
Improving Graph-based Image Segmentation
Using Automatic Programming

Lars Vidar Magnusson1 and Roland Olsson1

Østfold University College, IT Department, Halden, Norway

Abstract. This paper investigates how Felzenszwalb’s and Huttenlocher’s
graph-based segmentation algorithm can be improved by automatic pro-
gramming. We show that computers running Automatic Design of Al-
gorithms Through Evolution (ADATE), our system for automatic pro-
gramming, have induced a new graph-based algorithm that is 12 percent
more accurate than the original without affecting the runtime efficiency.
The result shows that ADATE is capable of improving an effective image
segmentation algorithm and suggests that the system can be used to
improve image analysis algorithms in general.
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1 Introduction

Image segmentation involves partitioning an image into segments or components
corresponding to objects in the image. Image segmentation has many applica-
tions and is typically used as an early step in a series of image processing tech-
niques. As a result, accurate image segmentation is important; it is likely that it
will affect the quality of all image processing that follows. Image segmentation
algorithms employ a set of visual cues, such as intensity, texture or shape, to
partition an image into its constituent objects. Combining two or more of these
cues has been shown to improve the accuracy of an algorithm, but it also requires
more processing time. There are also applications for image segmentation that
require extremely fast processing, in which case, accuracy has to be sacrificed
for runtime performance.

Here we show that it is possible to use evolutionary computation to automat-
ically improve the core algorithm of a highly efficient graph-based segmentation
technique [1] – without having to incorporate any additional visual cues, and
without altering its overall computational efficiency. By using the ADATE auto-
matic programming system, we have been able to automatically generate a new
algorithm with 12 percent better segmentation accuracy on a popular image
database.

The scientific contributions of this paper can be summarized as follows.

1. An automatically generated and significantly more accurate graph-based im-
age segmentation algorithm that runs as fast as the algorithm on which it
was based.



2. Further evidence to support the hypothesis that ADATE can generate new
and improve image analysis algorithms in general.

2 Background

Two scientific areas provide the background for this paper. The first is the rela-
tively new machine learning discipline of automatic programming, and the sec-
ond is the well studied discipline of image segmentation. The following sections
present the background considered directly relevant for this paper.

2.1 Automatic Design of Algorithms Through Evolution (ADATE)

ADATE [2] is a system for automatic programming which infers purely functional
programs through incremental program transformations – guided by evolution-
ary principles. The system is capable of inventing auxiliary functions, generating
general recursive patterns, and creating and optimizing numerical constants. It
can be used either to create entirely new programs, or to improve existing ones.

All programs generated by the ADATE system are evaluated with a user-
specified evaluation function – allowing anything from simple input/output pairs
to complex simulations. This flexible evaluation system, along with the search-
based approach of incremental transformations, make the system useful in many
cases where other automatic programming systems would fall short [3–5].

The program transformations performed by the ADATE system are grouped
into four categories. The first, and most fundamental, category is called Replace-
ment (R). A replacement can either replace an entire expression with a synthe-
sized expression, or it can reuse parts of it, as subexpressions. Replacements are
separated into two groups to facilitate the evolution process. In one group are
the synthesized expressions that change the semantics of the original program.
These provide a mechanism for introducing improvements into the program. The
replacements in the other group typically maintain the semantics of the origi-
nal program. More precisely, they do not harm the performance of the original
program. These are referred to as replacements preserving equality (REQ), and
they are important in the evolution process, as they provide a mechanism for
doing neutral walks in the search landscape.

The remaining program transformation categories are Abstraction (ABSTR),
Case-distribution (CASE-DIST) and Embedding (EMB). These are responsible
for creating new auxiliary functions, changing the scope of variables and func-
tion, and introducing new function parameters respectively. They maintain the
semantics of the original program, and are far less combinatorially challenging
than replacements.

The problems are provided to ADATE in specifications containing any code
needed to run the algorithm, along with any predefined functions, the training
instances and the evaluation function that will be used to evaluate the generated
programs. ADATE operates using a bare-bone subset of SML [6] called ADATE
ML. The language has been stripped of all syntactic sugar to simplify the evolu-
tion – essentially reducing the language down to functions and case-expressions.



