

Booting
• Main memory stores the OS

• The OS needs to be in memory and running for us
to be able to start and run other processes

• Main memory is volatile – turn off the power and
you lose the contents

• When you turn on the computer, main memory is
empty

– How then do you find, load and start the OS when you
need the OS to find, load and start a process?

– We need a one-time startup routine stored somewhere
else

– This is called the boot process

Booting: ROM vs RAM
• The term random access memory is somewhat

misleading because DRAM, SRAM and ROM all
qualify as random access memories

• We will instead refer to main memory as DRAM
(dynamic RAM)

• Cache and register memory as SRAM

• ROM (read only memory) is non-volatile

• We will place part of the boot process here
– Enough of the boot process so that it can locate and

load the rest of the boot process from hard disk to
memory

– We only put part of the boot process in ROM because
ROM is expensive memory
• see the comparison on the next slide

Booting: ROM vs RAM

Type Volatility Typical

Amount

Relative

Expense

Usage

DRAM Volatile 4–16 GByte Very cheap Main memory: stores

running program code and

data, graphics

SRAM Volatile 1-2 MByte Moderately

expensive

Stores recently and

currently used portions of

program code and data

ROM Non-

volatile

4K or less Very

expensive

Stores unchanging

information: the boot

program, basic I/O device

drivers, microcode

Booting: The Process

• Turn on the power

• ROM BIOS (basic IO system) starts

– Power on self test (POST) – tests various pieces of
hardware (CPU registers, main memory, interrupt
controller, disk controllers, timer) and identifies all
devices connected to the system bus

– Assembles a list of all bootable devices (hard disk,
floppy disk, optical disk, flash drive, network)

– Unless interrupted, attempts to locate the OS by
working through this list in a priority order

– Run the boot loader program found which loads
the OS kernel

Booting: Boot Loaders
• The boot loader is a program responsible for

finding the OS kernel on disk and loading it
into memory

– The boot loader is usually partially stored on the
first sector of the internal hard disk known as the
master boot record

• The two most popular Linux boot loaders are

– GRUB – can boot between Linux and Windows

– LILO – boots between different Linux OS’s

– Another is called loadlin which actually runs under
DOS or Windows to transfer control from a booted
DOS/Windows environment to Linux

Booting: Boot Loaders

• GRUB - GRand Unified Bootloader

– Stored in 2 or 3 stages

– Stage 1: stored in the MBR provides a partition table

to indicate where other file systems are located

including the rest of the boot loader

– Stage 1.5 (if any): contains device drivers to

communicate with different types of file systems

– Stage 2: loads the GRUB configuration file from the

/boot partition which includes the instruction to launch

the Linux kernel

Booting: Boot Loaders

• LILO - LInux Loader

– Operates in two parts, the first part is responsible

for finding the second part

– LILO is file system independent

– LILO’s configuration file is stored under

/etc/lilo.conf

• note that GRUB can only access the boot partition but

LILO can access /etc

Booting: The Kernel

• The boot loader locates the kernel, now what?

– The Linux kernel is partially an executable and

partially a compressed file – this file is called

vmlinuz

– Running the executable uncompresses the

remainder of the file providing us the full kernel,

vmlinux

Initialization
• With vmlinux available, it begins executing

• The first step is kernel initialization

– Power system tests compare various components

– Ramdisks are loaded

– Buses are tested and the CPU attempts to communicate
with various computer hardware (monitor, keyboard,
memory, disk controller, timer, plug and play devices)

– Interrupt handlers (IRQs) are established

• One specific ramdisk is set up to hold initramfs

– This is the root of the initial Linux file system

– This is not the file system we will see but the file
system used by the kernel to continue initializing

Initialization: initramfs

• This file system is placed into a ramdisk for

quick communication and because we have yet

to establish (mount) the full file system

– This file system to some extent mirrors the regular

Linux file system in that there are top-level

directories of bin, dev, etc, lib, proc, sbin, sys (as

well as others)

– However, these directories contain only files

necessary to initialize and run the kernel

Initialization: pivot_root & init
• After the kernel has initialized, it executes the

instruction pivot_root

– This causes the root file system to change from initramfs
to /, the true root of the file system

– Now the init process (/sbin/init) executes

– In earlier versions of Linux, init was a synchronous
process meaning that each step had to complete before the
next step was attempted

• if a step hangs such as connection to the network, the system
hangs without continuing

