from thévlem, there is an indeterministic decision whether the unfortunate
result should be relayed on to tliemCommHandler or whether another try should

be attempted. The choice is indeterministic, but we define that the probability should be
positive that the loop will terminate by issuing MMemFail further toMemComm-
Handler. We designate this positive probability by a “(+)” on the branch. If we know
nothing about the probability, i.e. the probability may also be 0, we may designate this
by “(0)” like we have done on the branch that send$/Weite request back thMem.

If no indication is given on the answer branch, the default is “(0)”. The reader should
appreciate that this is an extension to the anyvalue decisions in SDL presented first in
Figure 59 (p. 103).

The Repeat, MMemFail)-transition is specified asrtual because we want to redefine
the transition in specializations \friteAgent (see Figure 130 (p. 235) and Figure 133

(p. 237)).

The branches which endigrror are considered impossible or representing an internal
error which we do not want to specify further. Our upcoming reductions will be condi-
tioned by internal errors, meaning that either the system behaves as the reduction or an
internal error will occur. The internal errors can be considered transitions which are
actually not present in the transition system. It is sometimes possible to supply proofs
that these transitions will not executeMtiiteAgent we could also have usedvefor

the supposedly impossible transitions.

Finally in Figure 128 (p. 234) we present the owner of the memory itseiahe
process.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 233

6

234

The RPC-Memory Specification Problem

The (unreliable) Memory and the Reliable Memory

virtual process type Mam

nevdype lem
array (Merm'als, Mernbocs,
endnewiype NMem;

dcl M Wern=Init'al

dcl loc MemlLocs;

dcl wal Membals:
dcl oxig Pid;
| |
hrnernfail :

, & Mread] . A IMurite]
[[Mretread]) [l M= twri)]
Figure 128: Mem

We see in Figure 128 (p. 234) that a memory return directly answers to a request, but the
memory may not be successful. While reading is a one attempt effort, writing may
involve looping between th&riteAgent andMem and the memory will continue to try

and complete the writing onto the location indicated. Notice that the memory may or
may not have changed the memory when it retuMeraFail. Notice also that we have
specified that the transition returning a success has a positive probability. This implies
by itself that a loop of memory fails will eventually terminate by a posiiweiteOK

if it does not terminate by MemFail to MemCommHandler from theWriteAgent.

The reader should not necessarily pay any attention torthal specifiers only study-
ing theMemory specification. These will be used in the sequel to specify the
ReliableMemory in a compact manner.

6.2.1.2 Reliable Memory

TheReliableMemory is specified to do the same as (unreliablejnory, but noMem-

Fail exceptions will be raised. To get the most out of it, we still keep the possibility that
theReliableMemory has to try multiple times before it returns from writing with a suc-
cess. Therefore it is reasonable to keep the structure bfehwry, but make some
modifications in the form of specializations and redefinitions.

We express in Figure 129 (p. 235) that the structurBelidbleMemory andMemory
are identical, but the used process types have been redefined.

TheWriteAgent will always give theMlem another try wheiMem has raised an inter-
nal MemFail.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The (unreliable) Memory and the Reliable Memo

The RPC-Memory Specification Problem 6

block type Reialkdelemory inherits Mernory

redefined redefined
hem Vitite Agent

Figure 129: ReliableMemory has the same structure as Memory

redefined process type
==hlock type ReliadeMemor == WriteAgent
inherits ==block type Memory== VWite Agent

I:Hepz-at |
redefined
hdkdern Fail

 [orig)

Figure 130: WriteAgent of the ReliableMemory

We see in Figure 130 (p. 235) that there is only a very minor modification of
WriteAgent. Whenever th&lem has to report MemfFail, theWriteAgent just tries
again.

The redefined/lem shown in Figure 131 (p. 236), the owner of the real memory, is also
almost identical to the one Memory, with the exception that reading cannot give any
MemPFail.

6.2.2 Problem 1b)

The problem is whethé&eliableMemory is a valid implementation dflemory. By R
implementingV, we will understand the sameR$eing a refinement &fl as defined
in Section 4.2 (p. 146).

We have in our description used object-oriented inheritance relations as suggested in
Section 5.3.4.3 (p. 205) such that it is simple to see the difference betwatamtoey

and theReliableMemory. We shall go through the modificationsReliableMemory

to see that all behaviors BeliableMemory is also possible iMemory.

Figure 129 (p. 235) shows that there is no structural difference between the (unreliable)
Memory and theReliableMemory.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 235

6

236

The RPC-Memory Specification Problem

The (unreliable) Memory and the Reliable Memory

redefined process type ==block type Rdiablelernory== Mem
inherits ==block type Mermory== Mem

Figure 131: Mem of the ReliableMemory

We start by comparing versionsiMem. Figure 131 (p. 236) shows that the only dif-
ference is th&eliableMemory cannot returiviemFail as a response Read. Thus all
behaviors oMem in ReliableMemory can also happen Mem of Memory provided

the same external stimuli. From the rules of refinement stated in Section 4.2.2 (p. 149)
we get thaMem in ReliableMemory is a refinement d/lem of Memory (Figure 128

(p. 234)).

Figure 130 (p. 235) shows that &iteAgent cannot escape by issuind/l@mFail in
ReliableMemory like it can inMemory (Figure 127 (p. 233) Again behavior which

is possible ifMemory is simply removed ifReliableMemory and thus all transitions

of WriteAgent in ReliableMemory are also present in the correspondivigteAgent

in Memory. Is then refinement established betwi®érnte Agent of ReliableMemory
andWriteAgent of Memory according to rules of Section 4.2.2 (p. 149)? No, not quite,
sinceWriteAgent of Memory has a branch with positive probability which is not
present inNriteAgent of ReliableMemory, we cannot conclude refinement without
some more reasoning.

Since for every behavioral brandiemory has at least the same alternativeRels
ableMemory, we may conclude that for afipite behavior ofReliableMemory, the
same behavior may happenMiegmory.

Is it possible that there is anfinite behavior iRReliableMemory which cannot take
place inMemory? We have irReliableMemory removed the alternative which has
positive probability ifMemory, namely to returMemFail from WriteAgent to Mem-
CommHandler. We must consider the behavior which infinitely visits this decision. Is
it possible that ifReliableMemory there is an infinite loop where thiériteAgent tries
again and again to get something different fildemFail, butMem keeps returning
MemFail? This cannot happen Memory because there is the escape that the
WriteAgent raises MempFail andthis possibility has positive probabilitgeaning that
the looping cannot continue infinitely. Now the situation is that not evelRehable-
Memory can loop infinitely because Mem there is a positive probability for a
successful return.

We summarize:

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6

The (unreliable) Memory and the Reliable Memo

1. Mem of ReliableMemory is a refinement dflem of Memory following directly
from our rules for comparing transitions in Section 4.2.2 (p. 149).

2. WriteAgent of ReliableMemory is a refinement ofVriteAgent of Memory due to
the rules of comparing transitions in Section 4.2.2 (p. 149) and supplementary rea-
soning about infinite behavior given above.

3. ReliableMemory is a refinement dflemory according to rules for refinement and
inheritance presented in Section 5.3.4.3 (p. 205).

6.2.3 Problem 1c)

The problem is whether a process which only rdidesmFailure exceptions can also
be considered an implementationMémory.

We define this kind of memory callé@ilMemory in a similar way tdreliableMem-
ory. The structure is shown in Figure 132 (p. 237).

block type Faillhiermoryinherits Memory

redefined redefined
hem Vitite Agent

Figure 132: Structure of FailMemory

For the behavior we also follow the strategy use@R&iableMemory as shown in Fig-
ure 133 (p. 237).

redefined process type redefined process type

==hblock type FailWernor == <=block type Faillermor == Mem
Witz Acentinherits inherits

==hlock type Mermor == ==hlock type Memory== Merm
Wite Aoent

(Hepeat
redefined
redefined hwrite
hAbd e Fail ﬂn:nlz.wal ong)

[erig] b Fal

lorig) to
bl hdern Fadl SEMDER
[orig)Wa w

Figure 133: Behavior of FailMemory

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 237

238

The RPC-Memory Specification Problem

The (unreliable) Memory and the Reliable Memory

Since the alternatives which retiviemFailure are no different technically from those
alternatives returning otherwise, the same argument as given in Section 6.2.2 (p. 235)
can be applied to the continuously failing componkaiiMemory.

However, our conclusion regardifgilMemory is not the same as with
ReliableMemory.

Our specification oFailMemory as depicted in Figure 132 (p. 237) and Figure 133 (p.
237) is not quite the same as “does nothing but MeaFailure” because th&em-
CommHandler which hasot been redefined will in fact retuBadArg if the

arguments are out of range. This means that if the arguments are out of raNgameur
ory specification (and inheritdeailMemory) will allow no other returns thaBadArg.
Refer to Figure 134 (p. 239) for an even simpler specificatiofaildlemory process.

It is clear that this simpler specificationfdilMemory is not an implementation of
Memory since it does not retuBadArg when the arguments are out of range.

If we excludeBadArg, there is no doubt that whatevmite behaviorFailMemory can
show,Memory can also show. Still we cannot help thinking that there is not much help
in FailMemory if you want an implementation dfemory. We also specified iMem-

ory that there is a positive probability for success wheMihieeAgent wants to write
onMem. This is enough to define that an implementatiolemory must have the

ability to return a successful write (and a successful read)! The reason is that an infinite
stream ofwrite signals can ifrailMemory return an infinite stream dflemFail, but in
Memory there has to be a successfuite.

The way this is described is hardly very transparent and not very explicit. If this positive
probability alternative had been a part of an internal loop, it may have had other exits
and the effect had not been the same.

SDL-92 can define that some behavionegessaryy thevirtuality /finalized con-

structs combined with virtuality constraints. The problem is that there is no way to
address the differemiternativesof a non-deterministic decision. If such a notation for
virtual non-deterministic alternatives within a transition existed, we could describe the
alternative which returns a successful write as non-virfuralized) while other alter-
natives may beirtual . This would ensure that the successful writing had to be part of
any specialization dflemory. Then it would not be possible to descrifa@Memory

as a specialization dlemory. As a practitioner this is more the kindM&émory con-

cept which is practical when expressed as a requirement. We are not interested in
implementations which perform any random subset of the desired behavior. There is
normally some core behavior which all implementations should have the possibility to
perform.

We conclude:

1. The straight forwar&ailMemory defined in Figure 132 (p. 237) is not a refinement
of Memory since there is infinite behavior which can occufFaiMemory which
cannot occur itMemory.

2. This infinite behavior dflemory is not very transparently described. Improved nota-
tion would be encouraged.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6

ReducingMemory to a process description

3. The super simplgailMemory defined in Figure 134 (p. 239) cannot be an imple-
mentation oMemory if we includeBadArg in the way it is done in
MemCommHandler since bad arguments would prodiwemFail in FailMemory,
butBadArg in Memory.

6.3 Reducingviemory to a process description

We have now specifiellemory, ReliableMemory andFailMemory. They are all
described as SDL block types. We were able to prove implementation relations between
the types through inference rules based on syntactic similarity.

But how should we have decided whetRhailMemory was an implementation of
Memory if FailMemory was specified by an SDL process type as in Figure 134 (p.
239)?

process type FailMernory

T dd loc hﬂE’nLDcs;bw

dd val Mernhals

adfloc] wrte
loz wal]

hwk=rin Fail hwk=rin Fail
SERDER.| to SEMDE

=) (=)

Figure 134: FailMemory as SDL process

Following the strategy for determining refinement presented in Section 4.2 (p. 146) we
need to reduc®emory to a process description before we compaitMemory and
Memory transition by transition.

6.3.1 WhyMemory is not reducible as it is specified

We recall that reducibility consists of two aspects. Firstly the system must be progres-
sive, and secondly the system must be confliemmory is not confluent because

Mem is not confluent wrt. differeriiWrite andMRead signals on the same location
which may arrive concurrently. This is actually a fair merge component similar to what
we described in the Brock-Ackerman example in Section 3.5.4.2 (p. 109). In order to
obtain confluence we must use thergemechanism defined in Section 3.5.4.1 (p.

106).

It is actually a matter of explicitly defining the non-deterministic effect of the fair merge
obtained at the input port of tiem process.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 239

6

240

The RPC-Memory Specification Problem

ReducingWlemory to a process description

virtual process type Mem [Eviracts]
(m erge
=]
wriug wrtual
Plread hd write
O, O [l wal,orig)
n | arn
[+IT I |

Figure 135: Extracts of Mem with merge state

The semantics of merge is that whenever alwrite or Mread is received, there is a
non-deterministic choice between consuming the signal or saving it. The probability of
consuming it is positive at every scheduling point implying that a signal cannot infi-
nitely be spontaneously saved. In effect the spontaneous save is a way to describe all
possible permutations of signals and thus describi mergesituation by a finite

notation.

6.3.2 Progress aflemory

The first requirement for reducibility is progress. Progress means that for all finite input
streams the system will produce a finite output stream and subsequently execute no fur-
ther transitions.

The simplest criterion for progress is that every transition produces less than it con-
sumes. By ordering the signals partially such that every transition produces signals of
less value than it consumes we know that the system will reach a waiting state for each
external input as long as there are no spontaneous transitions. This is signal ordering cri-
terion which was first mentioned in Section 2.6.4.1 (p. 80).

For ourMemory system we have (almost) the following partial order:
1. read -> Mread -> (Mretread) -> (retread)

2. write -> Mwrite to WriteAgent -> Mwrite to Mem -> (Mretwrite) to WriteAgent -
> (Mretwrite) to MemCommHandler -> (retwrite)

There are transitions, however, that do not produce less than they consume. There is an
alternative in th&VriteAgent which consumeMMemFail and produceMwrite back

to Mem. This violates the given partial order. This loop, however, cannot continue for-
ever because there is positive probability on the alternative which returns success
(MwriteOK) when consuming thilwrite. Furthermore there is positive probability in
WriteAgent to returnMempFail.

All together we may conclude thisliemory is progressive since the only loop is termi-
nated by positive probability of exiting transition (fairness).

The strategy to determine progress used here was laid down in Section 5.3.8.1 (p. 214).

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6

ReducingMemory to a process description

ThatReliableMemory is also progressive follows along exactly the same lines as with
Memory. Here we should note, however, tRaliableMemory contrary taMemory

has the need for extreme fairness (see Section 3.5.3.3 (p. 104)). Mem is involved with a
number of differentriteAgents and none of them should “starve”. This means that for

an infinite subsequence Bfem-decisions relating to one particuldfriteAgent, the

helpful directions will occur infinitely many times. Memory it sufficed to have sim-

ple fairness in each non-deterministic decisiowniteAgent.

6.3.3 Confluence oMemory

We shall go through all the componentdvi@mory and explain why they cannot con-
tain a non-confluence pattern. It is quite obvious that confluendeiory can be
determined automatically. Furthermore the reasoning is valid alReliableMemory

since no parts of the reasoning is upset by the difference between the two definitions.

6.3.3.1 Mem

All potential non-confluence patternsiMem are resolved by the merge-mechanism
which was introduced in Figure 135 (p. 240).

6.3.3.2 WriteAgent

WriteAgent is achannel/state-mapped procdsgefined in Section 5.3.3.2 (p. 203))
meaning that the channels divide the state space such that in a given state only signals
of one channel are legally consumed. Other signals are considered internal errors.

Internal errors can be interpreted in three ways:
1. The internal errors are separately shown to be impossible.

2. The internal errors are interpreted as saves which means that confluence is simple. If
the enclosing system reducible andthe saves do represent impossible transitions,
strong progress will follow from the reduction as shown in Section 3.4.4 (p. 96).

3. The internal errors are considered outside the scope of the proof. This means that the
proof is partial. If a system is reducible, it means that we have proved that either the
system acts like the reduced process or it performs an internal error.

In the case with thé/riteAgent it is possible to prove that the internal error transitions
cannot occur.

1. WriteAgent does not contain any transition with nextsttst. Therefore the only
possibility to reach stateirst is whenWriteAgent is created.

2. From analyzinglemCommHandler we find that the only place whevérite Agent
is created is whellwrite is sent to it just afterwards. In no other pladdugite sent
to WriteAgent.

