

User Accounts

• The OS needs a mechanism to handle protection

– We use user accounts and permissions

• There are two classes of accounts

– root – access to everything

– normal user account – has access to that user’s

directory space and files, and public items (world

readable, executable)

– we can further differentiate normal user accounts into

accounts for human users and for software

User Accounts: Attributes

• A username, User ID number (UID), password

• Entries in both /etc/passwd and /etc/shadow

• Private group (optional) with a Group ID
number (GID), entry in /etc/group

• Initial home directory, by default under the
directory /home, with default files

• Log in shell, by default, Bash

– software may have a directory under another
directory (e.g., /usr or /var) and may have a login
shell of /sbin/nologin to prevent people from
logging in as software (a security violation)

Creating User/Group Accounts: GUI

Creating User Accounts: CLI

• useradd instruction

– Only required parameter is the username to be created

• many options to override defaults such as default home directory,
default shell and default UID

• default UID/GID is 1 greater than last UID/GID used

– -m option to create home directory

• The CLI may be more challenging to use but to
create numerous accounts, it is easier

– Type your command

– Press control+p (or up arrow) and revise the command for
the next user

– Quicker typing the commands than through the
cumbersome GUI

Option Meaning Example

-c comment Fills comment field, used to specify user’s full name “Richard Fox” – quote

marks are necessary if the

value has a blank space

-d directory Used to alter the user’s home directory from /home/username to

directory

-d /home/faculty/foxr

-D Print default values to see what defaults are currently set as,

including directory, expiration value, default shell, default

skeleton directory (see below), default shell, and whether to

create an email storage location

-e date Set expiration date to date -e 2014-05-31

-g GID Alter private group ID to this value, otherwise it defaults to 1

greater than the last issued GID

-g 999

-G groups Add user to the listed groups; groups are listed by name or GID

and separated by commas with no spaces in between

-G faculty,staff,admin

-k directory Change the default skeleton directory (this is explained in

subsection G)

-k /etc/students/skel

Creating User Accounts: useradd

Options

Option Meaning Example

-l Do not add this user to the lastlog or faillog log files; this

permits an account to go “unnoticed” by authentication logging

mechanisms, which constitutes a breach in security

-m Create a home directory for this user

-M Do not create a home directory for this user (the default case so

can be omitted)

-N Do not create a private group for this user

-o Used in conjunction with –u so that the UID does not have to be

unique, see –u

-u 999 –o

-p passwd Set the user’s initial password; passwd must be encrypted for

this to work

-r Create a system account for this user

-s shell Provide this user the specified shell rather than the default shell;

for software, you will often use this to establish the shell as

/sbin/nologin

-s /bin/csh

-u UID Give user the UID of UID rather than the default (one greater

than the last UID); can be used with –o so that two users share a

UID

-u 999

Creating User Accounts: useradd

Options

Creating User Accounts: useradd
• useradd foo1

– create new user account foo1 with all of the default values except for a home
directory (because –m was not used)

• useradd –m foo2
– create new user account foo2 with all of the default values including a home

directory at /home/foo2

• useradd –m –d /home/students/foo3
– create new user account foo3 with a home directory of /home/students/foo3

• useradd –m –u 1001 foo5
– create new user account foo5 with UID of 1001

• useradd –m –o –u 1001 foo5jr
– create new user account foo5jr who will have the same UID as foo5

• useradd –m –e 2015-12-31 –l –r backdoor
– interested in creating a backdoor account?

• useradd –l –M –N –s /sbin/nologin softwaretitle
– create an account for softwaretitle that has no group, no login, no home

directory and is not logged in lastlog or faillog log files

Creating User Accounts: Defaults
• The default values for useradd can be viewed with the

command
– useradd –D

• The output might look like this
– GROUP=100 (this is the default group number to use for

any user account not given a private group through –N)

– HOME=/home

– INACTIVE=-1

– EXPIRE=

– SHELL=/bin/bash

– SKEL=/etc/skel

– CREATE_MAIL_SPOOL=yes

• To change a default value use useradd –D option value
as in useradd –D –s /bin/csh to change from /bin/bash
to /bin/csh

