Chapter 13 Speech and Hearing

• The Human Perceptual System
• Using Sound in Interaction Design
• Technical Issues Concerning Sound
Chapter 13 Speech and Hearing

Sound exists in time and over space, vision exists in space and over time.

(Gaver, 1989)
Chapter 13 Speech and Hearing

• The Human Perceptual System
 – Hearing
 – Speech
 – Nonspeech
The Human Perceptual System

- Hearing

MAXIM

Our ears tell our eyes where to look

People become habituated to continuous sounds
The Human Perceptual System

• Hearing
 – We can respond to audio input more quickly than we can to visual stimuli
 – We have the ability quickly to locate the source of a sound
 • Interaural time difference (ITD)
 • Interaural intensive difference (IID)
The Human Perceptual System

• Hearing
 – Sound plays a vital role in our sense of connectivity to our environment (Auditory Presence)
 – Immersive and realistic virtual auditory environments require high quality sound
 • To create a more realistic virtual auditory environment, measurements must also be taken of the auditory signals close to the user’s eardrum
 • Head-related transfer functions (HRTFs)
The Human Perceptual System

• Speech
 – Speech is a significant part of our interaction with the world

• Advantages of Speech
 – People gravitate to verbal modes of communication
 – It is easier to speak than to write

• Disadvantages of Speech
 – It requires the knowledge of a language
 – It is more efficient to read than to listen
The Human Perceptual System

• Speech

Maxim

We can speak faster than we can write

We can read faster than we can listen

• The most efficient method of communication depends on the context
The Human Perceptual System

• Nonspeech Sound
 – We monitor our nonspeech auditory environment habitually and, to some degree, unconsciously

• Advantages of Nonspeech Sound
 – It informs us about the success of our actions
 – It can be processed more quickly than speech
 – It does not depend on the knowledge of a language
The Human Perceptual System

- Disadvantages of Nonspeech Sound
 - It can be ambiguous
 - It must be learned
 - It must be familiar
 - It does not have high discrimination
 - It is transitory
 - It can become annoying
The Human Perceptual System

Maxim

We often judge the success of an action by auditory feedback

Auditory stimuli are transitory

Sound can be annoying or inappropriate
Chapter 13 Speech and Hearing

• Using Sound in Interaction Design
 – Redundant Coding
 – Positive/Negative Feedback
 – Speech Applications
 – Nonspeech Applications
Using Sound in Interaction Design

• Redundant Coding
 – Research shows that redundant coding has certain benefits:
 • It aids memory by adding additional associations.
 • It increases efficiency by allowing the most efficient mode for a particular task to be chosen.
 • It allows users with perceptual deficits to take advantage of their strengths in other channels.
Using Sound in Interaction Design

- Positive/Negative Feedback
 - How we use auditory feedback in interaction design must be determined by the user’s task
 - Redundant auditory alarms might be crucial to the safe operation of computer-operated machinery in mission-critical environments
 - General computing interfaces that announce every mistake the user makes should be seriously reconsidered
Using Sound in Interaction Design

• Speech Applications
 – Composition
 • Digitized speech can be used to facilitate and augment the process of composing documents
 – Transcription
 • A searchable record of the spontaneous conversations that occur in business meetings could prove advantageous
 – Transaction
 • Computers are often used to carry out tasks that are initiated by a user; this is a form of transaction
 – Collaboration
 • Telephone system
 • Audio IM
Using Sound in Interaction Design

• Nonspeech Applications
 – Concrete (auditory icons)
 • Ecological listening (natural sounds)
 – Distal stimulus (sound source)
 – Abstract (earcons)
 • Musical listening (synthetic sounds)
 – Proximal stimulus (physical sound properties)
Using Sound in Interaction Design

• Auditory Icons

MAXIM
People generally attend to the source of a sound rather than the acoustic properties of the sound wave

• People do not attend to the “physics of the sound waves” (the proximal stimulus), they listen for the sound source (the distal stimulus) (Gaver, 1989)
Using Sound in Interaction Design

• Auditory Icons - Gaver applied the concept of ecological listening to the computer interface
 – Recordings of everyday sounds
 – Exploited analogies with real-world objects and events
 • File types related to different materials
 • File size related to volume or pitch
Using Sound in Interaction Design

• Auditory Icons - Gaver applied the concept of ecological listening to the computer interface
 – Recordings of everyday sounds
 – Exploited analogies with real-world objects and events
 • File types related to different materials
 • File size related to volume or pitch

• SonicFinder
 – A redundant auditory layer that reinforced essential feedback about tasks
Using Sound in Interaction Design

