
Improving the Canny Edge Detector using
Automatic Programming: Improving the Filter

Lars Vidar Magnusson
Østfold University College

Email: lars.v.magnusson@hiof.no

Roland Olsson
Østfold University College

Email: roland.olsson@hiof.no

Abstract—We have used automatic programming, a machine
learning technique related to inductive logic programming and
genetic programming, to make the Canny edge detector better
at identifying contours in natural images.

We present an improved version of the filter used in the
first stage of the Canny algorithm. We show that the mean
performance of the Canny algorithm with the improved filter
on a popular test set of natural images has been improved by
1.4%. Our result shows that the heuristic design provides a
statistically significant increase in performance—without adding
extra processing steps or adding additional information. This
suggests that the filter should be used as a standard part of
image analysis platforms.

The inferred heuristic filter exhibits an ability to retain detail
without sacrificing noise reduction. This is further evidence that
automatic programming is well suited for generating heuristics
for image analysis problems.

Keywords—image analysis; edge detection; feature extraction;
automatic programming

I. INTRODUCTION

Edge detection is a fundamental image analysis task pro-
viding the input for higher level processing such as object
classification. Traditional edge detectors like the Canny edge
detector [1] do not distinguish edges occurring around objects
from edges occurring within textured areas. There have been
proposed algorithms that are better at this, but none that offer a
significant improvement without sacrificing runtime efficiency.

Evolutionary Computation (EC) has been used in the past
on the problem of edge detection, but to our knowledge it
has never been used to improve an existing algorithm like
the Canny algorithm. A Genetic Algorithm (GA) setup has
been used to evolve edge maps directly [2], and Genetic
Programming (GP) has been used to create logic for finding
edges using a sliding window approach [3] [4]. Harris and
Buxton [5] and Lee et al. [6] have used GP to improve a
filter mask like the one used in [1]. Both have used small
datasets with a mixture of synthetic and natural signals, and
both evaluate using a custom evaluation method.

Automatic programming is a machine learning technique
related to inductive logic programming and genetic program-
ming. Automatic Design of Algorithms Through Evolution [7],
[8] (ADATE) induce programs by a process inspired by natural
evolution. As such it is similar to GP, but unlike GP the search
process is systematic. This allows the system to invent both
non-trivial recursive patterns and auxiliary functions. It has

been established that ADATE is capable of inferring interesting
heuristics [9]–[12], and that it is well suited for image analysis
problems [13]–[15].

In this paper we use ADATE to make the Canny edge
detector better at identifying contours in natural images by
improving the filter used in the first stage of the algorithm.
This overlaps with the work done by both [5] and [6], but
there are important differences. We will use a popular dataset
of natural images with ground truth annotations by multiple
subjects [16], and we will use the F-measure—a well known
performance metric in the field of information retrieval. We
will also incorporate the entire Canny algorithm, with the
ultimate goal of improving the algorithm as a whole.

II. AUTOMATIC DESIGN OF ALGORITHMS THROUGH
EVOLUTION (ADATE)

Automatic Design of Algorithms Through Evolution
(ADATE) [7], [8] takes a systematic approach to evolution
instead of relying on random mutations, which allows for
complex logic that would otherwise be impossible. ADATE
has been written in SML [17], and it infers programs in a
subset of SML, called ADATE ML.

A. Transformations
The evolution process is driven by four types of transfor-

mations. The first type, Replacement (R), is responsible for
replacing an expression in the program. The new expression
can either be an entirely new expression, or it can reuse
parts of the original. All replacements are tested to identify
those that do not make the program worse. These are marked
as replacements preserving equality (REQs), and they are
essential for exploration of plateaus in the search landscape.
An Abstraction (ABSTR) converts an existing expression into
a new function and inserts a function call at the location
of the source expression. Case-Distribution (CASE-DIST)
and Embedding (EMB) change the scope of variables and
functions, and the domain of an auxiliary function respectively.

None of the transformations except for replacements change
the semantics of a program, instead they are grouped together
with at least one replacement to form compound transforma-
tions such as ABSTR REQ REQ R.

