Chapter 2: Interaction Styles

The Resonant Interface
HCI Foundations for Interaction Design
First Edition

by Steven Heim
Chapter 2 Interaction Styles

• Frameworks for Understanding Interaction
• Coping with Complexity
 – Avoid “cluttering”, mixing-up, becoming too eclectic
 – Good for analysis/evaluation?
 • Consistency often thought of in re. to interaction styles
• Interaction Styles vs. Paradigms
 – Not so much to do with what we plan on using computers for
We are going to talk about two different (or more) interaction models/frameworks:

– Execution/Evaluation Action Cycle
– Interaction Framework
Frameworks for Understanding Interaction

• A framework is basically a structure that provides a context for conceptualizing something

• We can (also) use these frameworks to:
 – Structure the design process
 – Help us to identify problematic areas within the design
 – Help us to conceptualize the problem space as a whole
Execution/Evaluation Action Cycle (EEC)

• Donald Norman (1990) *The Design of Everyday Things*
 – *I think a book that you should consider reading!!!*
• The structure of an action has four basic part:
 – **Goals:** We begin with some idea of what we want to happen; this is our goal.
 – **Execution:** We must then execute an action in the world.
 – **World:** To execute and action, we must manipulate objects in the world.
 – **Evaluation:** Finally, we must validate our action and compare the results with our goal.
Execution/Evaluation Action Cycle (EEC)

Goals
What we want to happen

Execution
What we do to the world

Evaluation
Comparing what happened with what we wanted to happen

WORLD
Execution/Evaluation Action Cycle (EEC)

- Goals do not specify particular actions
- Goals and intentions do not have a one-to-one, relationship

- “Delete text” goal
 - Intention that involves the Edit menu
 - Intention that involves the Delete key
- Each intention involves a sequence of actions

Goal > Intention > Actions > Execution
Execution/Evaluation Action Cycle (EEC)

- Evaluate Results
 - Perceive new state
 - Interpret what we perceive
 - Evaluate new state with goal

Perceive > Interpret > Evaluate
Execution/Evaluation Action Cycle (EEC)

• Seven Stages of Action

- Execution
 - Goals: What we want to happen
 - Forming intention
 - Specifying action
 - Executing action

- Evaluation
 - Evaluating interpretation
 - Interpreting perception
 - Perceiving world state

WORLD
Execution/Evaluation Action Cycle (EEC)

• The seven stages form a cycle

• The cycle can be initiated at any point

 – Some goals are data-driven - initiated when an environmental event is perceived
 • Event-driven?
 • Recipient-designed?
 – Others are goal-driven - initiated when the person conceives of a new goal
Gulf of Execution

• Does the interface allow us to carry out the actions required by the intention?

Goal = save a file
Intention = use the file menu
Action = click the save option

• Is there a save option in the file menu?
Gulf of Evaluation

• Given a particular interface design, how easily can you:

 – Determine the function of the device?
 – Determine what actions are possible?
 – Determine mapping from intention to physical movement?
 – Perform the action?
 – Determine whether the system is in the desired state?
 – Determine the mapping from system state to interpretation?
 – Determine what state the system is in?

 (Norman, 1990)
Interaction Framework

• Abowd and Beale expanded on the EEC to include the system

• **System (S)** — Uses its core language (computational attributes related to system state)

• **User (U)** — Uses its task language (psychological attributes related to user state)

• **Input (I)** — Uses its input language

• **Output (O)** — Uses its output language
Interaction Framework / EEC

• **Execution Phase**
 – **Articulation**—The user formulates a goal, which is then articulated using the input language.
 – **Performance**—The input language is translated into the core language (operations that the system will carry out).
 – **Presentation**—The system manifests the result of the core-language operations using the output language.

• **Evaluation Phase**
 – **Observation**—The user interprets the results on the screen and reconciles them with the original goal.
We are going to talk about different strategies for doing this,...