2.2 Graph-based Image Segmentation

Graph-based image segmentation is a generic term covering image segmentation
algorithms that use a graph-theoretic approach to partition an image into its
constituent objects. In this respect, images are typically represented as a graph
G = (V,E), where each element in the set of vertices V represents a pixel in
the image, and the set E contains edges that connect the vertices in the image
according to a neighborhood relation. Each edge has an associated weight that
represents some attribute derived from the vertices that it connects.

Wu and Leahy [7] proposed a graph-based data clustering algorithm based
on a minimum cut – the set of edges with the smallest weights that partitions
a graph into two disjoint subgraphs – and a graph compacting technique. The
algorithm employs an efficient multi-terminal network flow algorithm to find
the maximum flow between all the nodes in the image graph. This makes it
possible to optimally divide the input graph into K regions by removing the edges
belonging to the K − 1 minimum cuts. The weights in the graph represent the
difference in intensity between neighboring pixels in the image being segmented.
The runtime performance of the algorithm is polynomial in the number of nodes
in the graph, but the algorithm is biased towards small regions.

This shortcoming was addressed by Shi and Malik [8] with the introduction
of a normalized cut, which normalize the value of each cut using the sum of the
weights of the edges between the nodes in a subgraph and the entire graph. This
criterion removes the bias towards small regions, but it is computationally ineffi-
cient compared to the minimum cut – the decision variant is NP-complete. They
show that an approximation can be found by solving a generalized eigenvalue
system. This makes the problem tractable, but it still requires long runtimes
due to the size of the matrix required to represent the images. Shi and Malik
proposed a set of cues suitable for different applications, but only one can be
used at any particular time. The framework was extended further by Malik et
al. [9] by incorporating a combination of contour and texture cues. They pro-
posed combining the two cues using a simple gating mechanism triggered by the
texturedness of a region. After an initial over-segmentation, they recalculate the
weights and combine regions until a normalized cut threshold is reached.

Felzenszwalb and Huttenlocher [1] introduced a graph-based algorithm for
image segmentation that – while operating solely on local attributes – manages
to satisfy certain desirable global properties, by producing segmentations that, as
defined by the authors, are neither too fine nor too coarse. Unlike the algorithms
presented above, this algorithm starts out with each pixel as a separate region
and continues to merge regions in a bottom-up fashion. The proposed algorithm
employs an adaptive segmentation strategy that keeps track of the similarity of
the pixels within a segmented region and the dissimilarity between the different
regions. The algorithm is O(n log n), where n is the number of pixels in the image
– a significant improvement over the algorithms above – and most of the time
is spent sorting the edges. The proposed algorithm is simple and efficient in its
design, and it employs intensity cues only.



Alpert et al. [10] proposed a Bayesian probabilistic framework for combining
visual cues. The framework was designed to work with any bottom-up merge
based image segmentation algorithm, but it was demonstrated using a Segmen-
tation by Weighted Aggregation (SWA) algorithm as proposed by Galun et al.
[11] and Sharon et al. [12]. The algorithm starts with each pixel in the image
being represented by a node in the graph. In each iteration, the graph is made
coarser by merging seed nodes with their neighbors according to their similar-
ity. A segmentation hierarchy is formed by relating nodes in the coarser graph
with the nodes in the previous step. Edge weights are updated recursively by
averaging the features, or cues, from earlier steps through weighted aggregation.
The algorithm is linear in the number of pixels in the image, but the actual
runtime is high due to large matrices and large runtime constants. The two orig-
inal variants of the SWA algorithm use a wide set of visual cues, whereas the
Bayesian framework proposed by Alpert et al. [10] was demonstrated using only
intensity and texture cues. The reported runtime for the algorithm with the full
feature-set [11] is between 5 and 10 seconds on a 400 × 400 image using a 1.6
Xeon GHz processor.

It is apparent from the research presented above that the algorithm proposed
by Felzenszwalb and Huttenlocher [1], though relatively simple both in terms of
the overall design and its use of a single intensity cue, is capable of competing
with more complex algorithms [13]. As such, it is a good starting point for an
attempt to improve a leading image segmentation algorithm using automatic
programming. Preliminary work by Huyen and Olsson [14] indicated that the
algorithm can be improved. However, this preliminary study had serious limita-
tions. The images used were scaled down to reduce the memory required, and
the specification lacked essential features, such as noise filtering, available in
the original algorithm. As a consequence, the algorithm is less general than the
original and practically useless on the full-sized images. All of these limitations
have been addressed in our work to allow the evolution of an algorithm that can
perform well even if the conditions change.