B. The Overall Search for Programs
ADATE maintains a hierarchical structure called a kingdom

inspired by Linnean taxonomy [18]. At the top level there are



families containing genera of the same syntactic complexity.
Each genus contains one or more potential parent programs,
and each species contain programs that have been created
from the same parent program. An essential principle in the
organization of the kingdom is that a new program is inserted
into the kingdom only if it is better than the existing programs
with similar syntactic complexity. When a program is inserted
into the kingdom, all programs bigger but not better are
removed.

ADATE employs an iterative deepening search strategy
where each program has an associated cost limit which de-
termines how many programs that should be synthesized from
the program. The following steps are repeated until the user
decides to terminate.

1) Find the program in the kingdom with the lowest cost
limit and syntactic complexity.

2) Synthesize a number of number of new programs based
on the program selected and the corresponding cost
limit, and insert any program that fulfills the requirement
described above into the kingdom.

3) Double the cost limit of the selected program.

III. THE CANNY EDGE DETECTOR

The Canny algorithm [1] goes through three separate stages,
where the first stage is the target of our investigation. This
stage removes noise and produces a gradient magnitude image
by convolving the input image with a filter. In the original
description, the filter used is the first order derivative of a
Gaussian noise reduction filter.

There are a number of implementations of the Canny algo-
rithm available, but we decided to base our work on the im-
plementation in Matlab. The filter stage of the implementation
produces two gradient images; one for each dimension. The
implementation uses two one-dimensional filters instead of one
two-dimensional to save computation time during convolution.

IV. EXPERIMENTAL SETUP

The ADATE specification, containing the SML implemen-
tation, and other relevant resources used in the experiments
can be found at our web site [19].

A. The Target Program

The start program is listed in Fig. 1. This represents all the
logic needed to create the two one-dimensional filter masks.
We have kept all but the actual value calculations outside the
learning environment.

The function takes one argument m of type mode; a custom
data type that specifies what value to calculate and provides
the input arguments needed.

The first mode size return the number of elements to use.
The input argument Sigma (σ) is the standard deviation used
for the Gaussian noise reduction filter. The default behavior
is to return 8dσe. The second mode value has an additional
argument i which specifies the position in the Gaussian noise
reduction filter mask. The default behavior is

value(σ, i) =
1√
2πσ

e−
i2

2σ2 . (1)

fun f ( m : mode ) : r e a l =
case m of

s i z e sigma => 8 . 0∗ ( r e a l C e i l s igma )
| v a l u e ( sigma , i ) =>

( 0 .3989422804014327 ∗ 1 . 0 / s igma ) ∗
exp (

˜ ( ( i ∗ i ) /
( ( s igma∗ s igma ) + ( s igma∗ s igma ) ) ) )

| g r a d B o r d e r ( x1 , x2 ) => x2−x1
| g rad ( x3 , x4 , x5 ) =>

( x5−x3 ) / 2 . 0

Figure 1. The original program written in ADATE ML.

The two remaining modes, gradBorder and grad, are used for
creating the gradient filter mask. The input arguments x1 . . . x5
contain values from the Gaussian filter mask. The variables
x1 and x2 provide the values for the two border cases, and
the default behavior is to return x2 − x1. For the remaining
positions, x3, x4 and x5 provide the left, middle and right
filter values respectively, and the default behavior is to return
(x5−x3)/2. The middle value x4 has been included to allow
new programs to use the value if needed.

The final filter masks are normalized so that the Gaussian
filter mask sums to one and the gradient filter sums to zero—a
restriction that will apply to all synthesized programs as well.
The filter masks created by the original program with σ = 3.25
can be seen in Fig. 2.

−20 −15 −10 −5 0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

−20 −15 −10 −5 0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 2. The two filter masks used in the algorithm. The masks generated by
the ADATE-improved algorithm in red, and by the original Canny algorithm
in dotted blue.

B. The Dataset

We decided to use the Berkeley Segmentation Data Set
[16] (BSDS)—a high quality dataset of natural images with
ground truths designed for training and evaluating both contour
detectors and image segmentation algorithms. The dataset is
split into 200 training images, 100 validation images, and 200
test images.

In ADATE, the training set is evaluated at a much higher
frequency than the validation set, so we ran the experiments
using only 50 of the training images for training, and both the
remaining training images and the validation set for validation.

C. Evaluating the Inferred Programs

BSDS [16] contains ground truth annotations by on average
5 subjects for each image. It also provides a benchmark based



on a version of F-measure [20] adapted for multiple ground
truths.