Creating Groups: CLI

• The groupadd instruction has fewer options

– groupadd [options] groupname

Option Meaning

-f Force groupadd to exit without error if the specified groupname is

already in use, in which case groupadd does not create a new group

-g GID Use the specified GID in place of the default, if used with –f and the

GID already exists, it will cause groupadd to generate a unique GID

in place of the specified GID

-o Used with –g so that two groups can share a GID

-p passwd Assign the group to have the specified passwd

-r Create a system group

Creating a Large Number of Accounts
• Enter initial useradd command

– useradd –c “Mike Keneally” –m keneallym

• Use command line editing to convert the above for new user
George Duke (dukeg)
– control+p – recall the instruction

– escape+b – move to beginning of user name

– control+k (or escape+d) – delete username

– dukeg – enter new user name

– control+a, escape+f, escape+f, control+f, control+f – move to
the “M” in Mike Keneally

– escape+d, escape+d – delete Mike Keneally (if there were more
than two names in quotes, do additional escape+d’s)

– George Duke – type the new name

– <enter>

• Repeat for each new user account

Creating Accounts Through a Script

• Assume we have a file storing all of the new users
by first name and last name

– We will give each user an account name of the form
lastname firstinitial as in foxr or zappaf

#!/bin/bash

while read first last; do

name="$first $last"

username="$last${first:0:1}"

useradd –c "$name" –m $username

done

What if we have two users

who have the same last name

and first initial like Tom Fowler

and Tim Fowler?

We will modify this script to

search /etc/passwd for

lastname-firstinit and add

a number to the end of

the user nameNotice the “” used around $name after -c

Creating Accounts Through a Script

• Revised script
– We obtain the number of users who share the same

lastname-firstinit and add 1 to it and tack this on to the
username

#!/bin/bash

while read first last; do

name= "$first $last"

username="$last${first:0:1}"

n=`egrep –c $username /etc/passwd`

n=$((n+1))

username=$username$n

useradd –c "$name" –m $username

done

Creating Accounts Through newusers

• Another useful command is newusers

– Given a file of user account information, newusers

generates the accounts (unless the information leads to an

error)

– The file must include the following information for every

new user

• username:passwd:uid:gid:comment:dir:shell

– The UID and GID fields are optional and if omitted will

default to 1 greater than the previously generated user

account

• to omit these, use username:passwd:::comment:dir:shell

– All other fields are required so this approach is somewhat

more cumbersome than the script from the previous slide

Managing Users and Groups

• The id command displays information about a
user including UID, GID, other groups the user
belongs to and this user’s SELinux context

– id foxr returns

• uid=503(foxr) gid=503(foxr)
groups=503(foxr),504(cool)
context=unconfined_u:unconfined_r:unconfined_t:s0-
s0:c0.c1023

– Without the username, id returns the current user’s
information

Managing Users and Groups
• We can use the User Manager GUI tool to modify users

and groups

• Select the user or group and select the Properties button

– this brings up a properties window to alter the information
about the selected user/group

Managing Users and Groups

• usermod – similar options to useradd

– -l newname – changes user’s username to newname

– -L, -U – lock and unlock the account

– -m dir – change home directory to dir

• groupmod – similar options to groupadd

– –n newname – changes group name go newname

• userdel and groupdel – delete users and groups

– for userdel, -f forces deletion even if user is logged in
or has processes running

– -r – deletes user’s home files (home directory, email
directory) but other files owned by the user outside of
the home directory remain

Passwords: Automatic Generation
• A third party open source software called apg is

available (a password generator)

– apg’s options shown below

Option Meaning

-a 0 or –a 1 Select between the two embedded random number generation algorithms, defaults to 0

-n num Change the number of passwords produced from the default of 6 to num

-m min Change the minimum length of the passwords produced to be a minimum of min characters

(defaults to 8)

-x max Change the maximum length of the passwords produced to be a maximum of max characters

(defaults to 8)

-M mode Change the mode, that is, the types of characters generated; mode can be S (include at least

one non-alphanumeric character in every password), N (include at least one digit in every

password), C (include at least one capital letter in every password)

-E string Do not include any characters specified in the given string, not available for algorithm 0

-y Generate passwords and then encrypt them for output

Passwords: Automatic Generation

• You can write your own script or instruction to
generate passwords using /dev/urandom,
openssl or use date and a hashing algorithm