3. From analyzinglem, we see thatMretwrite) is only sent taVriteAgent in transi-
tions triggered byiwrite received fromVriteAgent. WriteAgent sendsMwrite
when entering stateepeat. Therefore in statEirst WriteAgent cannot receive any-
thing else thaMwrite. We have shown that the internal erroFwoft is impossible
to reach.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 241

242

The RPC-Memory Specification Problem

ReducingWlemory to a process description

4. Mwrite is sent taNriteAgent only fromMemCommHandler just after the creation.
Since no other signals can be received before it (from what we found above), this is
the signal that will be consumed firgérite Agent will then move to statRepeat.

Since there are no other places tairite is sent toNriteAgent, we must conclude
thatMwrite cannot be consumedRepeat and thus the internal errorBepeat has
been shown to be impossible.

If we choose to interpret the internal errors as saves, the reasoning would be even sim-
pler. Since the saves will still make t&iteAgent a channel/state-mapped process,
confluence is established. This is all we need for now. The reduction will later show
whether the saves are impossible. If the saves are possible, there will be semi-stable
states in the reduction.

If we want to make an argument for strong progress independent of the reduction the
following should hold:

1. Invariant folWriteAgent'First: There is atMwrite signal on channéi.

2. Theinvariantis true after the creatioMafiteAgent since it is followed immediately
by the sending dfiwrite.

3. SinceWriteAgent never returns t&irst, we need only consider this single case.

4. Invariant folWriteAgent'Repeat: There will eventually be afretwrite) signal on
channel.

5. There are two transitions leadingRepeat. One comes from consuming Mwrite in
First, and the second comes from consunitigdemFail from Mem.

6. Both these transitions ensure thhtrite is relayed taMem.

7. EventuallyMem will consumeaviwrite and produce amMretwrite) signal on channel
V.

8. WriteAgent will not leaveRepeat without receiving anNretwrite) signal.
9. Thus we have shown thériteAgent’Repeat invariant.

The reader should appreciate that there is no doubt that the simplest approach is to be
content with the saves, and wait for the reduction. After all it is reducibility we are after

anyway.
6.3.3.3 MemCommHandler

MemCommHandler is basically anulti-lane procesgdefined in Section 5.3.3.2 (p.

203)). Alaneis a set of input and output channels such that there are no overlap between
the channels of different lanes of the process. A process is a multi-lane process if all
transitions can be placed in a lane meaning that its input is from the lane’s input channel
and its output merely onto the lane’s output channels. Multi-lane processes are always
confluent.

We consider every Pld (process identifier) as an individual channel.

In MemCommHandler one set of lanes go along input@rand output oW, and the
other set of lanes go along input\Whand output oft. There is also a set of lanes (con-
cerningBadArg exceptions) which has channels al@gs input and channels alogkg

as output. If we consider tiRéd of the external processes which sendsite or aread

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6

ReducingMemory to a process description

as one channel each GnandE, we have that there is a unigakl for every
WriteAgent. Thus there is a functional correspondence between singular bidirectional
channels oW and Plds ofC andE.

For this scheme to hold it is necessary to assume that one process in the environment has
at most one pending call to tMemory at any point in time. This is to ensure that all

Plds are actually distinct. If this assumption is violated it is a possibility that answers to
different requests overtake each other with chaotic results in the external process. We
feel that it is a reasonable interpretation of a procedure call scheme that an environment
process has at most one pending call to one other component.

SinceMemCommHandler can be interpreted as a multi-lane process, we may conclude
that there cannot be any non-confluence patterMemCommHandler.

6.3.4 Reducingvemory

We have now shown thitemory (andReliableMemory) is progressive and conflu-

ent. Therefore we may conclude tMemory (andReliableMemory) is reducible. We

shall perform the reduction through our reduction algorithm defined in Section 2.2.2 (p.
48).

6.3.4.1 Legend

We shall perform execution from a set of complete states. The execution tree from one
complete state will have the syntax shown in Table 12 (p. 243).

Table 12: Execution table example

ExecutoP | Guard State(sJ
1¢ (termf;Write<w>(1,v)9; ; !
1.1 MemCom. | AW (term; ; ;w:BadArd)
1.2 MemCom | - AW (First<aX; ;wW,d:MWrite(l,v,w);)
1.20" | WriteAgent | - AW (Repeat<a>; ;V:MWrite<a>(l,v,w);)
1.2c Mem - AW (Repeat<a>; ;\save' MWrite<a>(l,v,w);)

a. State number. Every complete stafe in an execution has a unique number.

b. The executor is the name of the process which executes the transition

c. The guard is an expression which is an assumption for the transition. Special guards are (+)
and (0) which represent alternatives in fair decisions. The guards are transformed back to
decisions when the reduction is made into an SDL process.

d. The state is the complete state which is given in the syntax mostly used in this thesis.

e. This first line is the complete state from which this table represents the execution tree

f. term is here the name of the basic state. In this case it means “termination”. In general the
name of the basic state is a tuple of basic state names of the component processes.

g. Write<w>(l,v) is an external signal. <w> designates the Pld of its sender which is considered
the name of a separate channel in this case. (l,v) are the symbolic parameters.

h. The general syntax of a complete state is: (basic state name; external signals; internal signals
and variables; external signals).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 243

6

244

The RPC-Memory Specification Problem

ReducingWlemory to a process description

i. When there are alternatives they are numbered by appending “.x” where the x is a natural num-
ber

j- w:BadArg means thaBadArg is transmitted onto conceptual chanwefwhich is actually a
PId)

k. The <a> is a PId of a process in a process set.

I. We also want to say both that the channel (set) has the\Weaamel the desired process to be
reached has Plal This is denoted by both names preceding the colon (i.e. “W,a:”) before the
signal sequence.

m. If there are no alternative branches, the sequential execution states are numbered by append-
ing letters starting with b.

n. saveis described by a prefix to the signal

6.3.4.2 Executing Write

We start by the stable state reached from the initial transitions. To denote the basic state
we shall use only the basic state of the appropi&itAgent since the other processes

have only one state eachWiteAgent which is not created or is terminated has the
basic statéerm. A PId may also serve as a channel name.

Table 13: Executing Write from initial state

Executor Guard State(s)
1 (term;Write<w>(1,v); ;)
1.1 MemCom. AW {erm; ; ;w:BadArg)
1.2 MemCom | - AW (First<a>; ;W,a:MWrite(l,v,w);)
1.2b | WriteAgent | - AW (Repeat<a>; ;V:MWrite<a>(l,v,w);)
1.2c | Mem - AW (Repeat<a>; ;\baveMWrite<a>(l,v,w);)

The complete state 1.1 is stable. The state 1.2c is semi-stable. Therefore we have fin-
ished the execution &f/rite.

The basic statRepeat<a> means that thé&/riteAgent denoted by is in state Repeat.

This WriteAgent is not involved in other communication. If anoth¥rite is input
externally when th&lemory is in Repeat<a> it will act exactly as shown in Table 13

(p. 244), and there will be anothéfriteAgent in Repeat-state. We have that the pro-
cess set diVriteAgents are independent (of each other) and we can use practitioners’
induction as described in Section 4.3.6.1 (p. 160) and perform a simple reduction with
oneWriteAgent as representative for the others. The state-vector is just present in an
execution and does not enter the description as such.

We continue in Table 14 (p. 244) with executing the spontaneous consumption of the
spontaneously saved MWrite signal shown in 1.2c.

Table 14: Spontaneous consumption of MWrite

Executor Guard State(s)
2 - AW (Repeat<a>; ;\baveMWrite<a>(l,v,w);)
2.1 Mem - AW, (+) (Repeat<a>; ;V,a:MWriteOK(w), M(l)=v;)

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem

ReducingMemory to a process description

Table 14: Spontaneous consumption of MWrite

Executor Guard State(s)
2.2 Mem - AW, (0); | (Repeat<a>; ;V,a:MMemFail(w);)
2.3 Mem = AW, (0), | (Repeat<a>; ;V,a:MMemFail(w), M(l)=v;)

We have no stable states and continue execution of each alternative state. We start by
executing 2.1 in Table 15 (p. 245).

Table 15: Execution State 2.1

Executor Guard State(s)
2.1 = AW, (+) (Repeat<a>; ;V,a:MWriteOK(w), M(l)=v;)
2.1b | WriteAgent| = AW, (+) (term<a>; ;W:MWriteOK(w),M()=v;)
2.1c | MemCom. | = AW, (+) (term<a>; ; M(l)=v; w:WriteOK)

State 2.1c is stable. We continue with 2.2 in Table 16 (p. 245).

Table 16: Execution State 2.2

Executor Guard State(s)
2.2 - AW, (0), (Repeat<a>; ;V,a:MMemFail(w);)
2.2.1 | WriteAgent| = AW,(0)4, (+) (term<a>; ;W:MMemFail(w);)
2.2.2 | WriteAgent | = AW,(0),, (0) (Repeat<a>; ;V:MWrite<a>(l,v,w);)

Here we have that 2.2.2 is equal to 1.2b and the result can be taken from Table 13 (p.
244) state 1.2c. We continue executing 2.2.1 in Table 17 (p. 245).

Table 17: Execution State 2.2.1

Executor Guard State(s)
2.2.1 - AW,(0),, (term<a>; ;W:MMemFail(w);)
(+)
2.2.1b MemCom. | = AW,(0),, (term<a>; ; ; w:MemFail)
(+)

State 2.2.1b is stable. State 2.3 is exactly similar to 2.2 but the memory has been set.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29

Practitioners’ verification of SDL systems

245

246

The RPC-Memory Specification Problem

ReducingWlemory to a process description

Thus we have finished the execution/dfite and the derived spontaneous save signal
in all stable and semi-stable states. We summarize our execution in Table 18 (p. 245)
where only the stable states are shown.

Table 18: Executing Write (summary)

Guard State(s)
1 (term;Write<w>(l,v); ;)
1.1 AW term; ; ;w:BadArg)
1.2c |- AW (Repeat<a>; ;\taveMWrite<a>(l,v,w);)
2 - AW (Repeat<a>; ;\taveMWrite<a>(l,v,w);)
21c | ~AW, () (term<a>; ; M(l)=v; w:WriteOK)

2.2.1b | = AW,(0)4, (+) (term<a>; ; ; w:MemkFail)

2.2.2b | = AW,(0)4, (0) (Repeat<a>; ;\séaveMWrite<a>(l,v,w);)

2.3.1b | = AW,(0),, (+) (term<a>; ; M(l)=v; w:MemfFail)

2.3.2b | = AW,(0),, (0) (Repeat<a>; ;\6aveMWrite<a>(l,v,w), M()=v;)

It is quite simple now to bring the results of Table 18 (p. 245) back to an SDL process
diagram page shown in Figure 136 (p. 247). We recall that the full reduction also
includes a state vector with one entry for eéatiteAgent according to Section 4.3.6.2

(p. 162). Since spontaneous consumption is impossili& term) and write is impos-
sible in(S,Repeat), it is possible to combine the two states into one and also eliminate
the need for th&V/riteAgent state-vector.

We see in Figure 136 (p. 247) spontaneous save and spontaneous consumption. Here the
spontaneous save is used with signals internal to the process which means that they actu-
ally are signals used for processes which are components of the block which has been
reduced. This means that a spontaneous save not necessarily is the only construct in a
transition. We see in Figure 136 (p. 247) that there is a transition where also a task is
included before the spontaneous save.

Spontaneous consumption means that spontaneously saved signals are consumed. When
such actions are lifted to a more global level, they appear as spontaneous while they on
a more local level appear just as any other consumption of a signal.

6.3.4.3 Executindgread

Read does not have the same problenWréte since there is noReadAgent” which
keeps trying to alter the memory over and over again. Still we have to remember the
spontaneous save.

Table 19: Executing Read from initial state

Executor Guard State(s)

3 (S; Read<r>(l); ;)

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6

ReducingMemory to a process description

process type Memory 1)
nevdype [erm
aray (hermals, MermUocsh,
ICS,terrn @HE.FE.&} endnevdype Mem);
dcl I Merm=Inithal
F17 =il dcl loc Mermlocs;

:;w;.teu.:-c,w write rone| del val Mermials;
, f er_itE\ dcl orig P,
L F12 emar c.ve.on
signal Nread(Mernlocs, Pl

signal Muite(Memlocs,

ftrue) [fa]EE] W vals. Pl

Ead frg }
to SEMDE / none F"/
hwrite

o val SERDE

|
bl [l] =wal

[+] F217

raaa.2t

hloc] =wal hol[loni:) =l

G/ B
hiwrite . write
loc lLInu:urlnzl = D.ng o, val ori

Figure 136: Memory (write) as process type

F22 1T
LUI'iEC'% +]
o arg hdern Fail
o onig

Table 19: Executing Read from initial state

Executor Guard State(s)
3.1 MemCom. | AR (S; ; ; r:BadArg)
3.2 MemCom. | = AR (S; ; R:Mread(l,r);)

State 3.1 is stable, but shall have to continue the execution of 3.2 in Table 20 (p. 247).

Table 20: Executing from 3.2

Executor Guard State(s)
3.2 - AR (S; ; R:Mread(l,r);)
3.2b | Mem - AR (S; ;saveR:Mread(l,r);)

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 247

The RPC-Memory Specification Problem

ReducingWlemory to a process description

State 3.2b is semi-stable. Now we continue to show the consumption of the spontane-
ously saved signal in 3.2b in Table 21 (p. 248).

Table 21: Executing Read from initial state

Executor Guard State(s)
4 - AR (S; ;saveR:Mread(l,r);)
4.1 Mem - AR, (0) | (S;; RiMreadOK(M(l),r) ;)
4.1b | MemCom. | = AR, (0); | (S;;; rReadOK(M(l)))
4.2 Mem - AR, 0y | (S;; RiMMemFail(r);)
4.2b | MemCom. | = AR, (0 | (S;;;r:MemFail)

Neither state 4.1 nor state 4.2 are stable, and we continued one step for each. We sum-
marize our reduction in Table 22 (p. 248).

Table 22: Reduction of Read in Memory

Guard State(s)
3 (S; Read<r>(l); ;)
3.1 AR (S; ; ; r:BadArg)
3.2b | -AR (S; ;saveR:Mread(l,r);)
4 - AR (S; ;saveR:Mread(l,r);)
4.1b | = AR, (0); | (S;;;r:ReadOK(M(l)))
4.2b | = AR, (0} | (S;;;:rMemkFail)

The results are then brought back into an SDL process diagram page in Figure 137 (p.

249).

6.3.5 ReducindReliableMemory

The reduction oReliableMemory will of course result in a corresponding process
which does not have the alternatives to reMemFail exceptions. We show in Figure
138 (p. 250) the resultingrite part ofReliableMemory.

Similar toMemory the ReliableMemory reduction includes also a state-vector for
WriteAgents. We may also combine the states as indicated in Section 6.3.4 (p. 243).

248

Practitioners’ verification of SDL systems

@. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6

ReducingMemory to a process description

process type Memory 202

Fart |

[fu=] [falze]

4 1%/ 25
Bad -'f'-l'g none Eﬁﬁ?ﬁ hdern Fail
to orig hiread toorg toorig

5 T O

Figure 137: Memory (read) as process type

6.3.6 Comparing=ailMemory with Memory

When we now have reached a process descriptigiefory in Figure 136 (p. 247) and
Figure 137 (p. 249),and we can more easily compare with the direct process description
of FailMemory in Figure 134 (p. 239). We must distinguish between cases relative to
the values of condition&W andAR.

AssumeAW true. This means that the write signal has bad argumenkdemdry will
always returBadArg. FailMemory will returnMemFail. Thus we have a behavior of
FailMemory which cannot occur iMemory. The same holds f@&kR true.

We must conclude th&ailMemory as depicted in Figure 134 (p. 239at a valid
implementation oMemory.

6.3.7 What have we gained by reducimgmory (ReliableMemory)?

Our strategy was to describemory first in a way which was optimal wrt. transpar-
ency for the reader and simplicity for the designer. The design was selected by using
standard engineering techniques. There were three major concerns in the problem:

1. Concurrency problemrhe memory itself could be addressed by a number of concur-
rent processes. These requests should be merged fairly.

2. Repetition problemlhe writing of a location in memory could result in an indefinite
(but not infinite) number of tries.