- Mental Models
- Mapping
- Semantic and Articulatory Distance
- Affordances
Mental Models

- A mental model is a cognitive representation of something that defines a logical and believable estimation as to how a thing is constructed or how it functions
 - Transparent objects expose their functions
 - Bicycles
 - Opaque objects hide their functions
 - Computers
- “Bee in a box”
Mental Models

- **Mental models are:**
 - **Unscientific**—They are often based on guesswork and approximations.
 - **Partial**—They do not necessarily describe whole systems, just the aspects that are relevant to the persons who formulate them.
 - **Unstable**—They are not concrete formulations, but evolve and adapt to the context.
 - **Inconsistent**—They do not necessarily form a cohesive whole; some parts may be incompatible with other parts of the same model.
 - **Personal**—They are specific to each individual and are not universal concepts that can be applied generically.
Mental Models

Maxim

Designs that align with a user’s mental model will be easier for him or her to use

• How can we ascertain information about a user’s mental model?
Mapping

- The concept of mapping describes how we make connections between things.

Maxim

Proper mapping can increase the usability of an interface.

Arbitrary mapping

Arbitrary mapping improved

Natural mapping

Maxim

Use natural mapping whenever possible.
Semantic and Articulatory Distance

• **Semantic Distance**
 – The distance between what people *want to do* and *the meaning* of an interface element.

• **Articulatory Distance**
 – The distance between the *physical appearance* of an interface element and what it actually *means*.
Affordances

• The affordances of some interfaces can be intuitively understood: a steering wheel affords turning, and a door bell affords pushing.

• These connections allow us to make predictions about the results of our actions and help us to create usable mental models.
Affordances

- **Affordance Confusion** - when certain aspects of an object do not work in a way in which we assume they should

- Norman considers an affordance to be a relationship between an object and a user, not a property of an object
Affordances

• What may be an affordance to one person may not be to another

• The perception of affordance fosters usability

• The affordances a user may need must be present

• Affordances must not contradict the user’s expectations
Interaction Styles (list of)

- Command Line
- Menu-Based Interface
- Form Fill-In
- Question and Answer
- Direct Manipulation
- Metaphors
- Web Navigation
- Three-Dimensional Environments
- Zoomable Interface
- Natural Language
Interaction Styles - Command Line

• Command-line interfaces are fast and powerful.
 – Many commands are abbreviated
 • quick and efficient
 – Commands can be applied to many objects simultaneously
 • fast input
 – Some commands have multiple parameters that can be set and altered
 • precise and flexible
Interaction Styles - *Command Line*

- Command Line and the EECA
 - Intention formation, specification of the action, and the execution stages are complex
 - Requires a rather accurate mental model of the computer’s internal processing

- Command Line and the Interaction Framework
 - Translating the user’s task language into the input language requires knowledge of the core language
 - The output language can be confusing for inexperienced users - there is very little feedback
Interaction Styles - Command Line

• Command Line and Articulatory Distance
 – Articulatory distance is large because we are presented with only the command prompt - no indication of functionality
Interaction Styles - *Command Line*

- Advantages of command-line interfaces:
 - Suitable for repetitive tasks
 - Advantageous for expert users
 - Offer direct access to system functionality
 - Efficient and powerful
 - Not encumbered with graphic controls
 - Low visual load
 - Not taxing on system resources
Interaction Styles - *Command Line*

- Disadvantages of command-line interfaces:
 - Low command retention
 - Steep learning curve
 - High error rates
 - Heavy reliance on memory
 - Frustrating for novice users
Interaction Styles - *Menu-Based Interface*

- Menu-driven interfaces present users with sequential hierarchal menus that offer lists of functions.
 - Textual: key-in number of option
 - Graphical: use arrow keys or pointing device
Interaction Styles - Menu-Based Interface