– Newer versions of Linux use Upstart

– Event-based version of init capable of asynchronous action

• if some step hangs, the rest of the system can still be brought up

Initialization: init
• The init process is always the first started (has

a PID of 1) and will remain running until the

system is shut down

• With init running, the kernel moves to the

background awaiting system calls

– init’s first step is to invoke /etc/inittab

– this script’s responsibility is to establish the default

runlevel to start in (usually runlevel 5)

– this file may have other commands as well (see the

next slide)

Initialization: init
• Commands are of the form

– name:#:action:process
• where name is an identifier, # is a runlevel (optional), action is

the operation that inittab will take and process is the invocation
of a program (optional)

– Examples
• id:5:initdefault: - initialize in runlevel 5

• rc::bootwait:/etc/rc - execute /etc/rc script during the init
process but does not establish a runlevel

• 2:1:respawn:/etc/getty 9600 tty2 - respawn indicates that the
given process should run when a current tty terminates, setting
the runlevel to 1

• ca::ctrlaltdel:/sbin/shutdown –t90 120 "shutting down now" -
when the user presses ctrl+alt+del, /sbin/shutdown will run
with parameters –t90 120 “shutting down now”

• si::sysinit:/etc/rc.d/rc.sysinit – execute rc.sysinit after init but
before any boot or bootwait entries

Initialization: runlevels
Run

Level

Name Common Usage

0 Halt Shuts down the system; not used in inittab as it would

immediately shut down on initialization.

1 Single-user mode Useful for administrative tasks including unmounting

partitions and reinstalling portions of the OS; when used,

only root access is available.

2 Multi-user mode In multi-user mode, Linux allows users other than root to

log in. In this case, network services are not started so

that the user is limited to access via the console only.

3 Multi-user mode with

Networking

Commonly used mode for servers or systems that do not

require graphical interface.

4 Not used For special/undefined purposes.

5 Multi-user mode with

Networking and GUI

Most common mode for a Linux workstation.

6 Reboot Reboots the system; not used in inittab because it would

reboot repeatedly.

Initialization: rcS.conf, rc.sysinit

• Next, the rcS.conf script executes

– This script looks for the word emergency in the

/proc/cmdline file and if found, executes rcS-

emergency to handle it

• Next, rc.sysinit executes

– This script is in charge of initializing hardware,

loading kernel modules, mounting special file

systems (e.g., /proc, /sys), establishing the

SELinux status and executing other scripts

Initialization: rc.conf, rc
• The rc.conf script executes which invokes rc

• rc, based on the runlevel, starts and stops services
using code like the following

• There are directories for each runlevel
– /etc/rc0.d, /etc/rc1.d, …, /etc/rc6.d

– Entries in these directories are symbolic links whose
names are either K##name or S##name

– K = kill (stop), S = start

– ## is a 2-digit number to indicate an ordering by which
services are stopped and started

for i in /etc/rc$runlevel.d/K* ; do

$i stop

for i in /etc/rc$runlevel.d/S* ; do

$i start

Initialization: rc
The following is the listing for /etc/rc5.d

These are symbolic links to the actual scripts in /etc/init.d to start and stop

The various services for runlevel 5

Initialization: Last Steps
• After rc has completed, the last script to execute is

/etc/rc.d/rc.local

• This is an empty (or near empty) script available for the
system administrator to add any operations that the system
administrator wants to run at system initialization time
– e.g., running badblocks, rotating log files, starting servers like

Apache or Bind, testing network connectivity, mounting
additional file systems, etc

– Once booted, the system is ready for user login

• As system administrator, you can check on the boot and
initialization process
– dmesg displays the kernel ring buffer (the output as the kernel

initializes)

– the /etc/boot.log file will contain information about system
initialization

Services
• A piece of OS code used to handle requests

• Services are divided into different categories

• Services have distinct features from other OS

components or servers

– Run in the background

– Handle requests that could come in from different

types of sources (user, application software,

system software, network message, hardware)