3. Bad argumentsRequesting processes may simply provide requests with illegal
arguments.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 249

6 The RPC-Memory Specification Problem

ReducingWlemory to a process description

IC Stermn

process type RelialbeMemnory

|5.HE'|:E'E|.§

T

:glte[lc-:.mal

nor e
hwrite
,wal ong)

nevdype [erm
aray (hermals, MermUocsh,
endnevdype Mem;

dcl M Mem=Initwal
dcl loc Memlocs;
dcl val Membals;
dcl orig PId,

signal MreadihMernlocs, FIch
signal MuiteiMemlocs,
M vals PId);

h[loc:]:=wal

Figure 138: ReliableMemory (write) as process

Through our division of th&lemory specification in three processes, each of which
took care of each of the above mentioned problems, we aclsepatation of concern
TheMem process took care of concurrency, WeteAgents took care of repetition
andMemCommHandler took care of checking for bad arguments.

From this transparent, but slightly voluminous description, we wanted a more compact
and “canonical” version where tMemory block was described as an SDL process. We
had to introduce a few non-SDL extensions to be able to descridethery as one
process which externally is faithful to the blddiemory. Let us summarize our tricks:

1. Merge state and Spontaneous s&@eusing a spontaneous save construction we
could makeMem describe non-deterministic (fair) merge of signals in a way which
could be interpreted as confluent which was a prerequisite for reducibility. Spontane-
ous saves of internal signals could appear inside transitions which also contained

other SDL constructs like tasks.

250 Practitioners’ verification of SDL systems

@. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6

ReducingMemory to a process description

2. Alternatives of non-deterministic decisions with positive probabidyrness was
assured by specifying some alternatives of decisions to have positive probabilities
which means that in the long run (of a loop) these alternatives will occur and break
an infinite loop.

3. Spontaneous consumptids a counterpart to spontaneous save, we had to introduce
spontaneous consumption which meant that seen from the outside, transitions (which
consume internal signals) would start spontaneously. Locally these transitions appear
as normal transitions of those signals which had been saved.

4. Practitioners’ induction To reduce the variability introduced by multiple instances
of block (and process) sets where the instances are mutually independent, we use the
“practitioners’ induction” which boils down to taking only one representative for the
set and also including a state-vector. We also showed thdefoory andReliable-
Memory we could ad hoc eliminate the need for the state-vector as well.

After having shown progress and confluence, the reduction resulted in a description
which in itself was fairly readable. Especially the resulting description dte¢hable-
Memory was very compact and readable. This description will be used in the sequel
whenReliableMemory is to be connected to other components.

We managed to achieve a compact notation which could easily be used to show that
ReliableMemory was an implementation dlemory while FailMemory was not.

As a curiosity we also note that the reduction showstnaeAgent (defined in Figure

127 (p. 233)) is strongly progressive if the presumably impossible transitions were inter-
preted as saves (see Section 6.3.3.2 (p. 241)) since no signs of normal saves are presen
in the reduction.

6.3.8 ModifyingMemory to makeFailMemory an implementation

How shouldMemory be changed in order to makeailMemory an implementation?
Also for the continuation of this exercise we may want to have a specificatibenof
ory which containg-ailMemory.

Our specification oMemory was motivated by a layered error-detecting strategy. Bad
arguments would be detected first, and then storage failure resulifemfail.

It seems, however, that the designers of the problem have beeMesitil as a gen-
eral “there is an error in my system” type of error wBiselArg gives more specific
information. Along these lines we can easily modifgmory by lettingMemComm-
Handler have the non-deterministic option to retamFail instantly after consuming
write orread.

Figure 139 (p. 252) would then be the redulbtsinory specification when loops and
redundancies are removed. TRatlMemory is a refinement oflemory follows

directly from the rules for transition comparison in Section 4.2.2 (p. 149) since it is obvi-
ous thatMemory can execute the transition(s)FilMemory.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 251

6

The RPC-Memory Specification Problem

The RPC component

process type Memory Meersion 2T

i

(=)

newlype Iem
array (Mern'vals, MemnUocsh,
(E-Hm | S Fepeat] endneviype hem;
/\/W;ITE'['DG.'I.IE' write none dd M Mem=Ihithal
mwrte| |dd 10z MenLocs;
@ ierror wal oig)f [ddd wal hWemiials;
dd orig Pld;
hern Fail
to SEMDER . signal MreadiMemLocs, Pidy,
ftrue] e signal erite{ru'ErnLDcS,
Badirg } ernhials, Pld);
to SEMDE none H/
hdwrite
o val SEMDE
fulfloc] :=wal) <>
- ——————<any
Lurlte_CJI\>] [+]
bl h;'a;i@ Mioc)=val| | Mpoc):=ual

none - fone
it it L”fg;ga" b wri i
o val o o, wal o

() () ()

Figure 139: Memory (write) modified to accommodate immediate MemFail

6.4 TherrPc component

252

We are now going to specify a component which in general relays remote procedure
calls from a sender to a receiver. SDL is not well suited to specify processes of this kind
of abstraction, but by allowing more extensions related to signals, we get a fairly com-

pact description.

6.4.1 The SDL extensions

Our SDL extensions are related to the need to handle signals as data. We want to be able
to handle signal objects fully as data objects meaning that they shall be possible to store

in variables.

Practitioners’ verification of SDL systems

@. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6
The RPC component

1. Signal data typeWe define a new predefined data type which is the set of all signals.
It is designate@IGNAL, such that a declaration of a signal variable will look like:
“dcl my_sig SIGNAL;". The signal data type may then also appear as parameter to
another signal. It is also possible to define variables of specific signal types by
extended the syntaxdtl my_sig SIGNAL mysignaltype;”

2. Output It is possible to output a stored signal by outputting the variatlegptit
my_sig;” The SENDER attribute of the signal is modified 8ELF of this process

3. Dash signalWe define a predefined function (calBASHSIGNAL) which returns
aSIGNAL value which is equal to the most recently consumed signal of the process.

4. Check signal typeNe define a Boolean function which can be used to check the sig-
nal type of a signal variablemy_sig is return;”. A similar construct can then be
used to interpret parametermy_sig qua exceptreturn(param);”.

5. Atleast inputWe may consume signals of different signal types in one transition by
specifying a supertype of the signal types ioptit atleast return;”. Combination
with DASHSIGNAL and signal type check makes it possible to use this effectively.
In general we can usatleastsignaltype” also in signallists to indicate that any sig-
nal type which is inherited from signal type is allowed.

The notations for checking signal type, interpreting parameters and the atleast input are
inspired by features of Simula [7].

6.4.2 Problem 2. Th@PC component environment

The problem is to specify &PC componentRPC is a component which “translates”

a procedure call which arrives as a parameter of a higher order procedure call from the
sender RemoteCall) into a basic procedure call to the receiver. In our terms the proce-
dure calls and their returns are modeled as asynchronous signals.

Procedure calls as parameters to a higher order procedure call will in our setting mean
signals as parameters to other signals using the extended SDL notation of Section 6.4.1
(p. 252).

In Figure 140 (p. 254) we have shown the environment & B@ component. We shall
in the sequel descril®PC as a process type. TREPC process can be understood as
the only instance in thRPC block type.

6.4.3 The RPC process

We describe th®PC process in Figure 141 (p. 254).

We have checked for a bad call by the Boolean expreésioiihis check takes place
before any other handling of tRemoteCall. Improper syntax of thRemoteCall will
alwaysraise aBadCall exception.

We have assumed that there is one HRBE for each remote call communication.
Concurrent remote calls must then be handled by severalRi2Gs.

1. There may also be a need to keep the original SENDER of the signal. This can always be done manually as
parameter to the signal, but we could also make a construct to circumvent the modification of SENDER.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 253

The RPC-Memory Specification Problem
Implementing théemory by RPC

block type RF Cenvironment inherits General

RPC signal FernoteCall inherits call adding (SIGNAL:
signal AP CRailure inherits exceptreturn;
signal BadCall inherits exceptretirn,

NeASTEAN & | piook type ppc |[CEmmateCall ©
¢ [aleastretyrn) | INNerits Component [atleast return]
- i

Figure 140: The RPC environment

process RPC
del bascall SIGHAL; '5]

(e (hurer
SIS s S

return

i Hemcute Call
bazcall i i
[] =ThT: ierror
[ru=]
call n [
[El=e)
FIF'CZaiIUB Bad Call > DASHSIGNP. F:P-::Fanur

bazcall '
wiaE wia E wiga E viaE

o) () (5 () ﬁ

Figure 141: The RPC process

6.5 Implementing thevemory by RPC
We will now specify an implementation bfemory by usingRPC in connection with

aReliableMemory.

@. Haugen Dr. Scient Thesis Modified: 1997-03-29

254 Practitioners’ verification of SDL systems

The RPC-Memory Specification Problem 6
Implementing théemory by RPC

6.5.1 Problem 3. Implementinglemory by RPC

The problem is to specify an implementatiorM#mory by combining th&kRPC com-
ponent withReliableMemory, and to prove that the resulting implementation actually
is an implementation dfiemory.

The structure of the implementation is given by Figure 142 (p. 255).

system type Memlmp inherits Reiakiehemorystructure
MermFontEnd
[read,
: mritg]
- [read mrite] = | | 7
rm:Reliatblelemary,| 2 mifn):MemFontend £
T i L E|—t-— — -
[(retread), [retread),
iretwrita))] (ret i 2]
block type MemBontEnd inherits BF Cenironment
[re'atg]' — [read
Wr| -
[Fermote Call] i ghi=]|
& RPC £ Clerk e °
—_— - |y Er————i» -~
[{retread), HP-[S%SFBH' [(retread),
i nare, i
(retmrite)] revead iretinrite)]
[retwrits]]

Figure 142: The Memory implementation structure

We notice that we use object-oriented inheritance on several levels to achieve very com-
pact and transparent descriptions. We should again note, however, RRGlgpe is

defined as a block type, but here it is used as a process directly. This level mismatch is
really no problem since tHRPC process can be seen as the only entity of the block type
RPC. Strictly speaking we should then had blockMemFrontEnd, but this extra

level serves really no purpose.

To prove thaMemlImpl is an implementation (refinement)demory, we apply our
general strategy which means to show khamImpl is reducible and then compare the
process version dflemimpl with that ofMemory.

When we analyz&emImpl we shall first show tha¥lemFrontEnd is reducible and
perform the reduction. In the analysis@mimpl itself we shall use the reductions of
ReliableMemory and ofMemFrontEnd. We recall from Section 6.3.5 (p. 248) that the
reduction oReliableMemory is composed of a simple reduction and a state-vector. We
define that the multi-gates BeliableMemory is connected tanf(n):MemFrontEnd

by oneMemFrontEnd to each individual gate since the differéfemFrontEnd

instances represent different communication initiatives on multiateMemIimpl.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 255

256

The RPC-Memory Specification Problem
Implementing théemory by RPC

6.5.2 TheClerk

TheClerk is an interface between tRPC and itsMemory environment, defined by
Figure 143 (p. 256).

process Clerk
dol inp SIGHAL; E]

| ierror
inp= _ CasSHSIEN A
Do SHSISMAL wig E
[+]

Figure 143: Process Clerk

In one direction, towards tHePC component, the baskRead andWrite signals are
translated and relayed by tRemoteCall. In the other direction, towards the environ-
ment, the return from thHRPC is either just relayed, or RPCFailure is received a
nondeterministic decision is made to retMe@mFail or to try again. Sooner or later a
MemFail will serve as a helpful direction and exit from the retransmit loop.

6.5.3 Progress aflemimpl

We start by trying to find a partial order of signal types such that every transition pro-
duces only signals of lower value.

In Figure 144 (p. 257) we have shown parts of the partial order which can be derived
from the transitions dlemimpl. We see that the only possible cycles concern the sit-
uation wherRPC returnsRPCFailure and theClerk returns the original call.

The progress through tHRPCFailure cycle is simply assured by the positive probabil-
ity of the alternative which returddemFail from Clerk shown in Figure 143 (p. 256).

We conclude thaflemimpl is at least weakly progressive. Strong progress may follow
from the reduction iMemImpl is shown to be reducible.

6.5.4 Confluence oMemimpl

We continue to show thdemImpl is confluent by showing that none of the compo-
nents can provide a non-confluence pattern.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

RPC

Clerk

The RPC-Memory Specification Problem 6
Implementing théemory by RPC

Write to Clerk

'

Fermoe Call to RF <

oo

Write 1o Felia blehdem ory RF CFRailure to Clerk BadCall to Clerk
WriteOK © RPC Badfrgto RPC MemFail toonigi

¢ ‘* Fermote Call 1o BF G
WriteOK 10 Clerk Badfrg 1o tlerk

Y Y

WriteOK D arigin Bad Arg to origin

BadCall to orgin ?

Figure 144: Parts of the partial order of signals in MemImpl

6.5.4.1 MemFrontEnd

The block typeMemFrontEnd defined in Figure 142 (p. 255) is reducible on its own as
we shall see that both components are channel/state-mapped.

RPC (Figure 141 (p. 254)) is a channel/state-mapped process where the state space is
divided by the channels. Idle, RPC accepts only input from ga (i.e. from the

Clerk). In WaitRet, RPC accepts only input froril (i.e. fromReliableMemaory). All

other possibilities are ruled illegal.

Accepting the partial reducibility where reduction is modulo internal efRRR€; is
obviously confluent.

It should be possible also to prove that the signals which are internal efRit€iare
actually impossible, but we can also interpret them as saves.

Clerk (Figure 143 (p. 256)) is also a channel/state-mapped process. lilistatdy
input fromC is allowed (i.eRead andWrite), while inWaitRet, preferred signals are
the return signals from theeliableMemory andRPCFailure all coming fromH.

The reducedlemFrontEnd process type is given in Figure 145 (p. 258) and Figure 146
(p- 259).

The reduction is easily achieved in the same way as shown in Section 6.3.4 (p. 243). The
reduction can also be seen as concatenating all the transitions involved in the execution
of an external input. Internal output is not shown, and neither are states with internal sig-
nals and the consumption of internal signals.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 257

6

258

The RPC-Memory Specification Problem
Implementing théemory by RPC

process type MemFrontEnd 112

| jerror

delinpg SIGNHE"I

inp:=
CaSHSIE AL

(tru]

[inp]
[Fal==]

inp
Wwa &

M Fail BadCall
waE waE

WaitFet |:|d|el|de) I:Idle,ldle)
WaitFie

Figure 145: MemFrontEnd reduced 1(2)

6.5.4.2 ReliableMemory

Taking the definition oReliableMemory as given in Figure 138 (p. 250) we can easily

see that the spontaneous saves take good care of any potential collisteasl aihd

Write signals from various sources. The spontaneous save has the effect that all permu-
tations of colliding signals are equally possible.

6.5.5 Reduction of MemIimpl

We shall now execute the reductiorMEmImpl by executing all external signals in all
stable states. In Table 23 (p. 259) we start with the most interestiny\witee From
the same kind of argument as we had for the muliée Agents in Section 6.3.4.2
(p. 244) we can conclude that alsdMemimpl we can apply “practitioners’ induction”
and use only one representative of the block set.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6
Implementing théemory by RPC

process type MemBont End 212

W aitF=t,

LT =

| |
ad, +*
S EE.T: /‘ﬂfrite/ L
' ierror
i [true]
é"g}* @ in |
[+]

[falze]

wia E via E via E

hidern Fail > Bad Call

DASHSICNP.>

e Fail inp
waE wa G

I | |
Ide, = IC!C'E'JE'E' | Wa!'tFlet,I [1dl= Idle] (H|E‘.|d|E|

Figure 146: MemFrontEnd reduced 2(2)

6.5.5.1 Reducing MemImpl wrt. Write from Initial state
We start from the initial staigdle,ldle,S) with aWrite signal.

Table 23: Executing Write from initial state

Executor Guard State(s)

1 (Idle,Idle,S;Write(l,v); ;)

1.1 MemFront. | —-AC,(0). (WaitRet,WaitRet,S; ;Y:Write(l,v),
inp="Write(l,v)";)

1.2 MemFront -AC,(0). (Idle,ldle,S; ; inp="Write(l,v)’; MemFail)
1.3 MemFront | AC (Idle,ldle,S; ; inp="Write(l,v)’; BadCall)

While states 1.2 and 1.3 are stable, we continue the execution of 1.1 in Table 24 (p. 259).