Maxim

Menus are based on recognition as opposed to recall

- No need to remember commands
- Users search from a list of possible choices
- List provides constraints
- Appropriate for small screens (iPod)
Interaction Styles - *Menu-Based Interface*

- Menu-based interfaces and the EEAC
 - Menu constraints can help the user to form the proper intentions and specify the proper action sequence
 - Provide a context to evaluate the output language
Interaction Styles - Menu-Based Interface

• Menu-based interfaces and:
 – Articulatory Distance
 • Menu options create small articulatory distance
 – Mental Models
 • Menu construction has a direct impact on user’s mental model
 – Affordances
 • Menu elements present affordances
Interaction Styles - *Menu-Based Interface*

- Most menus are a variation on a few basic categories:

 - Single
 - Sequential
 - Hierarchical
 - Star network
 - Web network
Interaction Styles - Menu-Based Interface

• Advantages of menu-based interfaces:
 – Low memory requirements
 – Self-explanatory
 – Easy to undo errors
 – Appropriate for beginners

• Disadvantages of menu-based interfaces:
 – Rigid and inflexible navigation
 – Inefficient for large menu navigation
 – Inefficient use of screen real estate
 – Slow for expert users
Interaction Styles - *Form Fill-In*

- Similar to menu interfaces – present screens of information

- Different than menu interfaces - used to capture information and proceed linearly not to navigate a hierarchical structure
Interaction Styles - *Form Fill-In*

Maxim
Always inform the user about the length of paged forms and where they are within the structure

- Forms can be presented using
 - Single scrolling screens
 - Multiple linked pages
- Form elements must be grouped logically
- Include “You Are Here” indications
Interaction Styles - Form Fill-In

Maxim
Form elements must be unambiguously labeled to increase data integrity

- Users must understand what data is required and what format should be used
 - Date information formats
 1/29/2005, 29/1/2005, or January 29, 2005?
Interaction Styles - *Form Fill-In*

- Advantages of form fill-in interfaces:
 - Low memory requirements
 - Self-explanatory
 - Can gather a great deal of information in little space
 - Present a context for input information

- Disadvantages of form fill-in interfaces:
 - Require valid input in valid format
 - Require familiarity with interface controls
 - Can be tedious to correct mistakes
Interaction Styles - Question and Answer

• Question and answer interfaces are also called wizards.
• They are restricting for expert users
• They are easy for novice users
 – However, they may not know the required information

MAXIM

Users must be able to cancel a menu without affecting the state of the computer
Interaction Styles - Question and Answer

- Microsoft Add Network Place Wizard

(a) Add Network Place wizard. (b) Select a service provider. (c) Address of the network place.
Interaction Styles - Question and Answer

• Advantages of question and answer interfaces:
 – Low memory requirements
 – Self-explanatory
 – Simple linear presentation
 – Easy for beginners

• Disadvantages of question and answer interfaces:
 – Require valid input supplied by user
 – Require familiarity with interface controls
 – Can be tedious to correct mistakes
Interaction Styles - *Direct Manipulation*

- Ben Shneiderman (1982)
 - Continuous representations of the objects and actions of interest with meaningful visual metaphors.
 - Physical actions or presses of labeled buttons instead of complex syntax.
 - Rapid, incremental, reversible actions whose effects on the objects of interest are visible immediately.
Interaction Styles - *Direct Manipulation*

- Three phases in Direct Manipulation - Cooper, Reimann (2003)
 - **Free Phase**—How the screen looks before any user actions
 - **Captive Phase**—How the screen looks during a user action (click, click-drag, etc.)
 - **Termination Phase**—How the screen looks after a user action
Interaction Styles - Direct Manipulation

• Direct Manipulation and the EEAC
 – The range of possible intentions is consistently wide
 – Users usually have multiple options for specifying action sequences
 • Can be overwhelming of novice users
 – Provide multiple ways of executing action sequences
Interaction Styles - *Direct Manipulation*