– They are configurable

– Services can be started or stopped as desired

Services: Categories

• boot

• file system

• hardware

• language support

• logging

• network, web/Internet

• power management

• scheduling

• system maintenance

Services: Notable Ones in CentOS

Name Type Description

acpi power management laptop battery fan monitor

acpid event handling handles acpi events

anacron scheduling for scheduling startup tasks at initialization time

apmd power management laptop power management

arpwatch web/Internet logs remote IP addresses with hostnames

atd scheduling executes at jobs based on a scheduled time and

batch jobs based CPU load

auditd logging the Linux auditing system daemon which logs

system, software and user-generated events

autofs file system automatically mounts file systems at

initialization

bluetooth hardware bluetooth service

certmonger web/Internet maintain up-to-date security certificates

cpufreq, cpufreqd hardware configures and scales CPU frequency to reduce

possible CPU overheating

Name Type Description

crond scheduling the daemon for handling cronttab jobs

cups hardware service for printing

cvs system managing multi-user documents

dhcpd web/Internet configure DHCP access

dnsmasq web/Internet starts/stops DNS caching

gpm hardware mouse driver

haldaemon hardware monitors for new or removed hardware

httpd web/Internet the Apache web server

iptables, ip6tables web/Internet the Linux firewalls

mdadm file system manages software for RAID

named web/Internet starts/stops the BIND program (DNS)

netfs file system allows remote mounting

netplugd network monitors network interface

network network starts and stops network access

nfs file system enables network file system sharing

nscd network password and group lookup service

Name Type Description

oddjobd system fields requests from software that otherwise do

not have access to needed Linux operations

postfix network mail service

prelude network intrusion detection system service

rdisc network discovers routers on local subnet

rsync file system allows remote mounting of file systems

smartd hardware monitors SMART devices, particularly hard

drives

snmpd network network management protocol for small

networks

sshd network service to permit ssh access

syslog logging system logging

ypbind network name server for NIS/YP networks

Services: a Closer Look

• CentOS 6 has over 60 services (Ubuntu 12 has nearly 80)

• Here we look at a few of the most noteworthy

– atd – the at daemon is a one-time scheduler

• it runs processes that were scheduled through either the at or batch
commands

• we examine at and batch in chapter 14

– crond – daemon for handling cron jobs, which unlike at and
batch jobs, are scheduled to recur based on some pattern such
as hourly or weekly

• we examine crontab in chapter 14

– dnsmasq – a mini-DNS server for Linux

• dnsmasq performs IP alias IP address caching

– logrotate – performs operations on log files including rotating
logs files, compressing log files and emailing log files

Services: a Closer Look
• auditd – the Linux auditing system daemon

– Logs entries based on activities that match rules
defined in auditd’s rule file (/etc/sysconfig/audit.rules)

– Rules use options to specify the type of event and
specific criteria as shown in the table below

Syntax Meaning

-D Delete any previously defined rules

-b # # is a number, establish # buffers, e.g., -b 1024

-f # Set failure flag to # (0 is silent, 1 is print failure messages, 2 is panic or halt the system)

-w directory Log attempts to access the directory

-w filename Log attempts to access the file

-w filename –p [rwxa]* Log attempts to read file (r), write to file (w), execute file (x), or change file’s attributes (a).

The * indicates that any combination of the options r, w, x, and a can be listed.

-a action,list –S syscall

–F field=value

Log system calls; action is either always or never, list is one of task, entry, exit, user or

exclude. The –S option allows you to specify a Linux operation such as chmod, mkdir or

mount. The –F option allow you to fine-tune the match by testing some system or user

parameters such as EUID

Services: Starting and Stopping
• You can establish which runlevels a service is

started or stopped for in three ways

– By altering the symbolic links in the rc#.d directories
(e.g., change S11auditd to K88auditd)

• Using the chkconfig command

– Without arguments, it lists for all services the runlevels
that the service starts and stops in

– Use arguments as in --level levelnumber service
start/stop

– Use the Service Configuration Manager (see next
slide)

• this GUI tool does not actually allow you to configure a
service, just start or stop or change the runlevels that it starts
and stops

Services: Starting and Stopping

Select a service

Click on Start, Stop, Restart

Click Enable/Disable to

indicate that the

service should be started

or stopped for this

runlevel

Select Customize to

change start/stop

runlevels (only permits

runlevels 2-5)

Services: Starting and Stopping
• You can start and stop services from the

command line

– /sbin/service servicename command

• command is one of start, stop, restart, status

– Or /etc/init.d/servicename command as in

/etc/init.d/auditd start

– If you are in /etc/init.d, you can also do this as

./auditd start

• The files in /etc/init.d are not the services but

are scripts used to start and stop services

– We explore some portions of the atd script next

Services: the atd Script
#!/bin/sh

#

atd Starts/stop the "at" daemon

#

chkconfig: 345 95 5

description: Runs commands scheduled by the "at" command at the time \

specified when "at" was run, and runs batch commands when the load \

average is low enough.