Table 24: Executing 1.1

Executor Guard State(s)

1.1 =AC,(0). (WaitRet,WaitRet,S; ;Y:Write(l,v),
inp="Write(l,v)’;)

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 259

The RPC-Memory Specification Problem
Implementing théemory by RPC

Table 24: Executing 1.1

Executor Guard State(s)

1.1.1 | ReliableM. | -AC,(Q) (WaitRet,WaitRet,S; ; Z:BadArg,
AW inp="Write(l,v)’;)

1.1.2 | ReliableM. | -AC,(Q) | (waitRet,WaitRet,S; saveMWrite(l,v,m?,
-AW inp="Write(l,v)’;)
a. m designates the MemFrontEnd which i1ssued the Write-call

State 1.1.2 is semi-stable. We continue to execute 1.1.1 in Table 25 (p. 260). We notice

Table 25: Executing 1.1.1

Executor Guard State(s)

1.1.1 -AC,(0), (WaitRet,WaitRet,S; ; Z:BadArg,
AW inp="Write(l,v)’;)

1.1.1.1 MemFr. -AC,(Q) (Idle,ldle,S; ;inp="Write(l,v)’; BadArg)
AW,(0);.

1.1.1.2.1 | MemfFr. -AC,(Q) (Idle,ldle,S; ;inp="Write(l,v)’; MemFail)
AW,(0)2,(+)

1.1.1.2.2 | MemfFr. -AC,(Q) (WaitRet,WaitRet,S; ; Y:Write(l,v),
AW,(0),,(0) | inp="Write(l,v)’;)

some points in this execution:
1. State 1.1.1.1 refers to normal return ofBlaglArg signal

2. We know that we have -AC from the guard, such that we know the outcome of the
execution of the decision on the second branch of the decision 1.1.1.2.

3. On the branch of 1.1.1.2 which must be chosen, there is another decision between
MemFail and retryingnp. We consider thi¥lemFail option the same as state
1.1.1.2.1.

4. State 1.1.1.2.2 is the same as 1.1. This branch is therefore pruned since there is a help-
ful direction in 1.1.1.2.1.

We may now summarize executionWwfite fromIdle, Idle, S. in Table 26 (p. 260).

Table 26: Executing Write from initial state (Summary)

Guard State(s)
1 (Idle,Idle,S;Write(l,v); ;)
1.1.1.1 -AC,(0), (Idle,ldle,S; ;inp="Write(l,v)’; BadArg)
AW,(0).

260 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6
Implementing théemory by RPC

Table 26: Executing Write from initial state (Summary)

Guard State(s)
1.1.1.2.1| -AC,(0), (Idle,ldle,S; ;inp="Write(l,v)’; MemFail)
AW, (0)2,(+)
1.1.2 ~AC,(0), | (WaitRet,WaitRet,S; save MWrite(l,v,m?),
-AW inp="Write(l,v)’;)
1.2 =AC,(0). (Idle,ldle,S; ; inp="Write(l,v)’; MemFalil)
1.3 AC (Idle,Idle,S; ; inp="Write(l,v)"; BadCall)

a. m designates the MemFronteEnd which issued the Write-call. The MemFronteEnd
is one-one-related to the external Pld of the SENDER relative to a MemIimpl
process.

If we bring this back to part of an SDL process, this is shown in Figure 147 (p. 261).

process hype Memlmpl 113

" declarations
are leftout *f

nane
Badarg bl rite
]

F1.1.1.2%

.1.1.1°7

hdern Fail

() ey

Figure 147: Process type MemIimpl (reduced) Write, first part

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 261

The RPC-Memory Specification Problem
Implementing théemory by RPC

6.5.5.2 Reducing MemImpl wrt. spontaneous consumption

We continue with the semi-stable st@téaitRet, WaitRet, S) and the consumption of
the spontaneous savBtVrite in Table 27 (p. 262).

Table 27: Executing spontaneous consumption

Executor Guard State(s)
2 ~AC, AW | (waitRet,WaitRet,S; saveMWrite(l,v,mP),
inp="Write(l,v)’;)

2.1 ReliableM. | -AC, -AW, | (WaitRet,WaitRet,S; ; inp="Write(l,v)’, Z:
(+) writeOK, M(l)=v;)

2.2 ReliableM. | -AC, =AW, | (WaitRet,WaitRet,S; saveMWrite(l,v,m),
(0);. inp="Write(l,v)’;)

2.3 ReliableM. | -AC, =AW, | (WaitRet,WaitRet,S; saveMWrite(l,v,m),
(0),. inp="Write(l,v)’, M(l)=v;)

a. We notice that gua

d which shows what condition the spontaneous save occurred.

b. m designates the MemFrontEnd which issued the Write-call. The MemFrontEnd is one-one-
related to the external Pld of the SENDER relative to a MemImpl process.

We see that 2.2 and 2.3 are semi-stable and very similar to state 2. The only significant
difference is that 2.3 has managed to assign the memory location. The reader should not
think that we should prune 2.2. (and possibly 2.3). The case is simply that the process
performs a loop back to a (semi-)stable state which is quite normal in the life of an SDL
process. This is different from when the reduction execution returns backgiadie

state in the same execution. Such loops are pruned.

We continue with the instable state 2.1 in Table 28 (p. 262).

Table 28: Executing 2.1

Executor Guard State(s)

2.1 -AC, -AW, | (WaitRet,WaitRet,S; ; inp="Write(l,v)’, Z:
(+) writeOK, M()=v;)

2.1.1 MemFr. -AC, -AW, | (Idle,Idle,S; ;inp="Write(l,v)’, M(I)=v;
(+), (O). WriteOK)

2.1.2.1| MemfFr. -AC, -AW, | (Idle,Idle,S; ;inp="Write(l,v)’, M(I)=v;
(+), (Op,(+) | MemFail)

2.1.2.2| MemFr. -AC, -AW, | (WaitRet,WaitRet,S; ;Y:Write(l,v),
(+), (0O),(0) | inp="Write(l,v)’, M(l)=v;)

262

Practitioners’ verification of SDL systems

@. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem
Implementing théemory by RPC

6

This execution is very similar to the one in Table 25 (p. 260), but the state 2.1.2.2 cannot
be pruned right away since there are no instable state in the execution of state 2 which
equals it. We execute 2.1.2.2, and consider the guards, and get the execution of Table 29

(p. 263).
Table 29: Executing 2.1.2.2
Executor Guard State(s)

2.1.2.2 -AC, =AW, (WaitRet,WaitRet,S; ;Y:Write(l,v),
(+), (0),(0) inp="Write(l,v)’, M(l)=v;)

2.1.2.2.b| ReliableM.| -AC, -AW, (WaitRet,WaitRet,S; save
(+), (O),(0) MWrite(l,v,m), inp="Write(l,v)’,

M()=v;)

We have now reached stable states on all execution branches in Table 30 (p. 263).

Table 30: Executing spontaneous consumption (Summary)

Guard State(s)
2 -AC, ~AW* | (WaitRet,WaitRet,S; saveMWrite(l,v,mP),
inp="Write(l,v)’;)

21.1 -AC, AW, | (Idle,ldle,S; ;inp="Write(l,v)’, M(l)=v; WriteOK)
(+), Q).

2.1.2.1 -AC, AW, | (Idle,Idle,S; ;inp="Write(l,v)’, M(I)=v; MemFail)
(), Ok, (+)

2.1.2.2.b | -AC, AW, | (WaitRet,WaitRet,S; saveMWrite(l,v,m),
(), (0),(0) | inp="Write(l,v)’, M(l)=v;)

2.2 -AC, AW, | (WaitRet,WaitRet,S; saveMWrite(l,v,m),
(0);. inp="Write(l,v)’;)

2.3 -AC, AW, | (WaitRet,WaitRet,S; saveMWrite(l,v,m),
(0),. inp="Write(l,v)’, M(l)=v;)

a. We notice that guard wr

1ich shows under what condition the spontaneous save occurred.

b. m designates the MemFrontEnd which issued the Write-call. The MemFrontEnd is one-one-
related to the external Pld of the SENDER relative to a MemImpl process.

Graphically we can see this program segment in Figure 148 (p. 264).

6.5.6 Comparingvemimpl and Memory

Our task is to prove thidemIimpl is a valid implementation dflemory meaning that
any behavior oMemimpl is a behavior oMemory. We follow the principles of Sec-
tion 4.2.2 (p. 149).

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29

Practitioners’ verification of SDL systems

263

6

264

The RPC-Memory Specification Problem
Implementing théemory by RPC

rocess type hemim Z[=]
P yp H WaitFet,
WaitFet, S
none
hwrit= wri e
,wal ongl
21" [+] ﬁl
f2.1.2%
éﬁ@ e
FE11| Fzqz 174 [+) rz.1.2.2% 2.3
nore
hloe]:=wal | | Moz]:=wal hAwrite b [lo:) =wal
h[lo] =wal i
to org o orig

Figure 148: Process type MemIimpl (reduced) Write, second part

We have the reducedemory (the write part) in Figure 139 (p. 252) and the corre-
sponding write part dlemimpl in Figure 147 (p. 261) and Figure 148 (p. 264). They
look similar, but not absolutely identical.

1. MemIimpl checks folAC, the syntax of the signal as such. This means that it checks
whether the signal can be interpreted asite orread. Memory has no such outer-
most syntax check.

2. When the decision & is reached andW is true MemImpl may outpuMemFalil
while Memory always output8adArg.

These discrepancies indicate thMemIimpl may not be a valid implementation of
Memory. The first point may not be serious siremory takes for granted that only
write or read signals are admitted anyway. The second discrepancy is not important
sinceMemImpl may returrMemFail already before the test &wV. TestingAW to true
does not really add any new external behavior ditemFail may be returned when

AW is true or false already by the first non-deterministic decision.

The comparison wrt. the spontaneous consumption dfeite signal shows some
differences. We see that the decision structures are different, but the set of branches all
together seems comparable. We do not want to make up a set of transformation rules for
(fair) non-deterministic decisions, and therefore we divide the analysis here in two, con-
sidering only finite behavior and then infinite behavior.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6
Implementing théemory by RPC

6.5.6.1 Finite behavior

During the analysis of finite behavior we flatten the decisions. By flattening the alterna-
tives, we mean that we oversee the fact that some alternatives may have a specified
positive probability. This simplifies the decision structure of the non-deterministic
decisions.

Spontaneous consumption has the option to return mdegtyFail in Memory, but this
option is absent iMemImpl. This discrepancy refers to the slightly different position
the spontaneous save has in the two architectures.darmoémpl does have the option
to return MempFail directly when consuming the origMéite signal, we consider this
discrepancy insignificant.

We conclude that for finite behavidemImpl has the same alternatives\dsmory.

6.5.6.2 Infinite behavior

Finally we should consider infinite behavior. In decisions with alternatives with positive
probability we know that all those alternatives must appear when the decision occurs
infinitely.

Consider the following scenario MemImpl. If we assume an infinite input stream of
write signals wherdC andAW are false we may still have a return stream where
“M(loc):=val; output MemFail " happens every time. This is because there is a non-
deterministic decision inside the positive probability alternative. With pure non-deter-
ministic decisions any single alternative may occur every time. This is not possible in
Memory where whenever an infinite input streamaoite signals wherdC andAW

are false occurs, the return stream must contain at leag¥iiie®©K.

We must conclude themImpl is notan implementation dflemory.

6.5.6.3 ModifyingMemory such thatMemImpl is an implementation

In order to modify our origindlemory such thaMemImpl is a valid implementation

of it, we must look into the positive probability of returnigiteOK from Mem. In
Section 6.3.2 (p. 240) we argued that this ensures that any implementaiem ofiust

have some chance of success i.e.\WiateOK should have some positive probability

to be returned. OwlemImpl may be implemented such that the memory is actually
changed, buMemFail is raised anyway. It seems contrary to the general purpose of the
Memory that we should have an implementation which always exhibits only half way
success.

If we modifyMem such that there is no positive probability for sucdelesnory is still
progressive since there is a positive probability of relaplegiFail in WriteAgent. In
ReliableMemory we must still have the positive probability to return succebeim
sinceWriteAgent cannot relay thlemFail.

These changes will result in the redus&ésimory shown in Figure 149 (p. 266).

We can now find no infinite behavior which is possibl&i@mory, but not in
MemImpl.

We conclude thatlemimpl is a valid implementations ddemory.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 265

6

The RPC-Memory Specification Problem

Implementing RPC

process type Memory Muersion 3™ 1)
newiype Mem
array (Wernals, Memlocsh,
(S.term | SFepeat) endnewiype lem;
mte(loG wal - monel (dd MW Mem=Inithal
} [>Lunte
@mﬁt& dd loc Membocs;
@ ierror wal orglf [ddd wal Mem'vals;
ddl orig Pl
Pk Fail
to SEMDERS - signal MreadifMernlocs, PId),
[tue] “Thlse] signal erite{hrEﬂLDcs,
Eadrg Merm'als, Pid);
to SEMDE Rone m/
hdwrite

hlfloc] =wal] @

LurlTE_C:lh> [+] [+]

o org F;ﬂ@ Mice)=val| | Mjoc)=val
none bz Bl I'|DFIE'
hdwrite . b wri &

o wal o te ong : f'[ln-:,wa].-:-ﬁ;

D)) (2

Figure 149: Final specification oMemory (write)

6.6 Implementing RPC

266

The last part of the RPC-Memory specification problem is about the implementation of
RPC via using a lossy RPC component which sometimes just does not return, but when

it returns it does s

o within a given duration limit.

We have already recognized that SDL is not suitable to specify time and duration con-
straints as pointed out in Section 1.6.3 (p. 35), and our thesis has not made any serious
attempt to improve these aspects of SDL.

Therefore we have found no reason to give the solution to the last part of the RPC-Mem-
ory specification problem in this thesis.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

The RPC-Memory Specification Problem 6

Conclusions

6.7 Conclusions

The RPC-Memory specification problem has shown more facets of specification and
verification than one would expect at first glance. The problem itself is fairly simple, but
complexities are hidden in the fairness requirements and the implementations.

The example problem has shown that SDL is fairly well suited for such a problem of real
time engineering, but that there are specific aspects which need notation extensions and
more elaborated verification techniques.

SDL has problems when it comes to:

1. Describing fairness.

2. Generalizing wrt. signal types. Signals cannot be considered data in standard SDL.
With our extensions, these areas were also possible to handle.

In our solution to the problems we have shown that a one-way top-down approach from
the most general specification to the implementations is not adequate. We show that our
engineering approach turns out to conclude that the proposed implementations are not
actual refinements. When we decide to make them refinements, the original general
specifications had to be iterated and changed. By doing so we had to go through argu-
ments for the desirability of the design chosen.

We also found that the exercise was very illustrative for using our practitioners’ verifi-
cation approach on a practical/theoretical problem. We feel that our descriptions and
transformations had two very desirable properties:

1. The descriptions were readable.

2. The transformations were transparent and/or automatic. The proofs could probably
have been done by any engineer.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 267

6 The RPC-Memory Specification Problem

Conclusions

268 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

7 Conclusions and further
work

Omniscience

Knowing what
thou knowest not
isin a sense
omniscience

7. Conclusions and further work

We have in this thesis presented an approach to systems engineering based on a simple
validation strategy. What are the strongholds of the Mn-approach and what are its short-
comings? How should further research and development improve the approach?

7.1 Recapitulation

The Mn-approach is based on a procedure (the Mn-procedure) for determining conflu-
ence of a concurrent system of communicating extended finite state machines. From a
very simple idea and a very simple basic strategy — to check all possible race conditions
— we were able to prove interesting features of interesting, theoretical systems.

We let the Mn-approach inspire a method — confluent design — which should be possible
to use favorably on real systems. We reported from a rudimentary industrial case study.
We provided arguments for the applicability of the Mn-approach from our own experi-
ence as a long time engineer of reactive systems.

The Mn-approach does not cover everything. There is no simple way to determine
exactly in which situations the Mn-approach adds valuable insight. In Figure 150 (p.
270) we have given an overview of the domains of the Mn-approach.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 269

7

Conclusions and further work
The strongholds of the Mn-approach

all cases

good future
systems

existing
reactive
systems

real, reactive systems

complexity
. metric Confluent
Siemens case Design

study

Alternating Bit P.
Brock-Ackerman
RPC-Memory

The Mn-
approach

Figure 150: The Scope of the Mn-approach

7.2 The strongholds of the Mn-approach

270

The strong points of the Mn-approach seem to be its smooth transition from the practical
engineering to the theoretical world of automata, and its friendliness towards other
approaches. It is also reasonable to believe that proofs by the Mn-approach are more
readable and comprehensible than formal proofs, at least for practitioners.