• Benefits of Auditory Icons
 – Disperses some of the cognitive processing over multiple channels
 – Allow users to interact simultaneously with screen objects and with objects beyond the view of the screen.
 – Tasks could be distributed immediately on arrival of the auditory output in collaborative computing environments
Using Sound in Interaction Design

• Concerns for Auditory Icons
 – Learnability of the mapping between the icon and the object represented
 • “Oink” and “bow wow” have high articulatory directness
 • A swishing sound accompanying a paintbrush tool also has high articulatory directness
 • A system beep carries no information about the error it represents
Using Sound in Interaction Design

• Auditory Icons – Formal Guidelines (*Mynatt*)
 – Identifiability—The user must be able to recognize the sound’s source. Familiar sounds will be more easily recognized and remembered.
 – Conceptual Mapping—How well does the sound map to the aspect of the user interface represented by the auditory icon?
 – Physical Parameters—The physical parameters of the sound, such as length, intensity, sound quality, and frequency range, can affect its usability. No one parameter should be allowed to dominate; the user may infer significance.
Using Sound in Interaction Design

- Auditory Icons – Formal Guidelines (Mynatt)
 - User Preference—How the user responds emotionally to the auditory icon is also important. Is the sound harsh or too cute?
 - Cohesion—The auditory icons used in an interface must also be evaluated as a cohesive set. For example, each auditory icon must be relatively unique. They should not sound too similar to each other.
Using Sound in Interaction Design

• Auditory Icons – Procedural Guidelines \((Mynatt)\)
 – Use sounds that are:
 • Short
 • Of wide frequency range
 • Equal in length, intensity, and sound quality
 – Use free-form questions to determine how easy it is to identify the sounds
 – If it is not easy to identify the sounds, evaluate how easy it is to learn them
Using Sound in Interaction Design

- Auditory Icons – Procedural Guidelines (Mynatt)
 - Evaluate sets of icons to determine whether they conflict with each other
 - Do they mask each other?
 - Do the mappings conflict?
 - Are they easy to tell apart?
 - Conduct usability tests
Using Sound in Interaction Design

- **Earcons** (Blattner, Sumikawa, and Greenberg, 1989)
 - “Nonverbal audio messages used in the user–computer interface to provide information to the user about some computer object, operation, or interaction”
 - Short musical phrases that represent system objects or processes
 - Involve musical listening
 - Based on the concept of the musical motive
Using Sound in Interaction Design

• **Earcons** (Blattner, Sumikawa, and Greenberg, 1989)
 – Earcons can be used to:
 • Reinforce icon family relationships
 • Support menu hierarchies
 • Support navigational structures
Using Sound in Interaction Design