3 Experiments

This section describes the most important parts of converting the problem into
the proper format for ADATE.

3.1 The Implementation of the Original Algorithm

The original algorithm had to be ported in its entirety to ADATE ML – the lan-
guage in which ADATE evolves programs. The C++ code provided by Felzen-
szwalb and Huttenlocher, in addition to the actual segmentation algorithm, fea-
tures a Gaussian noise reduction filter and a post-processing step that merges
any neighboring components under a certain size. Both these features have been
included in our ADATE ML implementation to ensure identical operational se-
mantics for both implementations.



The most important parts of the code in the ADATE ML implementation are
located in two functions main and f, where the definition of the latter contains
the code to be modified and improved by ADATE. The main function is executed
once per image, and is responsible for transforming the pre-processed image data
into a graph by letting each pixel be represented by a node, which is connected
to its eight immediate neighbors by weighted edges corresponding to the dis-
similarity of the pixels. All of the edges are sorted in non-decreasing order, and
the data structures used to represent the components during the segmentation
process are initialized. Each node in the graph starts out as a component with
a threshold corresponding to a constant C that controls how large the resulting
segments will be. After these initial tasks, the function invokes the recursive f
function to do the actual segmentation, the result of which is post-processed to
merge components that are smaller than a certain size.

Every invocation of f selects the next candidate edge from the list of sorted
edges. Its weight is compared to the thresholds of the two components that it
connects – if they do not belong to the same component already. If the weight
W is smaller than the thresholds of both components, the two connected com-
ponents are merged into a new component, and the threshold of the component
is set according to the following equation.

TN = W +
C

|N |
. (1)

Here N represents the new component, |N | is the cardinality of N , and TN is
the threshold of N .

The ADATE ML implementation of the algorithm was tested both with a
third-party ML compiler and with ADATE’s internal compiler before the evo-
lution was started, and it produced the exact same results as the original C++
implementation in both cases.

3.2 The Training and Test Images

There are several image databases available that provide natural images man-
ually annotated by humans, but two of them distinguish themselves from the
others in terms of quality, the Berkeley Segmentation Data Set (BSDS) [13] and
the Weizmann Segmentation Evaluation Database (WSED) [10]. The way the
BSDS evaluates segmentations arguably favors algorithms that are either based
on or include some form of edge detection. This makes the dataset unsuitable
for evaluating region growing algorithms like the algorithm by Felzenszwalb and
Huttenlocher [1]. We therefor chose to use the WSED instead, even though it
has fewer images and contains only images with one foreground object.

The dataset contains a total of 100 images with a single foreground object
that have been annotated by three or more individuals. Of these 100, 50 were
used for training, and 50 were used for testing.



3.3 Measuring the Accuracy of Generated Programs

We have used the same means of measuring the performance of the generated
programs that is used in the WSED to determine the accuracy of a segmentation,
the F-measure [15] as defined in (2). Precision (P) is the ratio of the number of
true-positive pixels to the sum of the number of true-positive and the number
of false-positive pixels, and Recall (R) is the ratio of the number of true-positive
pixels to the sum of the number of true-positive and the number of false-negative
pixels.

F =
PR

0.5(P + R)
(2)

The Felzenszwalb and Huttenlocher algorithm produce segmentations that
partition an image into its objects, rather than just foreground and background.
To determine the quality of any segmentation the regions are all evaluated and
the region with the highest score is selected.

3.4 Selecting The Constant Values

There are three constants in the original algorithm: the standard deviation of
the Gaussian noise reduction filter, the threshold for merging components in
post-processing, and the constant C that controls the tendency for components
to merge.

The standard deviation for the noise filter was set to 0.5, which produced
marginally better results on our dataset than the one used by Felzenszwalb and
Huttenlocher [1]. The component size threshold for merging components in the
post-processing step was not discussed in their article, but it is included in the
C++ code provided. We therefore had no reference for choosing this value, and,
due to the way the post-processor operates, it could not simply be chosen by
optimizing its value. This might interfere with the evolution of an improved
algorithm by forcing it to produce suboptimal segmentations to fit the post-
processor. Based on this, we decided to use a relative small threshold of 20 to
keep the interference with the evolution to a minimum, but at the same time
ensure that drastic over-segmentations do not slow down the evaluation.

The third constant C – the only constant used directly in the algorithm – was
chosen by running the algorithm on the entire image dataset with values ranging
from 500 to 2500. Based on the results, we decided to run our experiments with
a value of 1000 for the C constant.