7.2.1 A bridge from theory to practice

On one side of the spectrum there is the practitioner who has great skepticism towards
theory. On the other end there is the theorist who could not care less about the practical
application of his ideas, but he wants a well founded way to visualize certain aspects of
a concurrent system. The Mn-approach may have something for both these two
extremes and also for persons in between these extremes. We have tried to illustrate the
different aspects of the Mn-approach on such a spectrum in Figure 151 (p. 270). The the-

Detecting undesired race conditions
Reduction together with other techniques Confluent design

Reduction for validation and refinement Complexity profiles

The theorist The engineer

Figure 151: The Mn-bridge between theorists and engineers

orist may want to use the Mn-procedure to make a reduction of a system to explore its
external properties. We have also seen that reductions can be used in connection with
refinement verification.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Conclusions and further work 7
Points on which the Mn-approach could be improv

Slightly less ambitious is to select certain parts of the system which are specially suited
for reduction and reduce these. These reductions are then used together with other meth:-
ods like reachability algorithms.

Even less ambitious is to use the Mn-procedure just to indicate where there are race con-
ditions which may be problematic. We may not even go all the way to ascertain that
there is a real problem before we present the indication to the engineer. He may then get
an “aha-experience” and admit that there may be a problem.

To keep to the confluent design guidelines is reasonable even if the Mn-approach will
not be used formally to validate the system. And finally to apply the complexity profiles
based on the Mn-approach may indicate problematic areas without any direct infringe-
ment on the system development as such.

7.2.2 The Mn-approach is the friendly approach

Since the Mn-approach is a monolithic approach to validation which only reduces the
complexity of a subsystem by eliminating the internal communication, it can be easily
combined with other methods. After having applied the reduction, the resulting system
is still a system of communicating finite state machines, and theoretically eligible to the
same approaches as the original. This means that any technique which could have been
used on the original, can also be used when a part has been reduced via the Mn-
procedure.

The question is what the analysis wants to conclude. It is obvious that the aim of the
analysis must be expressible in terms of the transformed system. That the analysis aim
is expressible in terms of the transformed system must also mean that all examples or
counterexamples of the aim must be expressible in terms of the transformed system. If
this holds for some property, we claim that the property holds also for the original
system.

7.2.3 The Mn-proofs are transparent

Each step of the Mn-procedure is an execution which is fairly straight forward, and it
may often be performed automatically as a symbolic simulation. The reduction algo-
rithm is a series of symbolic executions, too. The result of the reduction is a process
graph which is in (slightly extended) SDL.

There is no notation which is not known to the engineer and there are no inference rules
(verification steps) which are not executions.

The Mn-approach to validation is an imperative approach using the concepts and oper-
ations which are already known by the engineers.

7.3 Points on which the Mn-approach could be improved

The Mn-approach is not the answer to everything. There are areas where the Mn-
approach is not well suited, and there are areas where more research should improve the
technique.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 271

272

Conclusions and further work
Points on which the Mn-approach could be improved

The major issue where the Mn-approach has little to offer is in handling data. We have
also decided not to spend effort on proving progress.

Furthermore the Mn-approach is, similar to SDL itself, not perfectly suited to reason
about real time. We also believe that some people will argue that our approach to fair-
ness is not fully adequate.

Finally we have in the thesis used other techniques to support the Mn-approach, such as
backwards execution. There should be advantageous to look into a more systematic use
of other techniques in connection with the Mn-approach.

7.3.1 Where the Mn-approach has little to offer

There are two important subjects which we have treated only ad hoc in this thesis. These
subjects are data and progress.

7.3.1.1 Data

Concerning data we have said that our major aim is to eliminate internal communication
and data is not so important then. This is of course only partly true. If the aim is to make
complete reduction which can be used as integral part in other methods, the data must
be included.

We have done little or nothing to evaluate whether the data used in real systems are actu-
ally suitable for symbolic execution. We know theoretically that data may exhibit all the
complexity of the world, but our conjecture has been that reactive systems seldom con-
tain unmanageable data complexity. From experience we are convinced that certain
parts of systems have very simple data, while others are complicated.

7.3.1.2 Progress

Progress is a prerequisite for the Mn-procedure, but we have treated this subject in a very
ad hoc manner. Still we believe that in reactive systems, progress is often not the worst
thing to establish. On the other hand in a real system the structure of feedback loops with
retransmissions and acknowledgments etc. may be quite difficult to follow manually.
This is definitely an area for further study both empirically and theoretically.

7.3.2 Where the Mn-approach may not be perfectly suited

We have reason to believe that theorists are not perfectly happy with our treatment of
real time and fairness.

7.3.2.1 Real Time

We can handle timers with the Mn-procedure. We are aware that confluence is a much
more intricate concept when time and duration have to be taken into account and not
only the order of events.

It is definitely a subject for further research to determine how and whether the reduction
technique of the Mn-approach can be extended to cope with time and duration in a more
general way than we have shown in this thesis.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Conclusions and further work 7
Empirical data and tools

7.3.2.2 Fairness

We have included in the Mn-approach a notation for fairness in connection with deci-
sions. Our notion of fairness is described as extreme fairness or a variant of probabilistic
fairness. This notion seems to fit well in an imperative setting where each language con-
struct is considered to execute independent of all other imperatives. Thus when a non-
deterministic decision executes, it has no “knowledge” of earlier or later executions of
this or other decisions. With our extreme fairness, we assume that certain outcomes of
the decision (helpful directions) have positive probability to appear. The positive prob-
ability is preseneverytime the decision is executed.

There are many other notions of fairness which have proved to be practical. We do not
eliminate the possibility that other fairness concepts than our extreme fairness may be
suitable to include in communicating finite state machines, and in the language SDL.
This is a matter of future research.

7.3.3 Where the Mn-approach could be helped by other techniques

The main risk when applying the Mn-procedure is that unreachable non-confluence pat-
terns are found and absolute confluence cannot be proven. We have used simple
backwards execution as an ad hoc way to prove that a given state is not reachable.

We are certain that improved coverage of the Mn-approach could be obtained if we
applied in a systematic way supporting techniques to eliminate non-confluence patterns
which are unreachable. Typically proven state invariants could serve as a filter to define
a subset of the full set of complete states.

This is a matter for future research.

7.4 Empirical data and tools

Our rudimentary industrial case study can hardly be considered a thorough empirical
study of the applicability of the Mn-approach. It would have been feasible to perform
more studies along the same line, but it became evident that automatic support of the
Mn-procedure is almost a prerequisite.

Our prototype tool could not do the job as merely to make the system available to the
tool would take many hours and be fairly error prone. Furthermore the prototype tool
could not handle all the features needed.

The rise in effort from indicating problematic race conditions to proving reducibility is
substantial, and we decided to spend our available time on smaller toy examples where
we could reveal theoretical problems of the approach.

More empirical studies are needed to support the conjecture that the Mn-approach is
actually applicable in the real life on real systems. In order to perform such studies in a
reliable way tools are needed. It should be fairly simple to modify the SDL tools avail-
able to accommodate the Mn-approach, and we hope that the tool vendors will find the
Mn-approach interesting and consider investing some resources into making an Mn-
module to their tools.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 273

Conclusions and further work
Empirical data and tools

Pilot studies where aspects of the “confluent design” approach is used should supple-
ment studying the effect of using Mn-approach as validation approach to already
existing systems.

The reader should remember that the engineer is the most valuable resource of valida-
tion. He has the power to make things simple and verifiable, or — to make them complex
and impossible to verify.

274 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

g References

8. References

10.

11.

Apt, K. R., Pnueli, A. and Stavi, J. (1984). “Fair termination reivisited with
delay.” TCS33 65-84.

Barringer, H. (1985A Survey of Verification Techniques for Parallel Programs
Berlin, Springer-Verlag LNCS 191 3-540-15239-3.

Bartlett, K. A., Scatlebury, R. A. and Wilkinson, P. T. (1969). “A Note on Reli-
able Full-Duplex Transmission over Half-Duplex Link€&mmunications of
the ACM12(5) 260-265.

Basin, D. A. (1996). Verification Based on Monadic Logic. BRICS, Univ. of
Aarhus BRICS Notes Series NS-96-3, Aarhus

Belina, F., Hogrefe, D. and Sarma, A. (198DL with Applications from Pro-
tocol SpecificationHemel Hempstead:, Prentice Hall

Bengtsson, J., Griffioen, D., Dristoffersen, K., Larsen, K. G., Larsson, F., Pet-
tersson, P., et al. (1996J)rification of an Audio Protocol with Bus Collision
Using UPPALL 8th International Conference on Computer Aided Verfication,
Pages: 244-256, Springer-Verlag LNCS 1102

Birtwistle, G. M., Dahl, O.-J., Myhrhaug, B. and Nygaard, K. (198BJJULA
BEGIN New York, Petrocelli/Charter

Boehm, B. W. (1981 5oftware Engineering Economidsnglewood Cliffs:,
Prentice Hall

Bolognesi, T. and Brinksma, E. (1987). “Introduction to the ISO Specification
Language LOTOS.Eomputer Networks and ISDN Systems25-59.

Bowen, J. and Hinchey, M. G. (199Ajpplications of Formal MethodPBrentice
Hall 0-13-366949-1.

Breek, R. and Haugen, @. (199hgineering Real Time Systerhftemel
Hempstead, Prentice Hall International 0-13-034448-6.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 275

276

References

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.
26.
27.

28.

29.

30.

31.

Breek, R., Haugen, O., Melby, G., Mgller-Pedersen, B., Sanders, R. and Stal-
hane, T. (1996). Integrated Methodology. Oslo, SISU.

Brand, D. and Zafiropulo, P. (1983). “On communicating Finite-State
Machines.”Journal of the ACMBO(2) 323-342.

Brock, J. D. and Ackerman, W. B. (1981). Scenarios: a model of non-determi-
nate computatiorrormalization of Programming Conceisls. Diaz and
Ramos. Berlin, Springer-Verlag. LNCS 107 252-259.

Broy, Dederichs, Dendorfer, Fuchs, Gritzner and Weber (1993). The design of
Distributed Systems. An Introduction to FOCUS. Technische Universitat
Minchen Minchen

Broy, M. (1987). “Semantics of Finite and Infinite Networks of Concurrent
Communicating AgentsDistributed Computin@(1) 13-31.

Broy, M. (1991). “Towards a Formal Foundation of the Specification and
Description Language SDLFormal Aspects of Computirgfl) 21-57.

Broy, M. (1993). (Inter-)Action Refinement: The Easy WRragram Design
Calculi Ed. M. Broy. Springer. NATO ASI Series, Series F: Computer and Sys-
tem Sciences 118

Broy, M. and Stalen, K. (1994pecification and Refinement of Finite Dataflow
Networks - a Relational ApproacRTRTFT'94, Pages: 247-267, Springer-Ver-
lag 863

Broy, M. and Stglen, K. (19960CUS on System Developméviunich,
(manuscript)

Bruns, G. (1993A Practical Technique for Process AbstractiQONCUR'93,
4th International Conference on Concurrentcy Theory, Hildesheim, Germany
August 1993, Pages: 37-49, Springer-Verlag LNCS 715 3-540-57208-2.

Burstall, R. M. and Darlington, J. (1977). “A Transformation System for Devel-
oping Recursive Programsldurnal of the ACM24(1) 44-67.

Carroll, J. and Long, D. (1989)heory of finite automata with an introduction
to formal languaged.ondon, Prentice-Hall International, Inc. 0-13-913815-3.

Cavalli, A. R., Chin, B.-M. and Chon, K. (1996). “Testing methods for SDL sys-
tems.”CN&ISDN (June 1996) 1669-1684.

CCITT (1988) Z.100 CCITT Specification and Description Language, ITU,
CCITT (1988) Z.100 Annex D SDL User Guidelines, ITU,

Clarke, E. M., Emerson, E. A. and Sistla, A. P. (198B8)matic verification of
finite state concurrent systems using temporal logic specificati@ls ACM
Symposium on Principles of Programming Languages, Austin, Texas January
24-26, 1983, Pages: 117-126, ACM

Clarke, E. M. J. (1996). Symbolic Model Checking. BRICS, Univ. of Aarhus
BRICS Notes Series NS-96-4, Aarhus

Coad, P., Yourdon, E. (199@bject-Oriented Analysi€nglewood Cliffs,
Prentice Hall

Dahl, O.-J. (1992)erifiable ProgrammingHemel Hempstead, UK, Prentice
Hall International 0-13-951062-1.

Dahl, O.-J., Dijkstra, E. W. and Hoare, C. A. R. (19%2uctured Program-
ming London and New York, Academic Press

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

References 8

Dahl, O.-J. and Hoare, C. A. R. (1972). Hierarchical Program Struchimes.
tured Programmindeds. O.-J. Dahl, E. W. Dijkstra and C. A. R. Hoare. London
and New York, Academic Press.

Darlington, J. and Burstall, R. M. (1976). “A System which Automatically
Improves ProgramsActa informaticaé 41-60.

de Roever, W.-P. (1992). Why Formal Methods is a Must for Real-Time System
Specification. Oslo, University of Oslo.

de Roever, W.-P., Coenen, J., Buth, K.-H., Engelhardt, K., Lakhneche, Y. and
Stomp, F. (1993). State-based Formalisms for Data Refinement.

DeMarco, T. (1979ptructured Analysis and Systems Specificakoglewood
Cliffs, Prentice Hall

Dershowitz, N. and Jouannaud, J.-P. (1990). Rewrite Systamdbook of
Theoretical Computer Science. Formal Models and Semad#idic3d. van Leeu-
wen. Amsterdam, Elsevier. Vol. B 243-320.

Dietz, C. (1994). Duration Calculus Specifications of Shared Registers. Univer-
sity of Oldenburg Draft, ProCos, copy by O-J. Dahl Oldenburg

Dyer, M. (1992)The Cleanroom Approach to Quality Software Engineering
John Wiley & Sons

Ek, A. (1993)Verifying Message Sequence Charts with the SDT Validziidr
'93 Using Objects. Proceedings of the Sixth SDL Forum, Darmstadt, Germany
October 12th — 16th 1993, Pages: 237-249, North Holland 0-444-81486-8.

Ellis and Stroustrup, B. (1990)he Annotated C++ Reference ManuAtdi-
son-Wesley

Ellsberger, J., Hogrefe, D. and Sarma, A. (199D).. Formal Object-oriented
Language for Communicating Systemsndon, Prentice Hall Europe 0-13-
621384-7.

Emerson, E. A. (1996). Automated Temporal reasoning about Reactive Sys-
tems.Logics for Concurrency. Structure versus Automats. F. Moller and G.
Birtwistle. Berlin, Springer-Verlag. Lecture Notes in Computer Science LNCS
1043 41-101.

ETSI (1994), "Methods for Testing and Specification (MTS); Methodologies
for Standards Engineering — Specification of Protocols and Service", WD 1 in
Q6 on Methodology at ITU-TS Geneva Oct. 19.-27. 1994

Feergemand, O. and M.M., M., Eds. (198T)L"89 The Language at Work.
Proceedings of the Fourth SDL Forum, Lisbon, October 1B&®0on, North
Holland: Elsevier

Feergemand, O. and Reed, R., Eds. (1811)'91 Evolving Methods. Proceed-
ings of the Fifth SDL Forum, Glasgow, October 198Msgow, North Holland:
Elsevier

Feergemand, O. and Sarma, A., Eds. (1&3). '93. Using Objects. SDL
Forum 1993 Darmstadt, North Holland. Elsevier 0-444-81486-8.

Finkel, A. (1988)A new class of analyzable CFSMs with unbounded FIFO
channelsProtocol Specification Testing and Verification VI, Pages: 283-294,
Elsevier Science Publishers B.V., North Holland VIl

Francez, N. (1986lairness New York, Springer-Verlag

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 277

278

References

50.

51.

52.

53.

54,

55.

56.

S7.

58.

59.
60.

61.

62.

63.

64.

65.

66.
67.

68.

69.

70.

71.