– urandom returns non-printable characters among
its output so you would have to cut out anything
non-printable

– let’s assume you only want letters and digits, use

• tr –cd '[:alpha:]' < /dev/urandom | head –c8

– this generates a password of 8 characters

• date %s | sha256sum | head –c8

• openssl rand –base64 6

Passwords: /etc/shadow

• chage controls the data stored in the /etc/shadow file
about a user’s password expiration

– /etc/shadow stores the username and encrypted password
for each user followed by

• days since January 1, 1970 that the password was last changed

• days before the password may change again

• days before the password must be changed

• days before warning is issued

• days after the password expires that the account is disabled

• days since January 1, 1970 that the account will become disabled

– as in the following where :: means no entry for entries that
have no values is empty or appears between ::

• zappaf:…:15558:1:35:25:20:365:

• foxr:…:15558:1:28:21:10::

Passwords: chage
• To alter the information in /etc/shadow that control a

user’s password (other than changing the password
itself), use
– chage [options] username

Option Meaning

-d day Set number of days when password was last changed (automatically set once

password is changed, if never changed, this date is the number of days since the

epoch)

-E day Set day on which user’s account will become inactive (will expire), specified as a

date (YYYY-MM-DD) or the number of days since the epoch

-I day Set number of days of inactivity after a password has expired before the account

becomes locked. Using –I -1 removes any previously established inactivity date.

-l Show this user’s password date information

-M days Number of days remaining before user must change password, use with –W.

-m days Minimum number of days between which a user is allowed to change passwords, 0

means user free to change password at any time

-W days Number of days prior to when a password must be changed that a warning is issued

Passwords: passwd

• The passwd command is used to change a user’s
password

– passwd [options] username

• Many options overlap what chage does

Option Meaning

-d Disable the password (make the account password-less)

-i day Same as chage –I day

-k Only modify the password if it has expired

-l Lock the account (user cannot login until unlocked)

-n day Same as chage –m day

-S Output status of password for the given account, similar to chage -l

-u Unlock the locked account

-x day Same as chage –M day

-w day Same as chage –W day

Passwords: Add to Our Script

• We would probably want to also generate
passwords when we generate user accounts

– We modify our script (in this case, we use apg but we
could also generate the passwords using one of the
other approaches discussed earlier)

– We store each username/password in a file under /root
so that the system administrator can inform the new
user of his or her initial password

– Notice that the passwd command is interactive, we use
--stdin to override that so that the password can be
passed by redirection

Passwords: Add to Our Script

#!/bin/bash

while read first last; do

name= "$first $last"

username="$last${first:0:1}"

n=`egrep –c $username /etc/passwd`

n=$((n+1))

username=$username$n

useradd –c "$name" –m $username

password=`apg –n 1`

or use

password=`tr –cd '[:alpha:]' < /dev/urandom | head –c8`

echo $password | passwd --stdin $username

echo "$username $password" >> /root/tempPasswords

done

PAM

• Pluggable Authentication Module

– Allows an administrator to specify, using a variety
of modules, how authentication programs will
perform their activities

– An extensible service in that you can add modules
and configure/reconfigure authentication programs

• Example: passwd

– User inputs initial password

– Program authenticates user

– User inputs new password

– Program updates password storage (/etc/shadow)

PAM: Configuration
• You configure PAM for a specific

authentication program

– Place the configuration information into a textfile
stored in the directory /etc/pam.d

• files exist for such programs as atd, crond, sshd, login,
passwd, reboot, halt, poweroff, su

– Files contain directives where each directive has
three parts: module type, control flag, module
filename

– Module type will be one of auth (obtain user
password and authenticate), account (restriction on
account usage), session (maintains a session after
logging in), password (changing passwords)

PAM: Configuration
• The configuration can include several directives of the

same module type
– This is known as a stack

– Within a stack, we have to control the interpretation of these
directives – for instance, do all directives have to succeed or
just one?