We incorporated this evaluation method into our experi-
ments, but we decided to use a slightly different approach
for evaluating a set of images. In [16] they accumulate the
counts and sums for precision and recall over the entire set
and calculate the final F-measure score once all images have
been evaluated. We instead evaluate the score per image and
use the average F-measure on the set. This allows each image
to be equally important to the score.

We also decided to reduce the cardinality of the ground
truth set during evolution to speed up evolution. We decided
on an approach where we select the best ground truth, where
the best is defined as the ground truth that achieves the best
score when evaluated against the others in the set.

D. Selecting the Constants

There are three constants that determine the return charac-
teristic of the algorithm; sigma is the standard deviation of the
Gaussian filter, high and low are the thresholds used during
hysteresis thresholding [1]. The constant values were found
using a simple grid search.

V. RESULTS

A. The Improved Program

fun f m =
case m of

s i z e sigma => 10 .01 ∗ r e a l C e i l s igma
| v a l u e ( sigma , i ) =>

( 0 .398942280401 / s igma ) ∗
exp (

˜ ( ( i ∗ i ) /
( ( ( i / t a n h i ) ∗ s igma ) +

( ( s igma ∗ s igma ) − s igma ) ) ) )
| g r a d B o r d e r ( x1 , x2 ) => t a n h ( ˜ x1 )
| g rad ( x3 , x4 , x5 ) =>

( x5 − t a n h x4 ) / 2 . 0

Figure 3. The improved program.

The best program found is listed in Fig. 3. The overall
structure of the program is the same as the original, but all
the modes of the program have been modified. The size mode
now returns 10.01dσe, and the value mode has been changed
into

value(σ, i) =
1√
2πσ

e
− i2

iσ
tanh i

+σ2−σ . (2)

The gradBorder mode now returns tanh(−x1), and grad
returns (x5− tanhx4)/2. The combined effect of the changes
can be seen in Fig. 2.

B. Benchmarks

Both algorithms were benchmarked using the 200 test
images and the original evaluation method used in the BSDS.
This allows us to compare our results directly to the results
from several other algorithms. We used a simple grid search to
find optimized constant values both for the entire test dataset
(OD) and for each image (OI).

The results can be seen in Table I; the results with OD
constants are listed under ODF, and the results with the OI
constants are listed under OIF. For the sake of comparison
we have included the SCG algorithm ([21]), the current best
algorithm for the dataset. The ADATE-improved algorithm is
still worse than the SCG algorithm, but this is to be expected
when considering that the SCG algorithm is significantly more
complex, both in terms of information schema and processing.

TABLE I
THE EVALUATION RESULTS

ODF OIF
SCG 0.71 0.73
ADATE-Improved 0.615 0.656
Canny 0.606 0.646

The receiver operating characteristics (ROC) curves in Fig.
4 show a noticeable improvement. We have performed both
a paired student-t test and a Wilcoxon signed rank test,
which gave a p-value of 8.348 × 10−5 and 1.164 × 10−5

respectively. We can therefore conclude that the ADATE-
improved algorithm is better than the original algorithm on
the test set.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

Figure 4. The ROC curve for the original algorithm in dotted blue, and the
improved algorithm in solid red.

C. Visual Inspection

We have provided some example images from the test
set along with the corresponding edge maps from the two
algorithms in Fig. 5. The edges were produced using the OD
constants for the respective algorithms.

Based on the two first images it is apparent that the ADATE-
improved algorithm is better at retaining the structure of
detailed areas. This is especially noticeable in the windows
and doors in the first image, and in the umbrella in the second.
In the last image we see an example where the improved
algorithm is able to reduce false positives in the rocky regions.



Figure 5. A few example images from the test set where the ADATE-improved
algorithm performs better than the original algorithm. The left edge maps
belong to the improved algorithm.

VI. CONCLUSIONS

We have improved the convolution filter of the Canny edge
detector using automatic programming. The performance of
the algorithm with the improved filter has increased by 1.4%
on a test set of natural images. This is significant since it
proves that a heuristic design can outperform a formal design
without adding extra information or processing steps. Based
on a paired student-t test and a Wilcoxon signed rank test we
can say that the improvement is statistically significant.

The new algorithm exhibits an increased ability to both
retain detail and smooth over textured areas. It is likely that
the new version of the filter could increase the performance of
the Canny algorithm in general, but further testing is required.
Our findings are further evidence that automatic programming
is capable of improving image analysis algorithms.