Freedman, D. P. and Weinberg, G. M. (19B82ndbook of Walkthroughs,
Inspections, and Technical Reviews. Evaluating Program, Projects and Prod-
ucts Boston, Little, Brown and Company

Gilb, T. and Graham, D. (1993oftware InspectianNokingham, Addison-
Wesley 0-201-63181-4.

Grabowski, J. (1994Jest Case Generation and Test Case Specification with
Message Sequence Chattsauguraldissertation, Institut fur Informatik und
angewandte Mathematik, Universitat Bern

Grossman, R. L., Nerode, A., Ravn, A. P. and Rischel, H., Eds. (1888)d
SystemsSpringer Verlag LNCS 736

Harel, D. (1987). “Statecharts: A visual formalism for complex systeBos.”
entific Computing Programming(3) 231 — 274.

Hauge, T. and Haugen, @. (19895 T — An Object-oriented SDL ToBbrth
SDL Forum, Lisbon, Portugal 9. - 13. October 1989,

Haugen, O. (1980iierarchies in Programming and System Descriptidias-
ter Thesis, University of Oslo

Haugen, O. (1996). “Special issue on SDL and M8&BI&ISDN (June 1996)
1581-1717.

Haugen, O. (1997The MSC-96 Distilleryto be published at SDL Forum 97,
Paris, France Sept. 1997, North-Holland

Haugen, &. (1994). MSC Methodology. SISU Report L-1313-7, Oslo

Haugen, @. (1995). On the advanced use of MSC. SISU/Siemens Notat L-2103-
HAU1, Oslo

Haugen, &. (1995)sing MSC-92 EffectivelysDL'95 with MSC in CASE.
Proceedings of the Seventh SDL Forum, Oslo, Norway 26.-29. Sept. 1995,
North-Holland, Elsevier

Haugen, 9., Braek, R. and Melby, G. (1993)e SISU projectSDL '93 Using
Objects. Proceedings of the Sixth SDL Forum, Darmstadt, Germany October
12th — 16th 1993, Pages: 479-489, North Holland 0-444-81486-8.

Haugen, @., Stenhaug, U., Trettenes, N., Asen, H. K. and Jarfonn, D. (1994).
Walkthrough as a means for V&V. SISU Report L-1313-5, Oslo

Hayes, I. e. (1987%pecification Case Studidsondon, Prentice-Hall Interna-
tional 0-13-826579-8.

He, J., Hoare, C. A. R., Franzle, M., Muller-Olm, M., Olderog, E.-R., Schenke,
M., et al. (1995). Provable Correct Systems. Oxford report by FTP

Hein, P. (1966)Grooks Gylling, Borgen Pocketbooks 85

Henzinger, T. A. (1996). Automatic Verification of Real-Time and Hybrid Sys-
tems. BRICS, Univ. of Aarhus BRICS Notes Series NS-96-5, Aarhus

Hinkel, U. (1996). A Formal Semantics for the Time Concept in SDL.
manuscript.

Hoare, C. A. R. (1969). “An axiomatic Approach to Computer Programming.”
Communication of the ACI¥2 576-580.

Hoare, C. A. R. (1978). “Communicating Sequential ProcesSesimunica-
tions of the ACM21(8)

Hoare, C. A. R. (1985Communicating Sequential Procesddsemel Hemp-
stead, Prentice Hall International 0-13-153271-5.

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.
82.

83.

84.

85.
86.
87.

88.

89.

90.

91.

92.

References 8

Holzmann, G. J. (1988). “An Improved Protocol Reachability Analysis Tech-
nique.” Software, Practice and Experienc&37-161.

Holzmann, G. J. (1991Dpesign and Validation of Computer Protocdingle-
wood Cliffs, Prentice Hall International 0-13-539925-4.

Holzmann, G. J. (199@&tarly Fault Detection ToolSTACAS96, Passau, Ger-
many March 1996, Pages: 1-13, Springer-Verlag LNCS 1055

Holzmann, G. J. (1996). On-the-Fly Model Checking Tutorial. BRICS, Univ. of
Aarhus BRICS Notes Series NS-96-6, Aarhus

Holzmann, G. J. and Patti, J. (198&)lidating SDL Specifications: an Experi-
ment 9th Int. Workshop on Protocol Specification, Testing and Verification,
Twente, The Netherlands June 1989, North Holland

ISO (1989) ISO 8807 Information processing systems - Open System Intercon-
nection — LOTOS- A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour,

ITU (1993) Z.100 ITU Specification and Description Language (SDL), ITU-T,
June 1994, 237 p

ITU (1993) Z.100 Annex F Specification and Description Language (SDL)
Annex F. SDL Formal Definition, ITU, April 1994, (33+437+183) p

ITU (1993) Z.100 Appendix | SDL Methodology Guidelines, ITU-T, July 1994,
129 p

ITU (1994) Z.105 SDL combined with ASN.1, ITU-TS, Oct. 19.-27. 1994, 69 p

ITU (1994) Z.120 Annex B Algebraic Semantics of Message Sequence Charts,
ITU-T, October 1994, 50 p

ITU (1996) Z.100 Addendum to Recommendation Z.100: CCITT Specification
and Description Language, ITU, October 1996, 31 p

ITU (1996) Z.100 Supplement 1 SDL+ Methodology - Use of MSC and SDL
(with ASN.1), ITU, October 1996,

ITU (1996) Z.106 Common Interchange Format, ITU-TS, Oct. 18. 1996, ? p
ITU (1996) Z.120 Message Sequence Charts (MSC), ITU-T, Oct. 1996, 78 p

Jones, C. B. (1986%ystematic Software Development Using VBiémel
Hempstead, Prentice-Hall International 0-13-880717-5.

Jonsson, B. (198 .ompositional Verification of Distributed SysterRk. D.,
Department of Computer Systems, Uppsala University

Jonsson, B. (1994). “Compositional Specification and Verification of Distrib-
uted Systems.ACM Transactions on Programming Languages and Systems
16(2) 259-303.

Kaasbgll, J. J. (1996). Aspects of object-oriented modelling. Concepts for anal-
ysis and guidelines for design. University of Oslo Dr. Philos Thesis Research
Report No. 214, Oslo

Kahn, G. (1974)'he semantics of a simple language for parallel programming
IFIP Congress 74, Stockholm, Sweden Pages: 471-475, North-Holland

Keller, R. M. (1975)A fundamental theorem of asynchronous parallel compu-
tation. Parallel Processing: Proceedings of the Sagamore Computer Conference,
August 20.-23. 1974, Pages: 102-112, Springer LNCS 24

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 279

280

References

93.

94.

95.

96.

97.

98.

99.

100.

101.
102.
103.

104.

105.

106.

107.

108.

109.

110.

111.

Kim, H. C., Choi, H., Yim, C. H. and Hong, J. P. (199he Automated Verifi-
cation of SDL Specification Using Numerical Petri-n&BL 91 Evolving
Methods. Proceedings of the Fifth SDL Forum, Glasgow, October 1991, Glas-
gow October 1991, North Holland: Elsevier

Kwong, Y. S. (1977). “On reduction of asynchronous systenmebretical
Computer Sciencg 25-50.

Lam, S. S. and Shankar, A. U. (1984). “Protocol Verification via Projections.”
IEEE Transactions on Software EngineerBiglq4) 325-342.

Lewerentz, C. and Lindner, T. (1994). Case Study "Production Cell": A Com-
parative Study in Formal Specification and Verification. Forschungszentrum
Informatik an der Universitat Karlsruhe FZI-Publication 1/94, Karlsruhe

Madsen, O. L., Mgller-Pedersen, B. and K., N. (199B)ect-Oriented Pro-
gramming in the BETA Programming Langua@géekingham, England,
Addison-Wesley 0-201-62430-3.

Mauw, S. (1993), "An algebraic semantics for Message Sequence Charts", TD
40 at ITU SG 10 WG MSC Geneva October 19. 1993

Mazurkiewicz, A. (1986)Irace theoryPetri Nets: Application and Relation to
other Models of Concurrency, Bad Honef September 8.-19. 1986, Pages: 279-
324, Springer-Verlag LNCS 254-255

Melham, T. F. (1996). Some research Issues in Higher Order Logic Theorem
Proving. BRICS, Univ. of Aarhus BRICS Notes Series NS-96-7, Aarhus

Meyer, B. (1988)0bject-Oriented Software ConstructidPrentice Hall
Milner, R. (1980)A Calculus of Communicating Systelg@pringer Verlag

Milner, R. (1989)Communication and Concurrendyemel Hempstead, Pren-
tice Hall 0-13-115007-3.

Mdiller, O. and Nipkow, T. (1995X.ombining Model Checking and Deduction
for 1/0-Automata Tools and Algorithms for the Construction and Analysis of
Systems, Pages: 1-16,

Nahm, R. E. M. (1994Lonformance Testing Based on Formal Description
Techniques and Message Sequence CHadsguraldissertation, Universitat
Bern

Olsen, A., Faergemand, O., Mgller-Pedersen, B., Smith, J. R. W. and Reed, R.
(1994).Systems Engineering Using SDL-8®rth Holland 0 444 89872 7.

Pollack, R. (1996). What we Learn from Formal Checking. Part I: How to
Believe a Machine-Checked Proof. BRICS, Univ. of Aarhus BRICS Notes
Series NS-96-8, Aarhus

Pollack, R. (1996). What we Learn from Formal Checking. Part Ill: Formaliza-
tion is Not Just Filling in Details. BRICS, Univ. of Aarhus BRICS Notes Series
NS-96-10, Aarhus

Prinz, A. (1994), "BSDL The Language", TD PL/10-65 at ITU-TS Geneva Oct.
19.-27. 1994

Q-Labs Cleanroom Competency Centre (QCCC) (1@@anroom Software
Engineering Applied to TelecommunicatioNSDCS'92,

Qin, H. and Lewis, P. (199@actorization of Finite State Machines under
Observational Equivalenc€ONCUR '90. Theories of Concurrencey: Unifica-
tion and Extension, Amsterdam Pages: 427-441, Springer-Verlag LNCS 458

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

References 8

Rapporteur, I. S. Q. (1996), "Draft Recommendation Z.100 Addendum”, COM
10-17 at ITU SG 10 Geneva 10-18 April 1996

Rational (1997). Unified Modeling Language. Rational Software Corporation
WWW Manuals Version 1.0, Santa Clara

Ravn, A. P. e. (1991). Embedded, Real-time Computing Systems. ProCoS
project Working Draft Denmark, England

Reed, R. (1996). “Methodology for real time systei@sl&ISDN (June 1996)
1685-1702.

Reisig, W. (1985petri Nets. An IntroductiarBerlin, Springer-Verlag 4 3-540-
13723-8.

Reniers, M. (1995%yntax requirements of Message Sequence CI&ids95
with MSC in CASE. Proceedings of the Seventh SDL Forum, Oslo, Norway
Sept. 26.-29. 1995, North-Holland

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991).
Object-Oriented Modeling and Desiganglewood Cliffs, New Jersey, Prentice
Hall 0-13-629841-9.

Rumbaugh, J. e. a. (1997). Unified Modeling Language Version 1.0. Rational
Software Corporation

Sarma, A. and Breek, R. (1995DL'95 with MSC in CASE. Proceedings of the
Seventh SDL ForunsDL'95 with MSC in CASE., Oslo, Norway 26.-29. Sept.
1995, North-Holland, Elsevier

Seltveit, A. H. (1994). Complexity Reduction in Information Systems Model-
ling. NTH, Norwegian Technical Highschool Dr. Ing. Thesis IDT 1994:8,
Trondheim

Sethi, R. (1974). “Testing for the Church-Rosser Propdadyrhal of the ACM
21(4) 671-679.

Shen, Y.-N., Lombardi, F. and Dahbura, A. T. (19B8)tocol Conformance
Testing Using Multiple UIO Sequencé&sh Int. Workshop on Protocol Specifi-
cation, Testing and Verification, Twente, The Netherlands June 1989, Pages:
131-143, North Holland

Souissi, Y. (1991A Modular Approach for the Validation of Communication
Protocols using FIFO net#rotocol Specification Testing and Verification XI,
Pages: 143 — 158, Elsevier Science Publishers B.V., North Holland XI

Spies, K., Broy, M. and Merz, S. (1998)rmal Systems Specification: The
RPC-Memory Specification Case Studlgrlin, Springer-Verlag

Srivas, M. K. (1996). A Combined Approach to Hardware Verification: Proof-
Checking, Rewriting with Decision Procedures and Model-Checking. Part I:
Slides. BRICS, Univ. of Aarhus BRICS Notes Series NS-96-11, Aarhus

Srivas, M. K. (1996). A Combined Approach to Hardware Verification: Proof-
Checking, Rewriting with Decision Procedures and Model-Checking. Part II:
Articles. BRICS, Univ. of Aarhus BRICS Notes Series NS-96-12, Aarhus

Stalen, K. (1995pevelopment of SDL Specifications in FacBBL'95 with
MSC in CASE. Proceedings of the Seventh SDL Forum, Oslo, Norway 26.-29.
Sept. 1995, Pages: 269-278, North-Holland, Elsevier

Stalen, K., Dederichs, F. and Weber, R. (1993). “Assumption/Commitment
Rules for Networks of Asynchronously Communicating Agerisdft copy

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS 281

8 References

130. Stroustrup, B. (1992)he C++ Programming Language. Second Editiddd-
ison-Wesley

131. Telelogic (1996). Methodology Guidelines. The SOMT Method. Telelogic
Manual SDT 3.1 SOMT 0.2, Malmg

132. Uselton, A. C. and Smolka, S. A. (1994 ompositional Semantics for State-
charts using Labeled Transition Syste@®NCUR '94, Proc. 5th Int. Conf. on
Concurrency Theory, Uppsala, Sweden Pages: 2-17, Springer-Verlag LNCS 836

133. Vardi, M. (1996). An Automata-Theoretic Approach to Linear Temporal Logic.
Logics for Concurrency. Structure versus Automgitds. F. Moller and G.
Birtwistle. Berlin, Springer-Verlag. Lecture Notes in Computer Science LNCS
1043 238-266.

134. \Vergauwen, B. and Lewi, J. (199B8)Linear Local Model Checking Algorithm
for CTL CONCUR'93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany August 1993, Pages: 447-461, Springer-Verlag LNCS
715 3-540-57208-2.

135. \Verhaard, L. (1996). “An introduction to Z.10&N&ISDN (June 1996) 1617-
1628.

136. \erilog (1994). GEODE Simulator. Basic Concepisterence Manual -
GEODE Simulator Toulouse, France, Verilog. 1-36.

137. Weissman, C. (196DISP 1.5 PrimerDickenson Publishing Company, Inc.

138. Wezeman, C. D. (199®rotocol conformance testing using multiple UIO-
sequencedNorkshop on Protocol Specification, Verification and Testing, vol-
ume 9 of Proceedings of the IFIP WG 6.1 9th International Symposium on
Protocol Specification, Testing and Verification, Pages: 131-143, North-
Holland

139. Yang, F. and Chen, J. (199REAS — A ripple effect analysis syst&DL 91
Evolving Methods. Proceedings of the Fifth SDL Forum, Glasgow, October
1991, Glasgow October 1991, North Holland: Elsevier

140. Yourdon, E. (1989%tructured walkthrough€nglewood Cliffs, N.J., Yourdon
Press 0-13-855289-4.

141. Zhao, Z. and Bochmann, G. v. (198%duced reachability analysis of commu-
nication protocols: a new approachth International Workshop on Protocol
Specification, Testing and Verification, Montreal, Quebec June 1986, North-
Holland

282 Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Q Summary of new SDL
constructs

9. Summary of new SDL constructs

We have found the need to introduce a few new SDL constructs to support the Mn
approach and to be able to describe the systems which we find interesting in this context.
Here we summarize these constructs.

There are four new constructs and they serve different purposes.

1. Fair Non-deterministic Decisiorserve to facilitate specification of systems such that
progress can be determined.

2. Merge, spontaneous saaedspontaneous consumptiare mechanisms which make
it possible for the Mn-approach to express the non-determinism introduced by fair
merge of signals from different channels.

3. Signals as variableBelp to generalize certain behavior patterns such that they
become independent of exactly which signal arrives. This is used in the RPC-Mem-
ory example.