• The interpretation is handled by control flags
– requisite – the given module must succeed for access to be

permitted, if it fails, the application must deal with the failure

– required – all required directives must succeed

– sufficient – any one of the directives must succeed

– optional – success or failure does not impact the application
itself but instead is used to determine if some other task (e.g.,
logging) should take place

• Another directive is include to “piggy-back” on other files’
directives (re-use other configuration)

PAM: Example

• /etc/pam.d/su – the configuration file for how su
works
auth sufficient pam_rootok.so

auth include system-auth

account sufficient pam_succeed_if.so uid=0 use_uid quiet

account include system-auth

password include system-auth

session include system-auth

session optional pam_xauth.so

System-auth is shown here:
auth required pam_env.so

auth sufficient pam_fprintd.so

auth sufficient pam_unix.so nullok try_first_pass

auth requisite pam_succeed_if.so uid >= 500 quiet

auth required pam_deny.so

Common User Resources: /etc/skel

• The /etc/skel directory stores any files that will

be duplicated into a new user’s home directory

– The system administrator will set this up, placing

files that either the sysadmin wants all users to

have (.bashrc) or files that might be useful

(.mozilla subdirectory for Firefox browser)

– You will probably find files like .bashrc,

.bashrc_profile, .bash_logout and directories like

.gnome and .mozilla

Common User Resources: /etc/bashrc

• When a user opens a Bash shell, the /etc/bashrc is

executed

– This allows the system administrator to establish

default settings for all users’ Bash settings

• There is also /etc/profile for all user logins

irrelevant of shell

– These scripts will establish environment variables like

• EDITOR – for default editor (/bin/vi or /bin/vim)

• PATH – an initial PATH variable

• PS1 – user prompt

• umask – initial umask value for file and directory

permissions

Common User Resources: login.defs

• The file /etc/login.defs is another tailorable
resource for the system administrator

– The file establishes common user defaults

– Some of the directives are listed below and others are
shown on the next slide

• DEFAULT_HOME – specifies whether a user is allowed to
login if the user’s home directory is not currently available

• MAX_MEMBERS_PER_GROUP – establishes a maximum
number of users allowed in any one group, should you add
more members than this maximum, a new group of the same
name is created to handle the overflow

• UMASK – default umask value (if none has been specified
in another location like /etc/profile)

Directive Usage Possible Values

CREATE_HOME When creating a user account, does

useradd default to automatically

creating a home directory or not

creating a home directory?

yes, no

ENCRYPT_METHOD Encryption algorithm used to store

encrypted passwords

SHA512, DES

(default), MD5

ENV_PATH,

ENV_SUPATH

To establish the initial PATH variable

for logged in users, for root

PATH=/bin:/usr/bin

FAIL_DELAY Number of seconds after a failed login

that the user must wait before retrying

0, 5, etc

MAIL_DIR,

MAIL_FILE

Default directory, filename of user mail

spool files

/var/spool/mail

.mail or username

PASS_ALWAYS_WARN Warn about weak passwords (even

though they are still allowed)

yes, no

PASS_CHANGE_TRIES Maximum number of attempts to

change a password if password is

rejected (too weak)

0 (unlimited), 3

PASS_MAX_DAYS,

PASS_MIN_DAYS,

PASS_MIN_LEN,

PASS_WARN_AGE

Maximum, minimum number of days a

password may be used, minimum

password length, default warning date

(as with chage –W)

Numeric value, 99999 for

max, 0 for min are

common defaults

UID_MIN, UID_MAX,

GID_MIN, GID_MAX

Range of UID, GID available for

useradd, groupadd

500, 60000

Common User Resources: ulimit

• The ulimit instruction places default restrictions on a user’s
shell interaction
– ulimit –a list all establish limits

– ulimit option value set option to given value (some of the
options are shown below)

Option Meaning

-c Maximum core file size, in blocks

-e Scheduling priority for new processes

-f Maximum size of any newly created file, in blocks

-m Maximum memory size useable by a new process, in kbytes

-p Maximum depth of a pipe (pipe size)

-r Real-time priority for new processes

-T Maximum number of threads that can be run at one time

-v Maximum amount of virtual memory usage, in kbytes

-x Maximum number of file locks (number of open files allowable for the

shell)

sudo
• The sudo command allows a user to execute an

instruction as another user
– The most common use is to let a user execute root-level

commands

– This is of course dangerous so we must be careful with
who we provide sudo access with and what they can do
with it

• The sudo command looks like this:
– sudo [-u username|uid] [-g groupname|gid] command

– Thus, you specify the command you want to execute and
the user that the command should execute under