• Advantages of direct manipulation interfaces:
 – Easy to learn
 – Low memory requirements
 – Easy to undo
 – Immediate feedback to user actions
 – Enables user to use spatial cues
 – Easy for beginners

• Disadvantages of direct manipulation interfaces:
 – Not self-explanatory
 – Inefficient use of screen real estate
 – High graphical system requirements
Interaction Styles - Metaphors

• GUIs use visual relationships to real-world objects (metaphors)
• Metaphors can help people relate to complex concepts and procedures by drawing on real-world knowledge
• Real-world affordances can be reflected

• What metaphors are used by contemporary GUIs?
Interaction Styles - *Metaphors*

Microsoft Windows XP Apple OS X
Interaction Styles - Metaphors

Maxim

A metaphor’s function must be consistent with real-world expectations

- Metaphors that do not behave the way people expect will cause confusion and frustration
- Macintosh trashcan
Interaction Styles - *Metaphors*

MAXIM

Don’t force a metaphor

- Potential problems with metaphors
 - Run out of metaphors
 * Some virtual processes and objects have no real-world counterparts
 - Mixed metaphors
 - Carry connotations and association
Interaction Styles - Web Navigation

- Two basic interaction styles
 - Link-based navigation
 - Sensitive to articulatory distance
 - Ambiguous link labels increase the gulf of evaluation
 - Search
 - Sensitive to semantic distance
 - Inadequate search engine algorithms increase the gulf of execution
 - Slight advantage in development of mental models
Interaction Styles – 3D Environments

• 3D interaction is natural in the real-world
• 3D environments are common in digital games
• Rich graphical 3D environment are processor intensive
Interaction Styles – 3D Environments

• 3D Navigation
 – Involves two types of movement
 • Translation – movement on a plane
 • Rotation – movement around an axis

Yaw

Pitch
Interaction Styles – 3D Environments

• Web-based 3D
 – Use vector-based graphics to decrease file size
 – Virtual Reality Modeling Language (VRML)
 • Uses polygons with parameters
 – Transparency
 – Texture maps
 – shininess
 – X3-D is XML based - Web3D.org
 • Offers greater flexibility and control
Interaction Styles – 3D Environments

• Desktop 3D
 – Current GUIs are predominantly 2D
 – 3D environments presented on 2D screens are difficult to navigate

MAXIM
Three-dimensional navigation can quickly become difficult and confusing
Interaction Styles - *Zoomable Interface*

- **ZoomWorld (Jeff Raskin)** is based on the zooming interface paradigm (ZIP)
- **ZoomWorld Demo**
Interaction Styles - Zoomable Interface

Maxim

Zoomable interfaces allow us to use our sense of relative positioning

• ZIP is based on landmarks and relative positioning (organizational cues)
 – Proportion
 – Color
 – Patterns
 – Proximity

• Pad++: Zoomable User Interface (ZUI)
Interaction Styles - *Natural Language*

- Natural Language Interaction (NLI) - Interacting with computers using everyday language
- Obstacles
 - Language is ambiguous
 - Meaning depends on context
 - “Search results”
 - “She said she did not know”
 - Dependant on visual cues
Interaction Styles - *Natural Language*

- Applications for NLI
 - Speech Input
 - Hands-free operation
 - Poor Lighting Situations
 - Mobile Applications
 - In the home
 - Speech Output
 - On-board navigational systems
Interaction Styles - *Natural Language*

- Two areas of development
 - Speech recognition
 - Semantics
 - Grammar issues
 - Vague meanings
 - Contradictory statements

MAXIM

NLIs may require constant clarification of linguistic ambiguities
Interaction Styles - *Natural Language*

• **Advantages of NLI:**
 – Ease of learning
 – Low memory requirements
 – Flexible interaction
 – Low screen requirements
 – Appropriate for beginners

• **Disadvantages of NLI:**
 – Requires knowledge of the task domain
 – May require tedious clarification dialogues
 – Complex system development