BEGIN INIT INFO

Provides: atd at batch

Required-Start: $local_fs

Required-Stop: $local_fs

Default-Start: 345

Default-Stop: 95

Short-Description: Starts/stop the "at" daemon

Description: Runs commands scheduled by the "at" command at the time

specified when "at" was run, and runs batch commands when the load

average is low enough.

END INIT INFO

Services: the atd Script

Source function library.

. /etc/rc.d/init.d/functions

TEXTDOMAIN=initscripts

umask 022

PATH="/sbin:/usr/sbin:/bin:/usr/bin"

export PATH

exec=/usr/sbin/atd

prog="atd"

config=/etc/sysconfig/atd

[-e /etc/sysconfig/$prog] && . /etc/sysconfig/$prog

lockfile=/var/lock/subsys/$prog

Services: the atd Script

start() {

[-x $exec] || exit 5

[-f $config] || exit 6

echo -n $"Starting $prog: "

daemon $exec $OPTS

retval=$?

echo

[$retval -eq 0] && touch $lockfile

}

stop () {

echo –n $"Stopping $prog: "

if [-n "`pidfileofproc $exec`"]; then

killproc $exec

RETVAL=3

else

failure $"Stopping $prog"

fi

retval=$?

echo

[$retval –eq 0] && rm –f $lockfile

}

Services: the atd Script

restart() {

stop

start

}

reload() {

restart

}

force_reload() {

restart

}

rh_status() {

status $prog

}

rh_status_q() {

rh_status >/dev/null 2>&1

}

Services: the atd Script
case "$1" in

start)

rh_status_q || exit 0

$1

;;

stop)

rh_status_q || exit 0

$1

;;

restart)

$1

;;

reload)

rh_status_q || exit 7

$1

;;

force-reload)

force-reload

;;status)

rh_status

;;

condrestart|try-restart)

rh_status_q || exit 0

restart

;;

*)

echo $"Usage: $0 {start|stop|status|

restart|condrestart|try-restart|

reload|force-reload}"

exit 2

esac

exit $?

Services: Configuring Them
• Some services have GUI tools to configure how they

operate, we look briefly at the Firewall service
(iptables) and kdump

– Firewall

• Select wizard to choose between desktop and server
configuration (cannot tailor this any more)

• Or, specify your own trusted services, ports that can be used,
trusted interfaces, and custom rules among others

• Or disable the firewall (not recommended!)

– Kdump

• Size of a kernel dump

• Location to store kernel dump

• Filtering of what to dump and what actions to perform when the
kernel crashes

Services: Configuring Them

Services: Configuring Them

Services: Configuring Them
• The other, and more common approach to

configuring a service is through the service’s

configuration file(s)

• Most of these files consist of directives

• Directives might take on several formats such as

– AUTOCREATE_SERVER_KEYS=YES

– path /var/crash

– -A INPUT –s 10.11.12.13 –j ACCEPT

• Once you have altered the configuration file, you

must save the file and restart the service for the

new configuration to take effect

Services: Configuring Them
• The syslogd daemon logs system and kernel

messages to a log file

• Entries in the configuration file, /etc/syslog.conf,
denote

– source.priority action

– where source is the type of program whose actions we
want to log and priority is the level of action that we
want to log

– action is either the location of the log file or * to
indicate that the message should be sent to all active
consoles

Services: Configuring Them
• You might find the following entries in your

syslog.conf file
– #kern.* /dev/console

• commented out, ignore

– *.info;mail.none;authpriv.none;cron.none
/var/log/messages
• any informational message, and messages of priority none from

these other sources are sent to /var/log/messages

– authpriv.* /var/log/secure
• any other authpriv (authentication) message is sent to

/var/log/secure

– mail.* -/var/log/maillog
• the – indicates an asynchronous file so that entries do not have to

be written in the order recevied

– cron.* /var/log/cron

– *.emerg *
• All emergency messages are sent to console

Services: Configuring Them
Priority level Meaning

none No priority.

debug Log debugging messages; used by programmers and software

testers.

info Log informational messages generated by the program to

specify what it is doing.

notice Log events worth noting such as opening files, writing to disk,

mounting attempts.

warning Log detected potential problems.

err Log errors that arise that do not cause the program to

terminate.

crit Log errors that arise that will cause the program to terminate.

alert Log errors that not only cause the program to terminate but

may also cause problems with other running programs.

emerg Log errors that could cause the entire OS to crash.
Priority levels for syslog, you find similar priority levels

used in logging for other software like Apache