We are currently investigating the possibility of improving
other parts of the Canny algorithm using similar setups, and

we are looking into building new theory from the findings.
We are also planning to use automatic programming to infer
or improve an algorithm for determining the two thresholds
automatically, and to find an efficient way of incorporating
texture information into the algorithm.

REFERENCES

[1] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, no. 6, pp. 679–698,
1986.

[2] S. M. Bhandarkar, Y. Zhang, and W. D. Potter, “An edge detection tech-
nique using genetic algorithm-based optimization,” Pattern Recognition,
vol. 27, no. 9, pp. 1159–1180, 1994.

[3] R. Poli, “Genetic programming for feature detection and image segmen-
tation,” in Evolutionary Computing. Springer, 1996, pp. 110–125.

[4] Y. Zhang and P. I. Rockett, “Evolving optimal feature extraction using
multi-objective genetic programming: a methodology and preliminary
study on edge detection,” in Proceedings of the 7th annual conference
on Genetic and evolutionary computation. ACM, 2005, pp. 795–802.

[5] C. Harris and B. Buxton, “Evolving edge detectors with genetic pro-
gramming,” in Proceedings of the 1st annual conference on genetic
programming. MIT Press, 1996, pp. 309–314.

[6] M. Lee, S. Leung, and H. Cheung, “Edge detection by genetic al-
gorithm,” in Image Processing, 2000. Proceedings. 2000 International
Conference on, vol. 1. IEEE, 2000, pp. 478–480.

[7] R. Olsson, “Inductive functional programming using incremental pro-
gram transformation,” Artificial Intelligence, vol. 74, pp. 55–81, 1995.

[8] R. Olsson, “Population management for automatic design of algorithms
through evolution,” in Evolutionary Computation Proceedings, 1998.
IEEE World Congress on Computational Intelligence., The 1998 IEEE
International Conference on. IEEE, 1998, pp. 592–597.

[9] A. Løkketangen and R. Olsson, “Generating meta-heuristic optimization
code using ADATE,” Journal of Heuristics, vol. 16, pp. 911–930, 2010.

[10] R. Olsson and A. Løkketangen, “Improving state-of-the-art 3-sat solvers
using automatic design of algorithms through evolution,” Artificial
Evolution 2011 (Evolution Artificielle 2011), 2011.

[11] R. Olsson and A. Løkketangen, “Using automatic programming to gen-
erate state-of-the-art algorithms for random 3-sat,” Journal of Heuristics,
vol. 19, no. 5, pp. 819–844, 2013.

[12] S.-E. Hansen and R. Olsson, “Improving decision tree pruning through
automatic programming,” in Proceedings of the Norwegian Conference
on Informatics (NIK-2007)(November 2007, Holmenkollen Park Hotel
Rica, Oslo), 2007, pp. 31–40.

[13] L. V. Magnusson and R. Olsson, “Improving graph-based image segmen-
tation using automatic programming,” in Applications of Evolutionary
Computation. Springer, 2014, pp. 464–475.

[14] K. Larsen, L. V. Magnusson, and R. Olsson, “Edge pixel classifica-
tion using automatic programming,” Norsk Informatikkonferanse (NIK),
2014.

[15] H. Berg, R. Olsson, T. Lindblad, and J. Chilo, “Automatic design of pulse
coupled neurons for image segmentation,” Neurocomputing, vol. 71,
no. 10-12, pp. 1980–1993, 2008, neurocomputing for Vision Research;
Advances in Blind Signal Processing.

[16] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, pp. 898–916, 2011.

[17] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of
Standard ML - Revised. The MIT Press, 1997.

[18] C. Linnaeus, Systema naturae per regna tria naturae secundum classes,
ordines, genera, species,... impensis Georg Emanuel Beer, 1788, vol. 1.

[19] L. V. Magnusson, “Image analysis & machine learning,” 2016-07-7.
[Online]. Available: http://www.it.hiof.no/iaml/

[20] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Newton, MA, USA:
Butterworth-Heinemann, 1979.

[21] R. Xiaofeng and L. Bo, “Discriminatively trained sparse code gradients
for contour detection,” in Advances in neural information processing
systems, 2012, pp. 584–592.