9.1 Fair Non-deterministic decision

Standard SDL-92 has anyvalue expressions which can be applied in decisions. Then the
decisions represent a non-deterministic choice where we have no knowledge whatso-
ever about the chances of one alternative against the others. This is not practical when
fairness is the issue. By introducing a simple notation (+) on a branch from a non-deter-
ministic decision, we describe that this branch has a positive probability.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 283

Summary of new SDL constructs
Merge, spontaneous save and spontaneous consumption

This means that if this decision is executed an infinite number of times, the “positive”
alternative will be chosen an infinite number of times. We define that for every infinite
subsequence of decision answers, any (+) alternative should appear infinitely many
times. This represents extreme fairness.

The suggested extended notation for extreme fairness in SDL is shown in Figure 152 (p.
284). An imperative definition of our fairness construct is given in Figure 153 (p. 284).

decision any

+1:51;
+ else: 52

ny
hvd ‘ enddecision

=1

Figure 152: Fair Decision

dcl z1 Integer:= any(Natural);
dcl z2 Natural:= any(Natural);

z2:= any(Natural);

decision(z1<=z2)

(true): S1;z1:= any(Natural);
(false): S2: z1:=z1-1;

enddecision

Figure 153: Imperative definition of fairness

To obtain extreme fairness the any-expression must be random such that all Natural
numbers have the possibility to be chosen.

9.2 Merge, spontaneous save and spontaneous consumption

In our Mn-approach it is very important that any non-determinism is described explic-
itly. In systems where non-determinism based on race conditions between signals is
acceptable we need a way to describe the race condition explicitly. Our approach is the
imperative “spontaneous save”.

There are three elements to this feature: the merge state, the spontaneous save and the
spontaneous consumption.

Merge state Themergestate is the user’'s way to express that there is an explicit race condition which

is considered acceptable. Normally either no basic states or all basic states of a process
are merge states.

Spontane- The spontaneous save is the clue to the mechanism. The spontaneous save is not used

ous save

284

by specifiers, but comes as a result of reduction and in the Mn-procedure. The idea is
that when a signal is about to be consumed in a merge state, it is instead spontaneously
saved. The complete state will normally become semi-stable. When the process is in a

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

Spontane-
ous
consump-
tion

Summary of new SDL constructs 9
Signal objects as data object

merge state, all normal signals will be spontaneously saved. In reductions the spontane-
ous saves may occur also inside transitions since they are often operations on inner
processes.

The spontaneously saved signals are then spontaneously consumed. At any point in
time, when the process is in a merge state, the first spontaneously saved signals of any
channel may or may not be consumed. The spontaneous consumption is considered glo-
bally triggered and in reductions they appear as external signals. Only the first signals
may be spontaneously consumed. This means that the order of the signals within a chan-
nel is not changed, but the signals on different channels are merged.

All'in all these constructs serve to describe in a finite way the infinite set of signal merg-
ers. The graphical notation is shown in Figure 154 (p. 285).

merge .
transition tefore

|
. Hnote
s % %

transition transition after transition ..

Figure 154: Merge state, spontaneous save and spontaneous consumption

9.3 Signal objects as data objects

As any SDL implementation has discovered, there is definitely some gain in harmoniz-
ing signals and variables. We have done this by the following scheme:

1. Signal data typeWe define a new predefined data type which is the set of all signals.
It is designate@IGNAL, such that a declaration of a signal variable will look like:
“dcl my_sig SIGNAL;". The signal data type may then also appear as parameter to
another signal. It is also possible to define variables of specific signal types by
extending the syntaxdtl my_sig SIGNAL mysignaltype;”

2. Output It is possible to output a stored signal by outputting the variatlegptit
my_sig;” The SENDER attribute of the signal is modified 8ELF of this process

3. Dash signalWe define a predefined function (calBASHSIGNAL) which returns
aSIGNAL value which is equal to the most recently consumed signal of the process.

4. Check signal typeNe define a Boolean function which can be used to check the sig-
nal type of a signal variablemy _sig is return;”. A similar construct can then be
used to interpret parametermy_sig qua exceptreturn(param);”.

5. Atleast inputWe may consume signals of different signal types in one transition by
specifying a supertype of the signal types ioptit atleast return;”. Combination
with DASHSIGNAL and signal type check makes it possible to use this effectively.
In general we can usatleastsignaltype” also in signallists to indicate that any sig-
nal type which is inherited from signal type is allowed.

1. There may also be a need to keep the original SENDER of the signal. This can always be done manually as
parameter to the signal, but we could also make a construct to circumvent the modification of SENDER.

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL systems 285

Summary of new SDL constructs
Signal objects as data objects

All together these features make it possible to generalize SDL communication more wrt.
signals. We have given an example in Figure 155 (p. 286).

declaring signal variable

Signa| as process RPC
parameter to
another signal

del bascall SHEHAL;

 atleastsignal
specification

Output of sig-
nal variable predefined
~ function for last
signal
FiF CFail i
bascal A E‘*"'—'B Bad Call agiH5|G~m> EZ%FNIU§

) () () Ca)

Figure 155: Example of signal as data

286 Practitioners’ verification of SDL systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

10 LI

10. List of Fi

st of Figures

gures
Figure 1: Basic Mn-procedure. 8
Figure 2: Mn-reductionis Kwong reduction 9
Figure 3: General Mn-procedure 10
Figure 4: Alternating Bit Protocol by Mn-procedure. 11
Figure 5: Brock-Ackerman anomaly by Mn-procedure. 11
Figure 6: Compositionality of the Mn-approach 12
Figure 7: Refinement by the Mn-approach 12
Figure 8: Pragmatic Mn-approach. 13
Figure 11: Software distillery 13
Figure 9: Complexity profile based on Mn-procedure. 14
Figure 12: Comprehension profiles oL 14
Figure 10: The estimated complexity of the Mn-procedure 15
Figure 13: Mn-method for improved quality systems. 15
Figure 14: Confluent Design e 16
Figure 15: Substitutionrule 33
Figure 16: Typical structure of an SDLsystem........................ 43
Figure 17: Transition function. i 46
Figure 18: Labelled transition relation. 46
Figure 19: Unlabeled transition relation 46
Figure 20: Execution graph of x, G(x) withnodes H(x) 47
Figure 21: Leaves Of i 47
Figure 22: Reducible process. 48
Figure 23: Structure of example processD, 49
Figure 24: Areducible process 50
Figure 25: Progress 50
Figure 26: Confluentstate 51
Figure 27: Consequence: leaves of rootnode 51
Figure 28: Confluent CFSM 52
Figure 29: Absolute confluence. 52
Figure 30: Least non-confluence pattern. 53
Figure 31: Existence of a least non-confluence pattern. 53
Figure 32: Necessity of progress for least confluence pattern. 53
Figure 33: Selected execution of process K. 54

@. Haugen Dr. Scient Thesis - Modified: 1997-03-29 Practitioners’ verification of SDL SyStemS

287

10

288

List of Figures

Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:

Practitioners’ verification of SDL systems

Symmetric non-confluence pattern 54
Minimal non-confluence pattern 55
MO definition 56
Definitionof Mn 60
Generalized labelled transition. 61
Executed the parallel alphabet symbol. 67
Process E which makes MO livelocked 70
Process G which makes infinite number of generations 70
ProcessGreduced i 71
Stabilization of intermediate results are needed 72
Part of the execution tree of MO of process J. 72
Stabilizing state 3. 77
Infinite consumption of internal signal 85
INfinite Progresso 86
Generalized non-confluence pattern 88
Process U with internal non-confluence pattern 89
Block UV . .. 92
ProCessS V 93
Block NonD, a reducible block with non-determinism......... 97
The processesof NonD 98
Executing the Mn-procedure, 98
Symbol alphabets and non-determinism 99
Alternating Bit Protocol structure 101
Sender of Alternating Bit Protocol 101
Receiver of Alternating Bit Protocol 102
Fair DeCISION 103
Imperative definition of fairness 103
Alternating Bit Protocol Reduced 105
Merge state. 107
Spontaneous save and spontaneous consumption 108
Transformation of merge state.. 108
Themergemechanism. 109
The Brock-Ackerman example system 110
ProcessesD,DAand FM. 111
ProcessesPland P2. 111
History relationfor SK 112
Stabilization during reductionof S1 112
Reduced S1 113
Reduced S2 114
Reducing T1. 115
Reducing T2. 115
Reduced processes Tland T2, 116
Non-confluence withtimers. 120
Timersand confluence (1)cc .. 121
Timersand confluence (2) i, 121
Alternating Bit Protocol with Timers. 122
Modeling the lossy channel 122
Modified Sender of Alternating Bit Protocol with Timer 123

@. Haugen Dr. Scient Thesis Modified: 1997-03-29

Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:

Figure 100:
Figure 101:
Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124:
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:

@. Haugen Dr. Scient Thesis - Modifi

List of Figures

10

Reducing ABPT 125
Retaining the timer information. 127
Introducing SDL procedures, 128
The structure of the transformed process. 129
The transformed processes. 129
Brock-Ackerman and virtuality 135
Variants of the Brock-Ackermanexample 136
Reduced Rk (SkexceptPk) L. 136
Restructuring of Tk making RTk as Tk except Pk............ 137
RTKreduced e e 138
Compositionality 145
Refinement (implementation). 147
Behavioral Refinement. 148
Interface Refinement 148
The abstract process A i 151
Structure of the implementation. 151
Process N: compilingthe number 152
Bound: the bounds checker 152
Process V: the verdict, firstattempt 153
Process V: the verdict, second attempt. 154
ThereducedprocessD......... ..., 154
Interface mappingsTandR................. 155
Thereducedprocess C. ... 155
Simplification framework. 157
Non-confluence pattern eliminated by abstraction. 159
Block setarchitecture. 161
Original ProCeSS v 163
Tree of MN-eXeCUtiONSo it i e 167
One MN-exXeCution it 167
Piecewise executionof Mn. 169
The Whole, The Precise and The Details. 181
Distillery. 183
Generic Comprehension Profile. 189
Deceptive profile 190
Aha-profile 190
Steady profile 191
90% syndrome profile 191
Refinement and Inheritance 206
Protocol layers 207
Monitoringof executions 208
Reliable and transparent specifications 211
Structure of the systemofthecase....................... 220
CoOmMPONENt. . .. 230
Memory Structure 231
MemCommHandler 232
WrteAgeNt 233
Mem . 234
ReliableMemory has the same structure as Memory 235
ied: 1997-03-29 Practitioners’ verification of SDL systems 289

10

290

List of Figures

Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144:
Figure 145:
Figure 146:
Figure 147:
Figure 148:
Figure 149:
Figure 150:
Figure 151:
Figure 152:
Figure 153:
Figure 154:
Figure 155:

WriteAgent of the ReliableMemory 235
Mem of the ReliableMemory. 236
Structure of FailMemory 237
Behavior of FailMemory 237
FailMemory as SDL Process 239
Extracts of Mem withmerge state 240
Memory (write) as processtype., 247
Memory (read) as processtype ..., 249
ReliableMemory (write) as process.covvvvnn. .. 250
Memory (write) modified to accommodate immediate MemFail252
The RPC environment 254
The RPC ProCesst 254
The Memory implementation structure 255
ProcessClerk 256
Parts of the partial order of signals in Memimpl............ 257
MemFrontEnd reduced 1(2).o oo 258
MemFrontEnd reduced 2(2). oo 259
Process type MemImpl (reduced) Write, firstpart 261
Process type MemIimpl (reduced) Write, second part 264
Final specification ddemory (write) 266

The Scope of the Mn-approach 270
The Mn-bridge between theorists and engineers. 270
Fair DecCision e 284
Imperative definition of fairness 284
Merge state, spontaneous save and spontaneous consumption . 285
Example of signalasdata 286

Practitioners’ verification of SDL Systems @. Haugen Dr. Scient Thesis Modified: 1997-03-29

	Practitioners’ Verification of SDL systems
	Table of Contents
	1. Introduction
	1.1 Abstract
	Mn- procedure
	Monolithic
	SDL extensions
	Conditional reduction
	Mn-metric
	Confluent design

	1.2 Executive Summary
	1.2.1 Major aims
	1.2.2 SDL systems
	1.2.3 Progress, Confluence and Reduction
	1.2.4 SDL is a real language
	1.2.5 Desired non-determinism
	1.2.6 The Mn-approach — does it scale?
	1.2.7 The Mn-approach as a base for methodology
	1.2.7.1 A technique for verification
	1.2.7.2 A technique for validation
	1.2.7.3 A technique for documentation
	1.2.7.4 A technique for reuse
	1.2.7.5 A technique for evaluation
	1.2.7.6 Background for design guidelines

	1.2.8 The Mn-approach integrated with other techniques
	1.2.8.1 Using auxiliary techniques inside the Mn-approach
	1.2.8.2 Using the Mn-reductions in analysis of enclosing systems

	1.2.9 Concluding executive summary

	1.3 Technical summary
	1.3.1 The bridge
	1.3.2 The Basic Mn-procedure
	1.3.3 The General Mn-procedure
	1.3.4 The Mn-approach to validation
	1.3.5 Complexity profile and complexity estimates
	1.3.6 The Mn-method, “Confluent Design”
	1.3.7 Future research

	1.4 The nature of SDL systems
	1.4.1 SDL – the language
	1.4.2 SDL – the use and the users
	1.4.3 SDL – the supporting tools
	1.4.4 SDL – main concepts
	1.4.4.1 SDL system
	1.4.4.2 SDL channels
	1.4.4.3 SDL blocks, block types and block instances
	1.4.4.4 SDL processes, process types and process instances
	1.4.4.5 SDL process concept
	1.4.4.6 SDL data
	1.4.4.7 SDL timers
	1.4.4.8 SDL procedures
	1.4.4.9 SDL services
	1.4.4.10 SDL save
	1.4.4.11 SDL non-determinism
	1.4.4.12 SDL object orientation
	1.4.4.13 More?