4 Results

In this section the evolved algorithm is presented, along with an analysis of how
it behaves and performs in terms of segmentation quality.



4.1 The Improved Algorithm

The program shown in Listing 1 was evolved over only ten generations – an in-
credibly low number when compared to other problems tackled by ADATE in the
past. This shows that it was quite easy for ADATE to improve the Felzenszwalb
and Huttenlocher algorithm [1]. We will discuss the changes separately to high-
light the semantic difference between the two algorithms, then we will discuss
how the changes in semantics collectively affect the behavior of the algorithm.

1 fun f ( Universe , SortedEdges , Constant ) =
2 case SortedEdges of
3 e n i l => Universe
4 | econs ( CurrentEdge as edge ( A, B, W, X ) , RestEdges ) =>
5 let
6 val ( ComponentA , ThresholdA ) = f i n d ( A, Universe )
7 val ( ComponentB , ThresholdB ) = f i n d ( B, Universe )
8 in
9 i f di f ferentComp ( ComponentA , ComponentB ) then

10 i f W < ThresholdA andalso W < ThresholdB then
11 let
12 val NewUniverse =
13 updateThresholdValue (
14 ComponentB ,
15 W+Constant /
16 getComponentSize (
17 i f Constant < ThresholdA then
18 ComponentB
19 else
20 ComponentA ) ,
21 union ( Universe , ComponentA , ComponentB ) )
22 in
23 f ( NewUniverse , RestEdges , Constant )
24 end
25 else i f W > ThresholdA andalso W > ThresholdB then
26 f ( Universe , RestEdges , getComponentSize ( ComponentB ) )
27 else
28 f ( Universe , RestEdges , Constant )
29 else
30 f ( Universe , RestEdges , Constant )
31 end

Listing 1. The improved algorithm – written in Standard ML to simplify the syntax.

The two algorithms are identical in terms of semantics until the if-expression
on lines 10 through 24. The first case of this if-expression – when the edge weight
is smaller than both the thresholds of the components that the edge connects –



cause the components to be joined and the threshold to be updated. But, instead
of setting the threshold on the new component like in the original algorithm,
it is set on the second connected component. The threshold is also calculated
differently by no longer using the size of the joined component to divide the
constant as in (1), but instead uses the size of one of the connected components
– depending on a test to see if the constant is less than the threshold of the first
connected component. The new algorithm has also introduced a new test on line
25 that checks whether the edge weight is bigger than both the thresholds of the
components that the edge connects. In these situations the value of the constant
is changed to the size of the second connected component. This, technically,
makes the value a variable, but, for the sake of convenience, we will continue to
refer to it as the constant.

The deceptively simple change that sets the new threshold on the second
connected component, rather than the joined component, has the obvious effect
that only about half the threshold updates will make a difference. Due to the
way the components are represented, the second connected component has to
be the component with the highest rank – a disjoint-set heuristic used to keep
the trees shallow [16]. In most cases this translates into to the second connected
component being the largest of the two. This is exploited on line 17 where a
comparison of the current constant and the threshold of the first connected
component determines which size of the components to use to calculate the new
threshold. If the constant is equal to or greater than the threshold, the size of the
first component is used, and in 98 percent of the cases, the size of this component
is equal to or less than the size of the second component.

The new test on line 25 culminates into a recursive call that changes the
constant value to the size of the second connected component when the current
edge weight is larger than both the thresholds of the connected components.
This normally occurs only after the components have been growing for some
time, and as a result the new value is normally much larger than the original
value. This changes how the algorithm operates on the remaining edges of the
image. Any components merged after this will have much higher threshold than
normal, essentially marking it with a high degree of variance and drastically
increasing the chance of it being merged again.

Whereas the component threshold in the original algorithm is strictly de-
creasing and inversely proportional to the size of the component, the threshold
in the improved algorithm fluctuates depending on the conditions under which
two components are joined together. This allows the algorithm to react to pat-
terns that occur during the segmentation.

4.2 Comparison of the Segmentation Quality

The segmentation accuracy of the new algorithm drastically exceeds the segmen-
tation accuracy of the original algorithm. The images in Fig. 1 are some of the
examples that showcase the differences between the segmentations produced by
the two algorithms.



Fig. 1. A selected set of images and their segmentations. From left to right: The original
images, the ground-truth images, the segmentation produced by the original algorithm,
the segmentation produced by the improved algorithm, the best segment from the
original segmentation, and the best segment from the improved segmentation.