– If you omit user/group, the default is to execute it as root

– In order to use sudo, the user must have an entry in the
/etc/sudoers file (see next slide)

sudo: /etc/sudoers

• This file, accessible only by root, lists all of the

users who have sudo access along with the

commands that they have access to

– Format: username(s) host=command

• where username(s) is the list of users or groups, groups are

indicated using %group as in %users for all users, or the

word ALL

• host is the hostname which can be localhost, the specific

machine’s host, or the word ALL

• command is the Linux command including any options or

parameters that the command needs

sudo: Example

• Let’s imagine that we want all users to have the
ability to add groups to the system

– %users localhost=/usr/sbin/groupadd

• notice the need for the full path because sudo operates as
root and we are not assured that root will have /usr/sbin in
its PATH

• Now a user can create a new group through

– sudo groupadd my_new_group

– The user is asked to log in using their own password

– An error message will arise warning the user that this
occurrence is being logged if groupadd is not available
to this user in the sudoers file

sudo: Discussion
• The sudo command can be very powerful

– You will want to restrict its usage as you don’t want just
anyone to have access to root commands

– One command that users of a workstation might need is
shutdown

– You can also give users access to view files that they
might otherwise not have access to
• %users localhost=/bin/ls /usr/local/protected

• To edit the sudoers file, use visudo
– This command launches vi and lets you edit sudoers (only

root can edit suoders)

– This is better than directly editing sudoers in vi because
visudo will syntactically check your sudoers file before
you exit

Account Policies

• We should ask questions about user accounts
before generating them

– Will we have different levels (types) of users?

– Will users have different types of software that
they will need to access and different files that go
along with them?

– Will different levels of users require different
resources, for instance different amounts of hard
disk space, web server space? different amounts of
processing?

Account Policies

• We should also ask questions about user access
to resources

– Will we need to enforce disk quotas? If so, on all
partitions or on specific partitions? Can different
users have different quota limits? (see chapter 10
for a discussion on disk quotas)

– Will we need to establish priority levels for user
processes?

– Will users have sole access to their workstations;
will workstations be networked so that users could
potentially log into other workstations; will
resources be sharable?

Account Policies

• We will also have questions about the accounts
themselves

– Will accounts exist for a limited amount of time or be
unlimited? For instance, in a university setting, do we
delete student accounts once the student graduates? If
so, how long after graduation will we eliminate them?
For a company, how long should an account remain in
existence after the employee has left the company?

– What password policy will we enact? No organization
should ever use anything other than strong passwords.
How often should passwords be changed? Can
passwords be changed to something similar to
previous passwords?

Account Policies

• Any organization should have policies

• As a system administrator, you might be asked

to either define the policies or advise on their

definitions

• Policies should be established with respect to

– User accounts

– Passwords

– Disk space utilization

– Miscellany

Account Policies
• User account questions

– Does every user get an account?

• this would be the most likely case.

– Should users share accounts?

• this can be a security violation and is generally not encouraged.

– How long do user accounts remain active after the user is no
longer with the organization?

• companies may disable such accounts immediately

• other organizations might wait a few weeks

• universities often keep student accounts active for some time after
graduation, possibly even permanently

• if accounts are disabled or deleted, do the users get some notification?

• what happens to any files owned by deleted accounts?

– What resources come with an account?

• file space? web server space? remote access? access to one
workstation or all workstations? access printers?

Account Policies

• Password questions

– Will users be given an initial password?

– Will the organization enforce strong passwords?

– How often will passwords require changing?

– Can passwords be reused? If so, at what

frequency? If not, can password variations be

permitted?

Account Policies

• Disk utilization questions

– Will files be placed locally or on a file server? If
the latter, is file sharing allowed?

– Will users have disk quotas?

– Should files be encrypted?

– Does file space also exist for the web server?

– Are the users allowed to store anything in their file
space?

– Are there policies giving system administrators
permission to search user file space for files that
should not be there (e.g., illegal downloads)?

Account Policies

• Miscellany

– How do we implement and enforce protection

• passwords, biometric measures, keycards, other?

– How do we implement and enforce security

• will we use a VPN?

– How often are backups performed and on what

partitions?

– What disaster planning do we have?

– How do we replace resources? Do we have an account

of money for replacements? What priorities might be

established on how this money is spent?