	1.4.5 SDL – pragmatics

	1.5 Motivation
	Need
	Capacity of designer
	Imperative languages
	Few notations
	Reuse
	Credibility
	Compositionality
	Variation in systems
	Methodology
	The ambition

	1.6 Background
	1.6.1 The Mn-approach is validation-oriented
	1.6.1.1 Dual descriptions
	1.6.1.2 Monolithic descriptions
	1.6.1.3 Reduction
	1.6.1.4 Testing
	1.6.1.5 Evaluation of systems

	1.6.2 The Mn-approach is automata-based
	1.6.2.1 Model checking
	1.6.2.2 I/O relations
	1.6.2.3 Rewrite systems
	1.6.2.4 Proof systems

	1.6.3 The Mn-approach does not really address real-time
	1.6.4 Mn-approach is integrated with design
	1.6.5 Comparison summary
	Table 1: The Mn-approach and other approaches

	1.7 Reader’s guide to the thesis
	1.8 Acknowledgments

	2. The Basic Mn-procedure
	2.1 Basic concepts
	2.1.1 Notation
	2.1.1.1 Basic notation
	2.1.1.2 Process definitions

	2.1.2 Basic model
	2.1.3 Basic definitions
	2.1.3.1 A process and related concepts
	2.1.3.2 A Communicating Finite State Machine
	2.1.3.3 A transition system
	2.1.3.4 Execution graph
	2.1.3.5 Leaves
	2.1.3.6 A stable state

	2.2 Reducibility
	2.2.1 What is reducibility?
	2.2.1.1 Defining Reducibility

	2.2.2 The reduction algorithm
	2.2.3 The example process D

	2.3 Progress
	2.3.1 What is progress?
	2.3.2 Progress of the example process D

	2.4 Confluence
	2.4.1 What is confluence?
	2.4.1.1 A confluent state
	2.4.1.2 A confluent CFSM

	2.4.2 Determining confluence
	2.4.3 The non-confluence pattern examined
	2.4.3.1 Proof: progress and non-confluence implies a least non-confluence pattern
	2.4.3.2 Necessity of progress for the restricted non-confluence patterns
	2.4.3.3 The symmetric non-confluence pattern
	2.4.3.4 The minimal non-confluence pattern
	2.4.3.5 Summary

	2.4.4 M0 – the first generation
	2.4.4.1 Formal definition of M0
	2.4.4.2 Evaluation of the states of M0
	2.4.4.3 M0 of the example process D
	Table 2: Process D, initial set of M0, Z0

	2.4.5 Mn — changing generations
	2.4.5.1 Formal definition of Mn
	2.4.5.2 Evaluating nodes of Mn

	Confluent branch
	Everything equal
	Generation glue
	Equal output
	External stuttering
	Non- confluence
	Stabilization
	Sequence permutation
	State different
	2.4.5.3 Mn of the example process D
	Table 3: Generation change in state 1
	Table 4: Execution of M1 from state 1

	2.4.6 Why the Mn procedure works
	2.4.6.1 A detailed walkthrough of the Mn procedure
	2.4.6.2 A more detailed walkthrough of the confluence criteria

	Generation glue
	Equal output
	External stuttering
	2.4.7 Why the Mn-procedure may not terminate
	2.4.7.1 Infinite series of state different situations
	2.4.7.2 Infinite generation changes

	2.4.8 Why the stabilization step is necessary
	2.4.8.1 Stabilization step of example process D
	Table 5: Continued execution of M0

	2.4.8.2 Stabilization step of example process J

	2.5 Reducibility revisited
	2.5.1 Why the reduction algorithm yields a reduction
	2.5.2 Non-confluent, reducible process?
	2.5.3 Mn-reduction is a Kwong-reduction
	2.5.3.1 Kwong criterion (1)
	2.5.3.2 Kwong criterion (2)
	2.5.3.3 Kwong criterion (3)
	2.5.3.4 Kwong criterion (4)

	2.6 Basic pragmatics
	2.6.1 Unreachable nodes
	2.6.1.1 Unreachability of the example process D
	Table 6: Execution of M1 from state 3

	2.6.2 General invariants
	2.6.2.1 Auxiliary information used in analyzing example process D
	Table 7: Execution of M1 from states 31, 32 and 33

	2.6.3 Concluding the analysis of example process D
	2.6.3.1 The final states
	Table 8: Generation change of M1 from state 5

	2.6.3.2 Lessons learned

	2.6.4 Basic pragmatics of determining progress
	2.6.4.1 The signal ordering criterion
	2.6.4.2 Progress by fairness
	2.6.4.3 Progress through timers

	2.6.5 The termination of the Mn-procedure
	Max depth
	Basic State Cycle detected

	2.7 Concluding the Basic Mn-procedure

	3. General Mn-procedure
	3.1 Infinite external input sequence
	3.1.1 What challenges do infinite input sequences pose?
	3.1.2 Reducibility of unstable and time-dependent systems
	3.1.3 Infinite Progress
	3.1.4 Concluding infinite complete states

	3.2 Multiple channels
	3.2.1 More external input channels
	3.2.2 More internal input channels
	3.2.3 Multiple output channels
	3.2.4 Concluding multiple channels

	3.3 Multiple processes
	3.3.1 Definitions
	3.3.1.1 System
	3.3.1.2 Component
	3.3.1.3 Block

	3.3.2 The basic model and the combined CFSM
	3.3.3 Interleaving semantics
	3.3.4 Piecewise execution of the Mn-procedure
	Projection
	Stabilization
	Example: UV
	3.3.5 Progress
	3.3.6 Concluding multiple processes

	3.4 Save
	3.4.1 Stable states revisited
	3.4.2 Save and Progress
	3.4.3 Save and confluence
	3.4.4 Save and reducibility
	3.4.5 Concluding Save

	3.5 Non-determinism
	3.5.1 Anyvalue expressions in decisions
	3.5.2 Spontaneous transitions
	3.5.2.1 Spontaneous transition as externally invoked
	3.5.2.2 Spontaneous transition as internally invoked
	3.5.2.3 Concluding spontaneous transition

	3.5.3 Fair Anyvalue-expressions
	3.5.3.1 Alternating Bit Protocol
	3.5.3.2 Fair decision
	3.5.3.3 Extremely fair decision
	3.5.3.4 Wrapping up the Alternating Bit Protocol

	3.5.4 Spontaneous save
	3.5.4.1 Explicitizing race conditions
	3.5.4.2 Fair Merge and the Brock-Ackerman anomaly

	3.5.5 Concluding non-determinism

	3.6 Data
	3.6.1 Ignoring the data
	3.6.2 Including the data
	3.6.3 Concluding data

	3.7 Timers
	3.7.1 Basic model of timers
	3.7.2 Progress
	3.7.3 Confluence
	3.7.4 Reduction
	3.7.4.1 The Alternating Bit Protocol Revisited with Timers
	3.7.4.2 Progress and Confluence of ABPT
	3.7.4.3 Reducible does not mean error free!
	3.7.4.4 Sufficiently big duration of timer t
	3.7.4.5 Reductions and timed executions
	3.7.4.6 The reduction which retains the time behavior

	3.7.5 Concluding timers

	3.8 Procedures
	3.8.1 A Fictitious Procedure Example
	3.8.2 The transformation scheme
	3.8.3 How to analyze procedures
	3.8.3.1 What is special with procedures
	3.8.3.2 Progress
	3.8.3.3 Confluence
	3.8.3.4 Conclusions of separate analysis of procedures

	3.8.4 Concluding procedures

	3.9 Object orientation: Inheritance and virtuality
	3.9.1 Pure types
	3.9.2 Simple inheritance
	3.9.2.1 Inheritance of block types
	3.9.2.2 Inheritance of process types

	3.9.3 Virtuality
	3.9.3.1 The reduced Rk
	3.9.3.2 Progress of Sk
	3.9.3.3 Confluence of Sk
	3.9.3.4 Progress of Tk
	3.9.3.5 Confluence of Tk
	3.9.3.6 Possible restructuring of Tk
	3.9.3.7 Virtuality constraint
	3.9.3.8 Concluding virtuality

	3.9.4 Concluding object orientation

	3.10 SDL Service
	3.11 Priorities
	3.11.1 Priority input
	3.11.2 Priority for internal signals in blocks
	3.11.3 Concluding priorities

	3.12 Concluding Mn-procedure for SDL

	4. The Mn-approach and formal analysis
	4.1 Compositionality of reducibility
	4.1.1 Confluence and context
	4.1.2 Defining: compositionality
	4.1.3 Proving progress
	4.1.4 Proving confluence
	4.1.4.1 If AAAsubst is reducible, so is AAA
	4.1.4.2 If AAASubst is non-confluent, so is AAA
	4.1.4.3 The reduction of AAASubst is the same as the reduction of AAA

	4.1.5 Concluding compositionality of reducibility

	4.2 Verifying refinement
	4.2.1 The Refinement model
	SDL
	Definition
	Behavioral refinement
	Interface refinement
	Compositionality
	4.2.2 Mn-approach

	Sub- automaton
	Compare transitions
	Ad hoc adaptation
	4.2.3 Example: the rejected or accepted signal

	4.3 Simplification
	4.3.1 Conceptual clarification
	4.3.2 Pure simplification
	4.3.3 Abstractions
	4.3.4 Projections
	4.3.5 Optimization
	4.3.6 Simplifying large numbers
	4.3.6.1 Block sets

	Multi-gate
	Independence
	Block set representative
	Block set reduction
	Practitioners’ induction
	4.3.6.2 Process creation
	4.3.7 Integrating the Mn-approach with other methods

	4.4 The expected behavior of the Mn-procedure
	4.4.1 Studying Progress
	4.4.1.1 Progress of the system itself
	4.4.1.2 Progress of the Mn-procedure

	Execution path
	Sequence of generations
	4.4.2 Studying Confluence and the Complexity of the Mn procedure
	4.4.2.1 The obvious challenger
	4.4.2.2 The factors of Mn complexity

	Generation structure
	One Mn- execution
	Worst case?
	Confluence target
	Piecewise execution
	Nested execution
	Stabilization
	Heuristics
	Time and storage
	Non- determinism
	Total Mn- procedure depth

	4.5 Conditional reduction
	4.5.1 Possible attitudes to proof obligations
	4.5.2 How do we typically check for the proof obligations?
	Progress
	Unreachable states
	Impossible transitions
	4.5.3 The impossible transitions

	Default transition
	Exceptions
	Save
	Proofs
	Example: Alternating Bit Protocol
	Impossible transition proof through invariant
	Conclusion
	4.5.4 Bounded resources – Mn on a finite system

	5. The Mn-approach in practical engineering
	5.1 The Nature of Real Reactive Systems
	5.1.1 What is a real, reactive system?
	5.1.2 What is typical for real, reactive systems?
	5.1.2.1 Size
	5.1.2.2 Independent components
	5.1.2.3 Nesting
	5.1.2.4 Data
	5.1.2.5 Heterogeneous
	5.1.2.6 Real Time

	5.1.3 How are real systems made?
	5.1.3.1 System analysis – the use of different descriptions

	Make more precise
	Make more detailed
	Distillery
	Iteration?
	5.1.3.2 System design – the dynamics of system development

	The Main Description
	Continuous development
	Concurrent development
	Plans and reality
	5.1.3.3 System validation – how to believe they work

	User error reports
	Systematic Testing
	Formal proofs
	Walkthroughs
	5.1.4 How are systems described and how are they understood?
	5.1.4.1 The language dimension

	Syntactic form
	Evolutionary aspects
	Topology
	Semantic form
	Communication
	5.1.4.2 The user dimension

	The programmer
	The specifier
	The team
	The observer
	5.1.4.3 The problem dimension
	5.1.4.4 Comprehension profiles

	Deceptive profile
	Aha profile
	Steady profile
	90% syndrome profile
	5.1.4.5 The system development dimensions and the comprehension profiles
	Table 9: System development ideal types

	5.2 The Mn-procedure on Real Systems
	5.2.1 The two facets of Mn
	5.2.2 Complexity expectations
	5.2.2.1 Complexity of the Mn-procedure in Real Systems

	General
	Number of generations
	Number of execution levels
	Conclusion
	Complexity estimate
	Table 10: Mn-procedure complexity estimates
	5.2.2.2 Complexity of the system under analysis
	5.2.2.3 Complexity of the reduced process
	Table 11: Perceived complexity reduction

	5.3 Mn Methodology
	5.3.1 The Mn-approach assumptions: “confluent design”
	5.3.1.1 Race conditions
	5.3.1.2 Reducibility
	5.3.1.3 Complexity
	5.3.1.4 Data
	5.3.1.5 Time constraints

	5.3.2 How to ensure Progress?
	5.3.2.1 System structure for progress
	5.3.2.2 Process behavior for progress

	Decisions
	Timers
	5.3.3 How to ensure Confluence?
	5.3.3.1 System structure for confluence
	5.3.3.2 Process behavior for confluence

	Multi-lane process
	Channel- State mapped
	Save
	Internal errors
	5.3.4 How to simplify Refinement verification?
	5.3.4.1 The distillery and refinement
	5.3.4.2 Using interface mappings
	5.3.4.3 Object orientation and refinement

	5.3.5 The benefits of a layered approach
	5.3.5.1 Virtual machine layers
	5.3.5.2 Monitor layers
	5.3.5.3 Refinement levels
	5.3.5.4 Nesting trees
	5.3.5.5 Inheritance structures

	5.3.6 Mn supporting understanding and reuse
	5.3.6.1 Understanding
	5.3.6.2 Reuse

	Making candidates
	Finding candidates
	Using candidates
	5.3.7 Mn-development
	5.3.7.1 Mn awareness
	5.3.7.2 Top-down Mn
	5.3.7.3 Bottom-up Mn

	5.3.8 Mn-strategy
	5.3.8.1 Progress
	5.3.8.2 Confluence
	5.3.8.3 Restructuring
	5.3.8.4 Iteration
	5.3.8.5 More or less Mn

	Outwards
	Inwards

	5.4 Experience from an industrial case study
	5.4.1 The experimental tool
	5.4.2 The practical case
	5.4.3 Main findings
	5.4.4 Some analysis details
	5.4.5 The advice we offered

	5.5 Mn tools
	5.6 The Mn-method and the Nature of Real Reactive systems
	5.6.1 Mn-method applied to typical real, reactive systems?
	5.6.1.1 Size
	5.6.1.2 Independent components
	5.6.1.3 Nesting
	5.6.1.4 Data
	5.6.1.5 Heterogeneous
	5.6.1.6 Real Time

	5.6.2 The Mn-method in making real, reactive systems
	5.6.2.1 System analysis – the use of different descriptions
	5.6.2.2 System design – the dynamics of system development

	The Main Description
	Continuous development
	Concurrent development
	Plans and reality
	5.6.2.3 Systems validation – how to believe they work
	5.6.3 The Mn-approach to support description and understanding
	5.6.3.1 The language dimension
	5.6.3.2 The user dimension
	5.6.3.3 The problem dimension
	5.6.3.4 Comprehension profiles

	5.7 Concluding Practical Use of the Mn-approach

	6. The RPC-Memory Specification Problem
	6.1 Preliminary definitions
	6.2 The (unreliable) Memory and the Reliable Memory
	6.2.1 Problem 1a)
	6.2.1.1 Memory (unreliable)
	6.2.1.2 Reliable Memory

	6.2.2 Problem 1b)
	6.2.3 Problem 1c)

	6.3 Reducing Memory to a process description
	6.3.1 Why Memory is not reducible as it is specified
	6.3.2 Progress of Memory
	6.3.3 Confluence of Memory
	6.3.3.1 Mem
	6.3.3.2 WriteAgent
	6.3.3.3 MemCommHandler

	6.3.4 Reducing Memory
	6.3.4.1 Legend
	Table 12: Execution table example

	6.3.4.2 Executing Write
	Table 13: Executing Write from initial state
	Table 14: Spontaneous consumption of MWrite
	Table 15: Execution State 2.1
	Table 16: Execution State 2.2
	Table 17: Execution State 2.2.1
	Table 18: Executing Write (summary)

	6.3.4.3 Executing Read
	Table 19: Executing Read from initial state
	Table 20: Executing from 3.2
	Table 21: Executing Read from initial state
	Table 22: Reduction of Read in Memory

	6.3.5 Reducing ReliableMemory
	6.3.6 Comparing FailMemory with Memory
	6.3.7 What have we gained by reducing Memory (ReliableMemory)?
	6.3.8 Modifying Memory to make FailMemory an implementation

	6.4 The RPC component
	6.4.1 The SDL extensions
	6.4.2 Problem 2. The RPC component environment
	6.4.3 The RPC process

	6.5 Implementing the Memory by RPC
	6.5.1 Problem 3. Implementing Memory by RPC
	6.5.2 The Clerk
	6.5.3 Progress of MemImpl
	6.5.4 Confluence of MemImpl
	6.5.4.1 MemFrontEnd

	RPC
	Clerk
	6.5.4.2 ReliableMemory
	6.5.5 Reduction of MemImpl
	6.5.5.1 Reducing MemImpl wrt. Write from Initial state
	Table 23: Executing Write from initial state
	Table 24: Executing 1.1
	Table 25: Executing 1.1.1
	Table 26: Executing Write from initial state (Summary)

	6.5.5.2 Reducing MemImpl wrt. spontaneous consumption
	Table 27: Executing spontaneous consumption
	Table 28: Executing 2.1
	Table 29: Executing 2.1.2.2
	Table 30: Executing spontaneous consumption (Summary)

	6.5.6 Comparing MemImpl and Memory
	6.5.6.1 Finite behavior
	6.5.6.2 Infinite behavior
	6.5.6.3 Modifying Memory such that MemImpl is an implementation

	6.6 Implementing RPC
	6.7 Conclusions

	7. Conclusions and further work
	7.1 Recapitulation
	7.2 The strongholds of the Mn-approach
	7.2.1 A bridge from theory to practice
	7.2.2 The Mn-approach is the friendly approach
	7.2.3 The Mn-proofs are transparent

	7.3 Points on which the Mn-approach could be improved
	7.3.1 Where the Mn-approach has little to offer
	7.3.1.1 Data
	7.3.1.2 Progress

	7.3.2 Where the Mn-approach may not be perfectly suited
	7.3.2.1 Real Time
	7.3.2.2 Fairness

	7.3.3 Where the Mn-approach could be helped by other techniques

	7.4 Empirical data and tools

	8. References
	9. Summary of new SDL constructs
	9.1 Fair Non-deterministic decision
	9.2 Merge, spontaneous save and spontaneous consumption
	Merge state
	Spontaneous save
	Spontaneous consumption

	9.3 Signal objects as data objects

	List of Figures
	10. List of Figures