The first three images are all instances where the new algorithm is far more
accurate than the original. In all three images the original algorithm has joined
most, if not all, of the foreground object with the background, while the improved
algorithm has managed to keep them separate. The segmentation of the fourth
image is also improved with the new algorithm, but not by the same amount
as the first three. The original segmentation suffers from being over-segmented,
while the improved segmentation is an under-segmentation. In the fourth image
the score of the segmentation produced by the improved algorithm is slightly
lower than the original. In the last image, the reduced quality of the improved
algorithm is plainly visible – in the form of an over-segmentation.



4.3 Algorithm Benchmarks

The algorithms were benchmarked separately on both the 50 training images
and the 50 test images. We used the same means of measurement as we did
during the evolution; we used the F-measure as defined in (2) to determine the
accuracy of each segment, and the maximum score to represent the quality of
the segmentation.

We tested both algorithms on both the full-sized images and on image re-
duced in size, where the latter were included to establish whether or not the
new algorithm is specialized to the conditions under which it was evolved. The
algorithms were all tested using the same noise filter and post-processor settings
as during the evolution. The remaining constant were optimized using the 50
training images.

Table 1. The average results from running the two algorithms on the full-sized im-
ages. The columns P, R and F represent the average Precision, Recall and F-measure
respectively.

Train Test Total

Algorithm P R F P R F P R F

New 0.79 0.86 0.79 0.81 0.82 0.78 0.80 0.84 0.79
Original 0.75 0.82 0.71 0.76 0.76 0.69 0.75 0.79 0.70

Table 2. The average results from running the two algorithms on the images that have
been reduced to a quarter of their original size. The columns P, R and F represent the
average Precision, Recall and F-measure respectively.

Train Test Total

Algorithm P R F P R F P R F

New 0.73 0.79 0.73 0.76 0.81 0.75 0.75 0.80 0.74
Original 0.75 0.76 0.70 0.78 0.78 0.73 0.77 0.77 0.71

The average results from running both algorithms on all the full-sized images
can be seen in Table 1. It is apparent from this data that the improved algorithm,
on average, outperforms the original algorithm in terms of both precision and
recall – yielding an average F-measure 11.5 percent, or 9 percentage points,
better than the original. We also did a pairwise comparison of the two algorithms
using student-t distribution on the differences, and we can say with 99 percent
confidence that the new algorithm is between 1 and 17 percentage points better
than the original on the test images.



The benchmark averages are directly comparable to the one segment cover-
age test in Alpert et al. [10] due to using the exact same images and performance
measure. Among the algorithms in this test are both the three SWA based algo-
rithms [10–12] and the normalized cut with gated intensity and texture cues [9].
From their results we can see that the algorithm algorithm presented here is still
not as good as the two best algorithms [10, 11], but it manages to outperform
the remaining two [12, 9]. All of these algorithms employ two or more cues, and
they are, based on their efficiency and reported runtime, an order of magnitude
slower.

Alpert et al [10] also tested another very popular algorithm [17] that only uses
intensity cues to segment an image. This makes it comparable to the algorithms
tested here, but the results show that the accuracy of this algorithm is far worse.

The average results from running the algorithms on the images reduced in
size can be seen in Table 2. The improved algorithm outperforms the original
here as well, but only by 3.4 percent. Based on the data, this seems to be due to a
slight under-segmentation, when compared to the segmentations of the full-sized
images.

5 Conclusions

We have successfully been able to improve a leading image segmentation algo-
rithm by using automatic programming, and the new algorithm is both small, ef-
ficient and superior to comparable algorithms. The algorithm evolved by ADATE
has kept the runtime efficiency of the original algorithm, and the segmentation
quality has been improved by 12 percent on full-sized images. This improve-
ment has been achieved without adding any additional visual cues. Instead it
has been made possible by the adaptive mechanisms automatically invented by
the ADATE system.

The success of our attempt at using ADATE for this purpose provides further
evidence that the system is capable of improving state of the art image segmen-
tation algorithms – if not image processing algorithms in general. The ADATE
system, through its evolutionary strategy, is highly suitable for problems, like
image segmentation, where we typically are looking for the best approximation,
not the exact solution. These situations typically require a good heuristic, and
the ADATE system has proven several times to be capable of creating customized
code to fit this need.
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