Oppdatert 19. august.
Tema | Lenke til video | Kilde |
Vektorer (4.1-4.2) | Vektorer | Martin Ansnes |
Trigonometri (4.2) | Trigonometri - definisjoner | UDL |
Radianer (4.2) | Radianer | Inger Christin Borge, UiO |
Trigonometriske ligninger (4.2) |
I eksempel 3 glemmer han bort at supplementvinkelen til 0 grader, altså 180 grader, også er en løsning.
|
Håvard Tjøstheim |
Skalarprodukt (4.3) | Håvard Tjøstheim | |
Vektorprodukt (4.3) | Håvard Tjøstheim | |
Komplekse tall (4.4) | Tom Lindstrøm, UiO | |
Grenseverdier (5.1) | Grenseverdier | Inger Christin Borge, UiO |
Kontinuitet (5.1) | Kontinuitet | Inger Christin Borge, UiO |
Grunnfunksjoner (5.2) |
Inverse funksjonerBegge er så vidt innom den deriverte av inverse funksjoner. |
Lisa Lorentzen, NTNU
Inger Christin Borge, UiO |
Symmetri (5.3) |
Jostein Trondal
Khan Academy |
|
Asymptoter (5.3) | Kristian Wærness, UiT | |
Funksjoner av flere variable (5.7) | Funksjoner av to variable | HiMolde |
Derivasjon (7.1-7.2) |
Bjørn Terje, Sonans utdanning
Inger Christin Borge, UiO
Lisa Lorentzen, NTNU |
|
Logaritmisk derivasjon (7.2) | Logaritmisk derivasjon | Inger Christin Borge, UiO |
Deriverte av høyere orden (7.2) | Ørjan Bell | |
Implisitt derivasjon (7.3) | Implisitt derivasjonHer er han så vidt innom notasjonen for partiellderiverte. | Ulrik Skre Fjordholm, NTNU |
Den deriverte av inverse funksjoner (7.3) | Den deriverte av inverse funksjoner | Lisa Lorentzen, NTNU |
l'Hôpitals regel (7.4) | l'Hôpitals regel | Inger Christin Borge, UiO |
Maks- og minverdier (7.6-7.7) | Praktiske maks- og minproblemer | Lisa Lorentzen, NTNU |
Newtons metode (7.9) | Newtons metode | Anette Wrålsen, NTNU |
Partiellderiverte (7.10) | Partiellderivasjon Partiellderiverte av høyere orden |
Kjetil L. Nielsen, KLN læringsvideoer
Dag Lukkassen, UiT |
Lineær approksimasjon (7.10) | Lineær approksimasjon | Lisa Lorentzen, NTNU |
Lokale maksima og minima (7.11) |
Karl-Mikael Perfekt, NTNU
KLN lærings-videoer |
|
Antiderivasjon (8.1) |
Inger Christin Borge, UiO
NancyPi |
|
Integrasjon ved substitusjon,
delvis integrasjon, integrasjon ved delbrøkoppspalting (8.1) |
Substitusjon, delvis integrasjon, delbrøkoppspalting. | Inger Christin Borge, UiO |
Integrasjon ved delbrøkoppspalting (8.1) | DelbrøkoppspaltingLyden fungerer ikke på slutten. | Inger Christin Borge, UiO |
Det bestemte integral (8.2) |
Den teoretiske ryggraden 5/6: Integrasjon
|
Tom Lindstrøm, UiO |
Areal, volum og buelengde (8.3) |
Inger Christin Borge, UiO
Lisa Lorentzen, NTNU
Lisa Lorentzen, NTNU |
|
Gjennomsnitt (8.5) | ||
Arbeid (8.5) | ||
Akselerasjon, fart og posisjon (8.5) | ||
Numeriske metoder (8.6) |
Fra 18:53 er det Matlab. Simpsons metode starter på 30:35. Matlab fra 43:35.
|
Martin Ansnes
UDL |
Uegentlige integraler (8.7) | Uegentlige integraler | Lisa Lorentzen, NTNU |
Lineære diff.ligninger med konstante koeffisienter (9.3) |
Førsteordens lineære diff.ligninger Andreordens lineære homogene diff.ligningerAndreordens lineære inhomogene diff.ligninger |
Inger Christin Borge, UiO |
Diff.ligninger av 1. orden med variable koeffisienter (9.4) | Separable diff.ligninger | Inger Christin Borge, UiO |
Anvendelser av diff.ligninger (9.5) | ||
Numerisk løsning av diff.ligninger (9.6) | Eulers metode I Eulers forbedrede metode | Lisa Lorentzen, NTNU |
Taylorpolynomer (13.1) | Taylorpolynomer | UDL |
Følger og rekker (13.2) | Følger og rekker | Lisa Lorentzen, NTNU |
Potensrekker (13.3) | Potensrekker | Lisa Lorentzen, NTNU |
Taylorrekker (13.3) | Taylorrekker | Lisa Lorentzen, NTNU |
Her er screencastvideoer fra Kalkulus ved UiO:
https://www.uio.no/studier/emner/matnat/math/MAT1100/h19/forelesningsvideoer-og-notater.html