• **Compound Earcons**
 – Concatenated motives

```
Level 1
  \[\text{Bass Drum} \times\]

Level 2
  \[\text{Medium Violin Note}\]
  \[\text{Medium Flute Note}\]

Level 3
  \begin{tabular}{ccc}
  1 xly. note & 2 xly. notes & 3 xly. notes \\
  \[.\] & \[\ldots\] & \[\ldots\]
  \end{tabular}
  \begin{tabular}{ccc}
  1 vib. note & 2 vib. notes & 3 vib. notes \\
  \[.\] & \[\ldots\] & \[\ldots\]
  \end{tabular}

Result \[\times_{\ldots}\] \[\times_{\ldots}\] \[\times_{\ldots}\] \[\times_{\ldots}\] \[\times_{\ldots}\] \[\times_{\ldots}\] \[\times_{\ldots}\] \[\times_{\ldots}\]\]
Hierarchical Earcons

- Each node in a hierarchy inherits the attributes of the previous level
Using Sound in Interaction Design

• Parallel Earcons
  – Represent complex hierarchical structures by presenting various complete motives concurrently
    • Create Earcon—A long note that starts softly and gradually gets louder.
    • File Earcon—Two notes, the first higher than the second, and each half the length of the Create earcon.
Earcon Guidelines

• Timbre
  – Timbre is the most important grouping factor and the most easily recognizable parameter.
  – Use sounds with multiple harmonics.

• Pitch and Register
  – Do not use only pitch and register as a cue if absolute judgment is required.
  – All pitches in a motive should span only one octave.
  – Use major and minor scales for pitches within a motive.
  – Use two- or three-octave differences between earcons when using register only.
  – Use pitches within the 125 Hz to 5 kHz range.
Using Sound in Interaction Design

Earcon Guidelines

• Rhythm, Duration, and Tempo
  – Rhythm is the most prominent characteristic of a motive.
  – Make rhythms as different as possible.
  – Use different numbers of notes.
  – Do not use notes shorter than 0.03 second.
  – Use different tempos to differentiate earcons.
  – A motive should be long enough to convey meaning but no longer.
Using Sound in Interaction Design

Earcon Guidelines

• Intensity/Dynamics
  – Use intensity and dynamics sparingly due to the potential annoyance factor.
  – Threshold limits are from a maximum of 20 dB to a minimum of 10 dB.

• Spatial Location
  – Use stereo or full three-dimensional spatialization to differentiate families and
  – parallel earcons
Using Sound in Interaction Design

• Earcons versus Auditory Icons
  – Earcons and auditory icons need not be mutually exclusive
  – Consider the entire structure of an interface, and design its auditory layer with a consistent sound ecology
Using Sound in Interaction Design

- Globalization-Localization
  - Both concrete (real-world) and abstract (Musical) sounds involve cultural biases

MAXIM

Musical sounds are culturally biased
Chapter 13 Speech and Hearing

- Technical Issues Concerning Sound
  - Sound Waves
  - Computer-Generated Sound
  - Speech Recognition
Technical Issues Concerning Sound

- **Sound Waves**
  - Sound is made up of waves and can be described in terms of frequency and amplitude

  ![Sound Wave Diagram](image)

  - The human ear can perceive sound in the range of 20 to 20,000 Hz (20 kHz)
Technical Issues Concerning Sound

• Computer-Generated Sound
  – Synthesis
  – Sampling
  – MIDI
  – Speech Generation
  – Speech Recognition
Technical Issues Concerning Sound

• Synthesis
  – Digital signal generators use software to create sound waves
  – Once the wave is generated, it can be processed to produce an almost unlimited range of sounds
  – Frequency modulation (FM) synthesis
    • The frequency of one sound wave (the modulator) affects the parameters of a second wave (the carrier)
    • It is difficult convincingly to imitate acoustic instruments
Technical Issues Concerning Sound

• Sampling
  – High-fidelity sounds can be obtained by using digital samples of actual instruments
  – A sample is basically a snapshot of a sound wave at a certain point in time that captures its amplitude information
    • The wave must be sampled at twice the rate of its highest frequency (Nyquist-Shannon sampling theorem)
    • CDs are sampled at a rate of 44.1 kHz, slightly greater than twice the human threshold of 20 kHz
Technical Issues Concerning Sound

• MIDI (Musical Instrument Digital Interface)
  – MIDI files are analogous to the piano roll on a player piano
  – MIDI file contains information about pitch, duration, and intensity
  – MIDI files contain no timbre information
  – Small file sizes
  – Depend on the sounds embedded in the target device
Technical Issues Concerning Sound

• Speech Generation
  – Computers can generate synthetic speech
    • A significant benefit to people with visual handicaps
  – Applications that convert text to verbal output are called “text to speech” (TTS) systems
Technical Issues Concerning Sound

• Speech Generation
  – TTS systems have been used for:
    • Information access systems that facilitate remote access to databases
    • Transactional systems that process customer orders
    • Global positioning system–based mobile navigation systems that output driving directions
    • Augmentative systems that aid disabled users
Technical Issues Concerning Sound

• Speech Recognition
  – Two distinct applications:
    • Transcription
    • Transaction
  – Automatic speech recognition (ASR) systems allow users to speak in real time and this input is converted into text that is displayed on the screen
  – Dragon Systems’ NaturallySpeaking® and IBM’s Via Voice®
Technical Issues Concerning Sound

• Speech Recognition Concerns

**Maxim**

Speech can interfere with problem-solving activities

Verbal input can be inappropriate in certain situations
Technical Issues Concerning Sound
Technical Issues Concerning Sound

• Searching Speech
  – Speech files do not afford easy opportunities for indexing and searching
  – ASR systems can be used to transcribe speech files and create transcripts that can be searched like any other text file
Technical Issues Concerning Sound

• Searching Speech
  – There are times when the visual display of data is either not appropriate or simply not possible
  – Researchers have explored ways of compressing speech data so that they take less time to parse
    • Speed up the sound file
    • Sampling, involves the removal of redundant information from the signal
    • Shorten or remove the small pauses between words
Technical Issues Concerning Sound

• Multimedia Indexing
  – Large collections of multimedia documents are being created in domains as diverse as medicine, entertainment, and education
  – Archiving speech according to content can be difficult:
    • The system must not only recognize the meaning of spoken language, it also must create relationships according to content
Technical Issues Concerning Sound

• Multimedia has become a common element in contemporary computing environments, however, we have only begun to understand how to take advantage of its potential